Vol. 9
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-11-28
Band Structure, Reflection Properties and Abnormal Behaviour of One-Dimensional Plasma Photonic Crystals
By
Progress In Electromagnetics Research M, Vol. 9, 227-241, 2009
Abstract
In this paper, some studies on one-dimensional plasma photonic crystal (PPC) containing alternate layers of dielectric and micro-plasma have been presented. The band structures, reflectivity, group velocities and effective group index of such photonic crystals have been studied. For the purpose of computation, we have used transfer matrix method. In this study, we take two PPC structures named PPC1 and PPC2. In PPC1, we take SiO2 as the material for the dielectric layers whereas in PPC2, we take TiO2 as the material for the dielectric layers. It is found that the forbidden band gap(s) can be increased by increasing the thickness of plasma layers. The ranges of 100% reflection is found to be in the higher normalized frequency region in the case of PPC1 whereas in PPC2 the ranges of 100% reflection is found in the lower normalized frequency region. It is also found that for a certain normalized frequency, the group velocity becomes negative in both PPCs. However, the range of normalized frequency for which the group velocity is negative is larger in the case PPC1 than in PPC2. This abnormal behaviour of group velocities of both PPCs results in superluminal propagation (speed of EM wave in PPC greater than speed of light) of electromagnetic waves. Also, because of the abnormal behaviour of group velocity, effective group index becomes negative and possesses ultra high values. uch structures may be considered as a flip flop as there is positive and negative symmetry of effective group velocity. Also, PPC2 exhibits superluminal propagation for wider range of normalized frequency where there is superluminal propagation inside the structure as compared to that of PPC1.
Citation
Vipin Kumar, Khundrakpam Saratchandra Singh, and Sant Ojha, "Band Structure, Reflection Properties and Abnormal Behaviour of One-Dimensional Plasma Photonic Crystals," Progress In Electromagnetics Research M, Vol. 9, 227-241, 2009.
doi:10.2528/PIERM09101701
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. Pendry, J. B., "Photonic band structures," J. Mod Opt., Vol. 41, 209, 1994.
doi:10.1080/09500349414550281

3. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton Univ. Press, NJ, 1995.

4. Jonopoulos, J. D., P. Villeneuve, and S. Fan, "Photonic crystals: Putting a new twist on light," Nature, Vol. 386, 143-149, 1997.
doi:10.1038/386143a0

5. Brooks, D. and S. Ruschin, "Integrated electrooptic multielectrode tunable filter," J. Lightwave Technol., Vol. 13, 1508-1513, 1995.
doi:10.1109/50.400719

6. John, S., "Strong localization of photon in certain disordered dielectric superlattice," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

7. Russell, P. S. J., S. Tredwell, and P. J. Roberts, "Full photonic bandgapes and spontaneous emission control in 1D multilayer dielectric structures," Opt. Commun., Vol. 160, 66-71, 1999.
doi:10.1016/S0030-4018(98)00659-2

8. Chigrin, D. N., A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "Observation of total omnidirectional reflection from a one-dimensional dielectric lattice," Appl. Phys. A: Mater. Sci. Process., Vol. 68, 25-28, 1999.
doi:10.1007/s003390050849

9. Shadrivov, I. V., A. A. Sukhorukov, and Y. S. Kivshar, "Complete band gaps in one dimensional left handed periodic structure," Phys. Rev. Lett., Vol. 95, 193903-4, 2005.
doi:10.1103/PhysRevLett.95.193903

10. Wu, R. X., P. Chen, F. Yang, and T. E. Zhao, "Wave polarization and left-handed materials in metallic magnetic thin films," PIERS Online, Vol. 1, No. 4, 459-463, 2005.
doi:10.2529/PIERS041225091131

11. Shu, W. and J. M. Song, "Complete mode spectrum of a grounded dielectric slab with double negative metamaterials," Progress In Electromagnetics Research, Vol. 65, 103-123, 2006.
doi:10.2528/PIER06081601

