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Abstract–An efficient and accurate method to the problem of plane-
wave scattering from periodic arrays of two circular-cylinders per unit
cell is presented. The scattered fields are calculated using the lattice
sums characterizing a periodic arrangement of scatterers and the ag-
gregate T -matrix for the isolated two-cylinders system in free space.
The cylinders may be of dielectric, perfect conductor, or their mixture
with different dimensions. The numerical examples for the resonant
scattering are presented with an emphasis on the application to the
polarization-dependent or polarization independent narrow-band fil-
ters.
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1. INTRODUCTION

The purpose of this paper is to present an efficient technique to calcu-
late the scattered electromagnetic fields from periodic arrays consisting
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of two circular-cylinders per unit cell. Such a periodical structure is
very attractive to devise a novel wavelength and polarization selective
components in microwave and optical wave regions, because additional
degrees of freedom for controlling the scattered fields are available.

During the past few decays, various numerical techniques [1], such as
integral equation methods, mode-matching methods, differential meth-
ods, and homogenization methods, have been developed to formulate
the periodic boundary-value problems. Recently, a recursive T -matrix
algorithm [2] was applied to a problem of scattering from a periodic
array of one circular-cylinder per unit cell [3]. In this approach, each
isolated cylinder has been divided into a large number of electrically
small cylinders whose individual T -matrices can be well represented by
the lower-order cylindrical harmonic expansion. Then the translation
formulas and Floquet’s theorem have been used to derive a linear sys-
tem of equations for the scattered fields from the one-circular-cylinder
array.

In this paper, we refine the recursive T -matrix approach [2] for the
periodic array problem by using the concept of lattice sums [4] and de-
velop an efficient numerical technique to calculate the scattered fields
from a periodic array of composite cylinders per unit cell. It is shown
that the scattered fields from such an array can be expressed in terms
of the lattice sums and the aggregate T -matrix for the composite-
cylinders system in isolation. The lattice sums characterize uniquely
the periodic arrangement of scatterers and are independent of the po-
larization of incident wave and the individual configuration of scat-
terers. The scattering nature of each composite-cylinders located in
unit cell is described by the aggregate T -matrix. This separation in
the calculation of scattered fields greatly simplifies the analytical and
numerical procedure for the array problems.

The lattice sums [4], are given by a semi-infinite series of Hankel
functions. From the point of view of numerical computation, a sub-
stantial difficulty in the use of the lattice sums has been in a very slow
convergence of the series. To overcome the difficulty, we employ here
an integral form [5] of the lattice sums which can be accurately and
efficiently evaluated using a simple scheme of numerical integration.
The proposed technique is applied to the analysis of two-dimensional
scattering by the periodic array of two circular-cylinders which may
be of dielectric, conductor or their mixture with different dimensions.
The numerical examples demonstrate a variety of interesting resonance
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Figure 1. Geometry of a periodic array of two circular-cylinders per
unit cell.

profiles in the scattered fields which are not realized by the arrays of
one circular-cylinder per unit cell. The time dependence of the fields
is assumed to be exp(−iωt) and omitted throughout the paper.

2. FORMULATION OF THE PROBLEM

An array composed of two circular-cylinders per unit cell is situated
in a background medium with a permittivity ε0 and permeability µ0

as shown in Fig. 1. The radius, permittivity, and permeability of each
cylinder are (d1, ε0εr1, µ0) and (d2, ε0εr2, µ0) , respectively. The cen-
ters of two cylinders are separated by d12 and the line connecting two
centers makes an angle φgr with the y-axis. The array is periodic in
the x-direction with a period h and is uniform in the z-direction. The
origin of the coordinate for l-th cell is chosen at x = lh and y = 0 , and
the local polar coordinate system is denoted by ρl = [(x− lh)2 +y2]1/2

and cos φl = (x − lh)/ρl . We consider a two-dimensional scattering
problem for a plane wave impinging at an angle φin with respect to
the x-axis. The electric field Ez in the TM -wave problem and the
magnetic field Hz in the TE-wave problem are described in terms of
a scalar wave function Ψ(x, y) . Let Ψin(x, y) be the incident field
with unit amplitude. Then Ψin(x, y) is expressed in the zeroth polar
coordinate system (ρ0, φ0) as follows:

Ψin(x, y) = PT
0 · ain (1)

with
P0 = [Jn(k0ρ0)einφ0 ] (2)
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ain = [(−i)ne−inφin

] (3)

where k0 = 2π/λ0, λ0 is the wavelength in background medium, Jn

is the Bessel function of the n-th order, P0 and ain are defined as
column vectors, and the superscript T denotes the transpose of the
indicated vector.

