Vol. 1
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2007-11-03
Small Size Ka-Band Distributed MEMS Phase Shifters Using Inductors
By
Progress In Electromagnetics Research B, Vol. 1, 95-113, 2008
Abstract
MEMS phase shifter has been developed using inductors. The design consists of a CPW line capacitively and inductively loaded by the periodic set of inductors and electrostatic force actuated MEMS switches as capacitors. By applying a single bias voltage on the line, the characteristic impedance can be changed, which in turn changes the phase velocity of the line and creates a true time delay phase shift. The governing equations for the impedance and loss are derived. The ABCD matrix is defined for a unit cell and multi-cell DMTL phase shifter to extract scattering parameters equations. The MEMS switch is actuated by a 39 voltage waveform using a high resistance bias line. Estimated spring constant and switching time is 22 N/m and 3 μs, respectively. The structure is designed for Ka-band frequency range. The acceptable frequency range for the design containing 21 cells is between 26 GHz and 27 GHz and optimum condition occurs at 26.3 GHz. For the whole structure and optimum condition the un actuated position results in a return loss -16 dB and insertion loss of -1.65 dB. The actuated position results in a return loss -12.5 dB and insertion loss of -1.6 dB. The phase shift for the whole structure is 190 degree. The optimum condition can be easily changed by modifying the design parameters. The spacing in the proposed structures is S = 250 μm. The structure is also low loss. The length and the loss per bit with the phase shift of 270 are decreased by 37.5 percent and 21 percent respectively.
Citation
Saeid Afrang, and Burhanuddin Yeop Majlis, "Small Size Ka-Band Distributed MEMS Phase Shifters Using Inductors," Progress In Electromagnetics Research B, Vol. 1, 95-113, 2008.
doi:10.2528/PIERB07101903
References

1. Wang, Z., B. Yan, R. M. Xu, and Y. Guo, "Design of a Ku band six bit phase shifter using periodically loaded-line and switched-line with loaded-line," Progress In Electromagnetics Research, Vol. 76, 369-379, 2007.
doi:10.2528/PIER07071904

2. Akdagli, A., K. Guney, and B. Babayigit, "Clonal selection algorithm for design of reconfigurable antenna array with discrete phase shifters," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 215-227, 2007.
doi:10.1163/156939307779378808

3. Barker, N. S. and G. M. Rebeiz, "Distributed MEMS true-time delay phase shifters and wide-band switches," IEEE Trans. Microwave Theory and Tech., Vol. 46, No. 1, 1881-1890, 1998.
doi:10.1109/22.734503

4. Borgioli, A., Y. Liu, A. S. Nagra, and R. A. York, "Low-loss distributed MEMS phase shifter," IEEE Microwave Guided Wave Lett., Vol. 10, 7-9, 2000.
doi:10.1109/75.842070

5. Hayden, J. S. and G. M. Rebeiz, "2-bit MEMS distributed X-band phase shifters," IEEE Microwave Guided Wave Lett., Vol. 10, 540-542, 2000.
doi:10.1109/75.895096

6. Liu, Y., A. Borgioli, A. S. Nagra, and R. A. York, "K-band 3-bit low-loss distributed MEMS phase shifter," IEEE Microwave Guided Wave Lett., Vol. 10, 415-417, 2000.
doi:10.1109/75.877230

7. Hayden, J. S., A. Makczewski, J. Kleber, C. L. Goldsmith, and G. M. Rebeiz, "2 and 4-bit DC-18 GHz microstrip MEMS distributed phase shifters," IEEE MTT-S Int. Microwave Symp. Dig., 219-222, May 2001.

8. Pillans, B., S. Eshelman, A. Malczewski, J. Ehmke, and C. L. Goldsmith, "Ka-band RF MEMS phase shifters," IEEE Microwave Guided Wave Lett., Vol. 9, 520-522, 1999.
doi:10.1109/75.819418

9. Kim, M., J. B. Hacker, R. E. Mihailovich, and J. F. DeNatale, "A DC-to-40 GHz four-bit RF MEMS true-time delay network," IEEE Microwave Wireless Comp. Lett., Vol. 11, 56-58, 2001.
doi:10.1109/7260.914301

10. Hayden, J. S. and G. M. Rebeiz, "Very low-loss distributed X-band and Ka-band MEMS phase shifters using metal-airmetal capacitors," IEEE Trans. on Microwave Theory and Tech., Vol. 51, No. 1, 309-314, 2003.
doi:10.1109/TMTT.2002.806520

11. Hung, J.-J., L. Dussopt, and G. M. Rebeiz, "Distributed 2- and 3-bit W-band MEMS phase shifters on glass substrates," IEEE Trans. on Microwave Theory and Tech., Vol. 52, No. 2, 600-606, 2004.
doi:10.1109/TMTT.2003.821941

12. Hayden, J. S., High-performance digital X-band and Ka-band distributed MEMS phase shifters, Ph.D. thesis, University of Michigan, Ann Arbor, 2002.

13. Barker, N. S., Distributed MEMS transmission lines, Ph.D. thesis, University of Michigan, Ann Arbor, 1999.

14. Rao, S. S., Mechanical Vibrations, Addison-Wesley Publishing Company, 1995.

15. Wolff, E. A., Microwave Engineering and Systems Applications, John Wiley & Sons Publication, 1988.

16. Pozar, D. M., Microwave Engineering, Addison-Wesley Publishing Company, Reading, MA, 1990.

17. Hoffmann, R. K., Handbook of Microwave Integrated Circuits, Artech House, Norwood, MA, 1987.

18. Rebeiz, G. M., RF MEMS Theory Design and Technology, John Wiley & Sons Publication, 2003.

19. Greenhouse, H. M., "Design of planar rectangular microelectronic inductors," IEEE Transaction on Parts Hybrids and Packaging, Vol. 10, No. 2, 101-109, 1974.
doi:10.1109/TPHP.1974.1134841