12. Singh, S. K., J. P. Pandey, K. B. Thapa, and S. P. Ojha, "Structural parameters in the formation of omnidirectional high reflectors," Progress In Electromagnetics Research, Vol. 70, 53-78, 2007.
doi:10.2528/PIER07010501

13. Srivastava, S. K. and S. P. Ojha, "Omnidirectional reflection bands in one-dimensional photonic crystals with left-handed materials," Progress In Electromagnetics Research, Vol. 68, 91-111, 2007.
doi:10.2528/PIER06061602

14. Srivastava, S. K. and S. P. Ojha, "Omnidirectional reflection bands in one-dimensional photonic crystal structure using fluorescence films," Progress In Electromagnetics Research, Vol. 74, 181-194, 2007.
doi:10.2528/PIER07050202

15. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
doi:10.2528/PIERB07102903

16. Banerjee, A., S. K. Awasthi, U. Malaviya, and S. P. Ojha, "Design of a nano-layered tunable optical filter," J. of Modern Optics, Vol. 53, 1739-1752, 2006.
doi:10.1080/09500340600590547

17. Aissaoui, M., J. Zaghdoudi, M. Kanzari, and B. Rezig, "Optical properties of the quasi-periodic one-dimensional generalized multilayer fibonacci structures," Progress In Electromagnetics Research, Vol. 59, 69-83, 2006.
doi:10.2528/PIER05091701

18. Chen, K. M., A. W. Sparks, H.-C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, "SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method," Appl. Phys. Lett., Vol. 75, 3805-3807, 1999.
doi:10.1063/1.125462

19. Brillouin, L., Wave Propagation and Group Velocity, Academic, New York, 1960.

20. Garrett, C. G. B. and D. E. McCumber, "Propagation of Gaussian pulse through an Anomalous Dispersive Medium," Phys. Rev. A, Vol. 1, 305-313, 1970.
doi:10.1103/PhysRevA.1.305

21. Japha, Y. and G. Kurizki, "Superluminal delays of coherent pulses in nondessipative media: A universal mechanism," Phys. Rev. A, Vol. 53, 586-590, 1996.
doi:10.1103/PhysRevA.53.586

22. Romero-Rochin, V., R. P. Duarte-Zamorano, S. Nilsen-Hofseth, and R. G. Barrera, "Superluminal transmission of lights through optical opaque barriers," Phys. Rev. E, Vol. 63, 027601-027604, 2001.
doi:10.1103/PhysRevE.63.027601

23. Bolda, E. L. and R. Y. Chiao, "Two theorems for the group velocity in dispersive media," Phys. Rev. A, Vol. 48, 3890-3894, 1993.
doi:10.1103/PhysRevA.48.3890

24. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekh1, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

25. Ramakrishna, S. A., "Physics of negative refractive index materials," Rep. Prog. Phys., Vol. 68, 449-521, 2005.
doi:10.1088/0034-4885/68/2/R06

26. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

27. Ojha, S. P. and S. K. Srivastava, "Group velocity, negative and ultra-high index of refraction in photonic band gap materials," Microwave Opt. Technol. Lett., Vol. 42, 82-86, 2004.
doi:10.1002/mop.20216

28. Ojha, S. P., K. B. Thapa, and S. K. Singh, "Superluminal propagation in plasma Photonic band gap materials," Optik --- International Journal for Light and Electron Optics, Vol. 119, No. 2, 81-85, 2008.
doi:10.1016/j.ijleo.2006.06.014

29. Pandey, G. N., K. B. Thapa, S. K. Srivastava, and S. P. Ojha, "Band structures and abnormal behaviour of one dimensional photonic crystal containing negative index materials," Progress In Electromagnetics Research M, Vol. 2, 15-36, 2008.
doi:10.2528/PIERM08021501

30. Hojo, H. and A. Mase, "Dispersion relation of electromagnetic waves in one dimensional plasma photonic crystals," J. Plasma Fusion Res., Vol. 80, 89-92, 2004.
doi:10.1585/jspf.80.89

31. Yeh, P., Optical Waves in Layered Media, Wiley, New York, 1988.

32. Sakoda, K., Optical Properties of Photonic Crystals, Springer, Germany, 2001.