We assume that the geometrical configuration of two cylinders sat-
isfies the relation

d0 ≤ h/2 (4)

where d0 is the radius of a fictitious circular cylinder which is centered
at the origin of the coordinates and encircles two cylinders in unit cell
as shown in Fig. 1. Then the scattered field Ψsc(x, y) outside the
fictitious cylinders is expressed as an infinite sum of cylindrical har-
monics outgoing from the origin in each cell. Using Floquet’s theorem,
Ψsc(x, y) is rewritten as follows:

Ψsc(x, y) =
∞∑

l=−∞
QT

l · asc
0 e−ilk0h cos φin

(5)

with
Ql = [H(1)

n (k0ρl)einφl ] (6)

where H
(1)
n is the n-th order Hankel function of the first kind, and asc

0

denotes a column vector whose elements represent unknown amplitudes
of the scattered field from the cylinders in the zeroth cell.

The recursive T -matrix algorithm [3] is used to determine the un-
known scattering amplitude asc

0 . When the observation point (x, y) is
located within ρ0 =

√
x2 + y2 < h, Ql is expanded using the addition

theorem of Hankel functions as follows:

QT
l = QT

0 · ξl (l �= 0) (7)

where ξl is a matrix whose elements are given by

ξl,mn = H
(1)
n−m(k0lh). (8)

Using Eqs. (1) and (5) with Eq. (7), the total field outside the fictitious
circular-cylinders with ρl = d0 can be rewritten as follows:

Ψ(x, y) = PT
0 · [ain + L · asc

0 ] + QT
0 · asc

0 (9)
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where L is a square matrix whose elements are defined as

Lmn = Sm−n(k0h, φin) (10)

Sn(k0h, φin) =
∞∑

l=1

H1
n(lk0h)e−ilk0h cos φin

+ (−1)n
∞∑

l=1

H1
n(lk0h)eilk0h cos φin

. (11)

The semi-infinite sum Sn(k0h, φin) Of the n-th order Hankel function
is usually referred to [4] as the lattice sum of the n-th order. The first
term in the right hand side of Eq. (9) may be viewed as an incident field
impinging on the zeroth cell, whereas the second term is the scattered
field from the two circular-cylinders located in the zeroth cell. Then
the scattering amplitude asc

0 satisfies the relation

asc
0 = T · [ain + L · asc] (12)

where T represents the aggregate T -matrix for the two circular-
cylinders system in isolation. Solving Eq. (12), asc

0 is determined
as follows:

asc
0 = (I − T · L)−1 · T · ain (13)

where I is the unit matrix. Equation (13) reveals that the scattered
field from the array of two circular-cylinders is expressed in terms of
the aggregate T -matrix for the isolated two circular-cylinders and the
lattice sums characterizing the periodic arrangement of scatterers.

Noting that the expansion (7) is valid only for ρ0 =
√

x2 + y2 < h ,
Eq. (9) with the substitution of Eq. (13) can not be applied when the
observation point (x, y) is located far from the zeroth cell. To derive
the reflection and transmission coefficients of the array plane, Eq. (5) is
rewritten in terms of the Floquet mode. Using the recurrence formula
and Fourier integral representation for Hankel functions, after several
manipulations, the reflected field Ψr(x, y) in the domain y > 0 and
the transmitted field Ψt(x, y) in the domain y < 0 are obtained as
follows:

Ψr(x, y) =
∞∑

ν=−∞
pT

ν · asc
0 ei(kxνx+kνy) (14)
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Ψt(x, y) =
∞∑

ν=−∞
(δl0 + qT

ν · asc
0 )ei(kxνx−kνy) (15)

with

pν =





2(−i)m(kxν + ikν)m

hkνkm
0

(m ≥ 0)

2i|m|(kxν − ikν)|m|

hkνk
|m|
0

(m < 0)



 (16)

qν =





2(−i)m(kxν − ikν)m

hkνkm
0

(m ≥ 0)

2i|m|(kxν + ikν)|m|

hkνk
|m|
0

(m < 0)



 (17)

where kxν = −k0 cos φin + 2νπ/h, kν =
√

k2
0 − k2

xν , and δν0 is Kro-
necker’s delta. Note that the first term in the right hand side of Eq.
(15) indicates the incident field in the domain y < 0 . The power re-
flection coefficient Rν , and the power transmission coefficient Tν for
the ν-th propagating mode with kν > 0 are given as

Rν =
kν

k0 sinφin

∣∣pT
ν · asc

0

∣∣2 (18)

