Vol. 23
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-07-23
Photonic Band Structure of 1D Periodic Composite System with Left Handed and Right Handed Materials by Green Function Approach
By
Progress In Electromagnetics Research B, Vol. 23, 229-249, 2010
Abstract
In the framework of the Green function method, we theoretically study the photonic band structure of one-dimensional superlattice composed of alternating layers of right-handed and left-handed materials (RHM and LHM). The dispersion curves are studied by assuming that the dielectric permittivity and magnetic permeability are frequency dependent in each layer. It is shown that such structures can exhibit new types of electromagnetic modes and dispersion curves that do not exist in usual superlattices composed only of RHM. With an appropriate choice of the parameters, we show that it is possible to realize an absolute (or omnidirectional) band gap for either transverse electric (TE) or transverse magnetic (TM) polarizations of the electromagnetic waves. A combination of two multilayer structures composed of RHM and LHM is proposed to realize, in a certain range of frequency, an omnidirectional reflector of light for both polarizations.
Citation
Abdelmajid Essadqui, Jawad Ben-Ali, Driss Bria, Bahram Djafari-Rouhani, and Abdelkrim Nougaoui, "Photonic Band Structure of 1D Periodic Composite System with Left Handed and Right Handed Materials by Green Function Approach," Progress In Electromagnetics Research B, Vol. 23, 229-249, 2010.
doi:10.2528/PIERB10032404
References

1. Pendry, J. B., "Photonic crystals and light localization in the 21th century," NATO Science, Vol. 563, 329, C. M. Soukoulis (ed.), Series C, Kluwer, Dordrecht, 2002.

2. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp., Vol. 10, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699

3. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77, 2001.
doi:10.1126/science.1058847

4. Marqués, R., J. Martel, F. Mesa, and F. Medina, "Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides," Phys. Rev. Lett., Vol. 89, 138901, 2002.

5. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Steweat, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwaves and Techniques, Vol. 47, 2075, 2000.
doi:10.1109/22.798002

6. Foteinoupoulou, S., E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett., Vol. 90, 107402, 2003.
doi:10.1103/PhysRevLett.90.107402

7. Houck, A. A., J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's law," Phys. Rev. Lett., Vol. 90, 137401, 2003.
doi:10.1103/PhysRevLett.90.137401

8. Parazzoli, C. G., R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett., Vol. 90, 107401, 2003.
doi:10.1103/PhysRevLett.90.107401

9. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Vol. 64, 056625, 2001.
doi:10.1103/PhysRevE.64.056625

10. Smith, D. R., D. Schurig, and J. B. Pendry, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Appl. Phys. Lett., Vol. 81, 2713, 2002.
doi:10.1063/1.1512828

11. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966

12. Feise, M. W., P. J. Bevelacqua, and J. B. Schneider, "Effects of surface waves on the behaviour of perfect lenses," Phys. Rev. B, Vol. 66, 035113, 2002.
doi:10.1103/PhysRevB.66.035113

13. Fang, N. and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett., Vol. 82, No. 161, 2003.

14. Zhang, Z. M. and C. J. Fu, "Unusual photon tunnelling in the presence of a layer with a negative refractive index," Appl. Phys. Lett., Vol. 80, 1097, 2002.
doi:10.1063/1.1448172

15. Enoch, S., G. Tayeb, P. Sabourous, N. Guérin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, 213902, 2002.
doi:10.1103/PhysRevLett.89.213902

16. Nefedov, I. S. and S. A. Tretyakov, "Photonic band gap structure containing metamaterial with negative permittivity and permeability," Phys. Rev. E, Vol. 66, 036611, 2002.
doi:10.1103/PhysRevE.66.036611

17. Li, J., L. Zhou, C. T. Chan, and P. Sheng, "Photonic band gap from a stack of positive and negative index materials," Phys. Rev. Lett., Vol. 90, 083901, 2003.
doi:10.1103/PhysRevLett.90.083901

18. Bria, D., B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, J. P. Vigneron, E. H. ElBoudouti, and A. Nougaoui, "Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials," Phys. Rev. E, Vol. 69, 066613, 2004.
doi:10.1103/PhysRevE.69.066613

19. Wu, L., S. He, and L. Shen, "Band structure for a one-dimensional photonic crystal containing left-handed materials," Phys. Rev. B, Vol. 67, 235103, 2003.
doi:10.1103/PhysRevB.67.235103

20. Xiang, Y., X. Dai, and S. Wen, "Omnodirectional gaps of one-dimensional potonic crystals containing indefinite metamaterials," J. Opt. Soc. Am. B, Vol. 24, 2033, 2010.

