Vol. 9
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-09-18
Circularly Polarized Arrays of Cavity Backed Slot Antennas for X-Band Satellite Communications
By
Progress In Electromagnetics Research B, Vol. 9, 179-198, 2008
Abstract
Circularly-polarized arrays of cavity backed slot (CBS) antennas are proposed for X-band satellite-earth communications. Two configurations of such circularly polarized arrays are investigated: cross-shaped and square-shaped arrays. Both configurations can produce right-hand circular polarization (RHCP) as well as lefthand circular polarization (LHCP) by proper setting of excitation phase for each element in the array. The finite-difference timedomain (FDTD) method is used to analyze the characteristics of the proposed arrays including the input impedance, S-parameters, radiation pattern, gain and axial ratio. The results show that the proposed array configurations seem very promising and useful for geostationary satellite applications.
Citation
Eman M. Eldesouki, Khalid Fawzy Ahmed Hussein, and Adel M. El-Nadi, "Circularly Polarized Arrays of Cavity Backed Slot Antennas for X-Band Satellite Communications," Progress In Electromagnetics Research B, Vol. 9, 179-198, 2008.
doi:10.2528/PIERB08080302
References

1. Moheb, H., J. Shaker, and L. Shafai, "Numerical and experimental investigation of cavity-backed arbitrary antennas," Can. J. Physics, Vol. 74, No. 3-4, 122-131, 1996.

2. Hussein, K. F. A., "Effect of internal resonance on the radar cross section and shield effectiveness of open spherical enclosures," Progress In Electromagnetics Research, Vol. 70, 225-246, 2007.
doi:10.2528/PIER07012101

3. Jin, J. M. and J. L. Volakis, "A finite element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures," IEEE Trans. Antennas & Propag., Vol. 39, No. 1, 97-104, Jan. 1991.
doi:10.1109/8.64442

4. Omiya, M., T. Hikage, N. Ohno, K. Horiguchi, and K. Itoh, "Design of cavity-backed slot antennas using the finite-difference time-domain technique," IEEE Trans. Antennas Propagat., Vol. 46, 1853-1858, Dec. 1998.
doi:10.1109/8.743823

5. Hikage, T., M. Omiya, and K. Itoh, "Considerations on performance evaluation of cavity-backed slot antenna using the FDTD technique," IEEE Trans. Antennas Propag., Vol. 49, 1712-1717, Dec. 2001.
doi:10.1109/8.982450

6. Georgakopoulos, S. V., C. R. Birtcher, and C. A. Balanis, "Coupling modeling and reduction techniques of cavity-backed slot antennas: FDTD versus measurements," IEEE Trans. Antennas Propag., Vol. 43, 261-272, Aug. 2001.

7. Shi, S., K. Hirasawa, and Z. Ning, "Circularly polarized rectangularly bent slot antennas backed by a rectangular cavity," IEEE Trans. Antennas Propag., Vol. 49, 1517-1524, Nov. 2001.

8. Taflove, A., Computational Electromagnetics, Artech House, Norwood, MA, 1995.

9. Luebbers, R. J. and H. S. Langdon, "A simple feed model that reduces time steps needed for FDTD antenna and microstrip calculations," IEEE Trans. Antennas Propagat., Vol. 44, 1000-1005, July 1996.

10. Lubbers, R., K. Kunz, M. Schneider, and F. Hunsberger, "A finite difference time-domain near zone to far zone transformation," IEEE Trans. Antennas Propagat., Vol. 34, 429-433, Apr. 1991.
doi:10.1109/8.81453

11. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas and Propagation, Vol. 14, 302-307, May 1966.

12. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edition, Artech House, Norwood, MA, 2005.

13. Taflove, A. and M. E. Brodwin, "Numerical solution of steady-state electromagnetic scattering problems using the timedependent Maxwell's equations," IEEE Trans. Microwave Theory Tech., Vol. 23, 623-630, Aug. 1975.
doi:10.1109/TMTT.1975.1128640

14. Tretyakov, O. A. and F. Erden, "Temporal cavity oscillations caused by a wide-band waveform," Progress In Electromagnetics Research B, Vol. 6, 183-204, 2008.
doi:10.2528/PIERB08031222

15. Kukharchik, P. D., V. M. Serdyuk, and J. A. Titovitsky, "Diffraction of hybrid modes in a cylindrical cavity resonator by a transverse circular slot with a plane anisotropic dielectric layer," Progress In Electromagnetics Research B, Vol. 3, 73-94, 2008.
doi:10.2528/PIERB07112502

16. Hemon, R., P. Pouliguen, H. He, J. Saillard, and J.-F. Damiens, "Computation of EM field scattered by an open-ended cavity and by a cavity under radome using the iterative physical optics," Progress In Electromagnetics Research, Vol. 80, 77-105, 2008.
doi:10.2528/PIER07110803

17. Xu, L., J. Tian, and X.-W. Shi, "A closed-form solution to analyze RCS of cavity with rectangular cross section," Progress In Electromagnetics Research, Vol. 79, 195-208, 2008.
doi:10.2528/PIER07090503

18. Geyi, W., "Time-domain theory of metal cavity resonator," Progress In Electromagnetics Research, Vol. 78, 219-253, 2008.
doi:10.2528/PIER07090605

19. Wang, F. J. and J.-S. Zhang, "Wideband cavity-backed patch antenna for PCS/IMT2000/2.4 GHz WLAN," Progress In Electromagnetics Research, Vol. 74, 39-46, 2007.
doi:10.2528/PIER07041801

20. Mahajan, M., S. K. Khah, and T. Chakravarty, "Extended cavity model analysis of stacked circular disc," Progress In Electromagnetics Research, Vol. 65, 287-308, 2006.
doi:10.2528/PIER06101301

21. Bopp III, C. L. and C. M. Butler, "Analysis of transmission of a signal through a complex cylindrical/coaxial cavity by transmission line methods," rogress In Electromagnetics Research, Vol. 56, 33-51, 2006.
doi:10.2528/PIER05041403

22. Das, S., A. Chakrabarty, and A. Chakraborty, "Characteristics of an offset longitudinal/transverse slot coupled crossed waveguide junction using multiple cavity modeling technique considering the TE00 mode at the slot aperture," Progress In Electromagnetics Research, Vol. 67, 297-316, 2007.
doi:10.2528/PIER06092701

23. Wang, C.-F., Y. Xu, and Y.-B. Gan, "3-dimensional implementation of the field iterative method for cavity modeling," Progress In Electromagnetics Research, Vol. 47, 27-47, 2004.
doi:10.2528/PIER03081401