Vol. 25
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-08-27
How Lightning Tortuosity Affects the Electromagnetic Fields by Augmenting Their Effective Distance
By
Progress In Electromagnetics Research B, Vol. 25, 155-169, 2010
Abstract
A novel approach for developing the electromagnetic fields from a lightning return stroke which follows a tortuous path will be presented. The proposed model is unique in that it recognizes that the symmetrical tortuosity of lightning directly impacts the observable distance r, which in turn, alters the resulting electromagnetic fields. In the literature, lightning return stroke models typically employ the assumption that the cloud-to-ground path is straight. Although this assumption yields fairly consistent results across an array of varying approaches, it does not account for lightning's natural physical appearance. Furthermore, straight-line models only account for the cloud-to-ground discharges and do not address branching and/or cloud-to-cloud discharges which are far more common. In reality, the ``steps'' which make up the lightning channel's initial descent are staggered or tortuous with respect to each other. Given this fact, the upward traveling current wavefront which follows this prescribed path will exhibit the same characteristics. In doing so, each current segment, which forms along its respective step, induces electromagnetic fields with angular aggregates that propagate outward from their origin. This, in turn, will generate spatial points where there are fields of higher and lower intensities. The results presented in this paper will show how the effective observable distance due to symmetrical tortuosity alters the resulting electromagnetic fields. Furthermore, it will be shown that as the observable distance r is increased, results from the proposed model closely resemble the straightline model which strongly suggests that symmetrical tortuosity is only influential at relatively close distances.
Citation
Scott L. Meredith, Susan K. Earles, Ivica N. Kostanic, Niescja E. Turner, and Carlos E. Otero, "How Lightning Tortuosity Affects the Electromagnetic Fields by Augmenting Their Effective Distance," Progress In Electromagnetics Research B, Vol. 25, 155-169, 2010.
doi:10.2528/PIERB10072808
References

1. Rakov, V. A. and M. A. Uman, "Review and evaluation of lightning return stroke models including some aspects of their application," IEEE Trans. on Electromagnetic Capability, Vol. 40, No. 4, 403-426, Nov. 1998.
doi:10.1109/15.736202

2. Pearlman, R. A., "Lightning near fields generated by return stroke models," IEEE International Symposium on Electromagnetic Compatibility, San Diego, California, 1979.

3. Rubinstein, M. and M. A. Uman, "Methods for calculating the electromagnetic fields from a known source distribution: Application to lightning," IEEE Trans. on Electromagnetic Compatibility, Vol. 31, No. 2, 183-189, May 1989.
doi:10.1109/15.18788

4. Hill, R. D., "Analysis of irregular paths of lightning channels," J. Geophys. Res., Vol. 74, 1922-1929, 1969.
doi:10.1029/JB074i008p01922

5. Le Vine, D. M. and R. Meneghini, Radiation from a current filament driven by a traveling wave, 1-20 NASA Technical Note, NASA TN D-8302, Oct. 1976.

6. Moini, R., S. H. H. Sadeghi, and F. Rachidi, "An antenna-theory approach for modeling inclined lightning return stroke channels," Journal of Iranian Association of Electrical and Electronics Engineers, Vol. 1, No. 1, 2-9, Spring 2004.

7. Lupo, G., C. Petrarca, V. Tucci, and M. Vitelli, "EM fields generated by lightning channels with arbitrary location and slope," IEEE Trans. on Electromagnetic Compatibility, Vol. 42, No. 1, 39-53, Feb. 2000.
doi:10.1109/15.831703

8. Lupo, G., C. Petrarca, V. Tucci, and M. Vitelli, "EM fields associated with lightning channels: On the effect of tortuosity and branching," IEEE Trans. on Electromagnetic Compatibility, Vol. 42, No. 4, 394-404, Nov. 2000.
doi:10.1109/15.902309

9. Chia, D. K. L. and A. C. Liew, "Effect of tortuosity of lighning stroke path on lightning electromagnetic fields," Asia-Pacific Symposium on Electromagnetic Compatibility & 19th International Zurich Symposium on Electromagnetic Compatibility, 19-22, Singapore, May 2008.