21. Zhang, F., D. P. Gaillot, C. Croënne, E. Lheurette, X. Mélique, and D. Lippens, "Low-loss left-anded metamaterials at millimeter waves," Appl. Phys. Let., Vol. 93, 083104, 2008.
doi:10.1063/1.2975187

22. Xinag, Y., X. Dai, S. Wen, and D. Fan, "Properties of omnidirectional gap and defect mode of one-dimensionla photonic crystal containing indefinite metamaterials with hyperbolic dispersion," J. Appl. Phys., Vol. 102, 093107, 2007.
doi:10.1063/1.2809446

23. Sun, W.-H., Y. Lu, R.-W. Peng, L.-S. Cao, D. Li, X. Wu, and M. Wang, "Omnidirectional transparency induced by matched impedance disordered metamaterials," J. Appl. Phys., Vol. 106, 013104, 2009.
doi:10.1063/1.3159018

24. De Dios-Leyva, M. and J. C. Drake-Pérez, "Zero-width band gap associated with the n = 0 condition in photonic crystals containing left-handed materials," Phys. Rev. E, Vol. 79, 036608, 2009.
doi:10.1103/PhysRevE.79.036608

25. Fink, J. N., S. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "Dielectric omnidirectional reflector," Science, Vol. 282, 1679, 1998.
doi:10.1126/science.282.5394.1679

26. Dowling, J. P., "Mirror on the wall: You're omnidirectional after all?," Science, Vol. 282, 1841, 1998.
doi:10.1126/science.282.5395.1841

27. Bria, D., B. Djafari-Rouhani, E. H. El Boudouti, A. Mir, A. Akjouj, and A. Nougaoui, "Omnidirectional optical mirror in a cladded-superlattice structure," J. Appl. Phys., Vol. 91, 2569, 2002.
doi:10.1063/1.1433188

28. Bria, D. and B. Djafari-Rouhani, "Omnidirectional elastic band gap infinite lamellar structures," Phys. Rev. E, Vol. 66, 056609, 2002.
doi:10.1103/PhysRevE.66.056609

29. Xiang, Y., L. Ran, J. T. Huangfu, H. S. Chen, and J. A. Kong, "Experimental verification of zero order bandgap in a layered stack of left-handed and right-handed materials," Opt. Express, Vol. 14, 2223, 2006.

30. Aylo, R., P. P. Banerjee, and G. Nehmetallah, "Perturbed multilayered structures of positive and negative index materials," J. Opt. Soc. Am. B, Vol. 27, 599, 2010.
doi:10.1364/JOSAB.27.000599

31. Dobrzynski, L., "Interface response theory of continuous composite materials," Surf. Sci., Vol. 180, 489, 1987.
doi:10.1016/0039-6028(87)90222-6

32. Ouchani, N., D. Bria, B. Djafari-Rouhani, and A. Nougaoui, "Transverse-electric/Transversemagnetic polarization converter using 1D finite biaxial photonic crystal," J. Opt. Soc. Am. A, Vol. 24, No. 9, 2710, 2007.
doi:10.1364/JOSAA.24.002710

33. Ruppin, R., "Surface polaritons of a left-handed material slab," J. Phys. Condens. Matter, Vol. 13, 1811, 2001.
doi:10.1088/0953-8984/13/9/304

34. Shadrivov, I. V., N. A. Zharova, A. A. Zharov, and Y. S. Kivshar, "Defect modes and transmission properties of left-handed bandgaps structures," Phys. Rev. E, Vol. 70, 046615, 2004.
doi:10.1103/PhysRevE.70.046615

35. Cocoletzi, G. H., L. Dobrzynski, B. Djafari-Rouhani, H. AlWahsh, and D. Bria, "Electromagnetic wave propagation in quasi-one-dimensional comb-like structures made up of dissipative negative-phase-velocity materials," J. Phys.: Condens. Matter, Vol. 18, 3683, 2006.
doi:10.1088/0953-8984/18/15/014