Tν =
kν

k0 sinφin

∣∣δl0 + qT
ν · asc

0

∣∣2 . (19)

3. LATTICE SUMS AND T-MATRIX
3.1 Lattice Sums

The lattice sums defined by Eq. (11) are independent of the polariza-
tion of the incident wave and the individual configuration of cylinders.
The lattice sums calculated once can be commonly used for the anal-
ysis of scattered TM and TE waves from arrays of any cylindrical
objects. This is a main advantage of using the lattice sums. Since
the direct sum in Eq. (11) converges very slowly, we employ here an
integral form [5] of the lattice sums as follows:

∞∑

l=1

H(1)
n (lk0h)e∓imk0h cos φin

=
(−1)n

π
e−i( π

4 ±k0h cos φin)

×
∫ a

0
[Gn(τ) + Gn(−τ)]F (τ ; k0h ∓ cos φin)dt (20)
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with
Gn(τ) =

(
τ + i

√
1 − τ2

)n
(21)

F (τ ; k0h,∓ cos φin) =
eik0h

√
1−τ2

√
1 − τ2

[
1 − eik0h(

√
1−τ2∓cos φin)

] (22)

where τ = (1 − i)t/
√

2 and a is a positive real number chosen so
that the integration satisfies a required convergence. The integrals in
Eq. (20) is calculated using a simple trapezoidal formula of numerical
integration for elementary functions. The accuracy was confirmed [5]
by a substantial number of numerical tests.

3.2 T-Matrix of Isolated Two Circular-Cylinders

The T -matrix of cylindrical objects in unit cell plays another im-
portant role in the present formulation. Any analytical or numerical
techniques may be employed to calculate the T -matrix. When the
objects in unit cell are composed of circular cylinders, in particular,
the T -matrix is obtained in closed form. Let T1(1) and T2(1) be the
T -matrices for circular cylinders 1 and 2 when isolated each other. Ap-
plying the recursive T -matrix algorithm [2] to T1(1) and T2(1) , the
aggregate T -matrix for two circular-cylinders per unit cell as shown in
Fig. 1 is deduced as follows:

T = β01 · T1 + β02 · T2 (23)
with

T1 =
[
I − T1(1) · α12 · T2(1) · α21

]−1
· T1(1) ·

[
β10 + α12 · T2(1) · β20

]

(24)

T2 =
[
I − T2(1) · α21 · T1(1) · α12

]−1
· T2(1) ·

[
β20 + α21 · T1(1) · β10

]

(25)
where the subscripts 0 indicates the global coordinates shown in Fig.
1, the subscripts 1 and 2 refer to the local coordinates with the origins
located at the centers of cylinders 1 and 2, respectively, and αij and
βij are the translation matrices [2] for cylindrical functions between
i and j coordinate systems. The two cylinders may be of dielectric,
conductor, or their mixture with different dimensions. The T -matrix
Ti(1) (i = 1, 2) for the isolated circular-cylinder i is given by the
following diagonal matrix for the TM and TE waves, respectively:
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Ti(1) = [ti,mδmn] (i = 1, 2) (26)

with

tTM
i,m = −

√
εriJm(k0di)J ′

m(kidi) − Jm(kidi)J ′
m(k0di)

√
εriJ ′

m(kidi)H
(1)
m (k0di) − Jm(kidi)H

′(1)
m (k0di)

(27)

tTE
i,m = − Jm(k0di)J ′

m(kidi) −
√

εriJm(kidi)J ′
m(k0di)

J ′
m(kidi)H

(1)
m (k0di) −

√
εriJm(kidi)H

′(1)
m (k0di)

(28)

where ki = k0
√

εri, εri and di are the relative permittivity and radius
of the cylinder i , and J ′

m and H
′(1)
m denote the derivatives with

respect to the indicated arguments.

4. NUMERICAL EXAMPLES

The proposed approach has been applied to the analysis of various
periodic arrays of two circular-cylinders. We shall discuss here the nu-
merical results for the diffraction efficiency in the reflected waves with
an emphasis on the resonance profiles distinct from those in periodic
arrays of one circular-cylinder. The results are shown for the wave-
length range h/λ0 < 1 and for the normal incidence, because such
a situation is essential to the use of periodic arrays as the frequency
and polarization selective components. In this case, only the funda-
mental Floquet mode with ν = 0 becomes the propagating wave. The
numerical examples in what follows are obtained with the errors in
the energy conservation less than 10−5 by truncating the cylindrical
harmonic expansion at m = ±12 to evaluate the T -matrix of each
isolated cylinder.

We examine first the wavelength response in reflection coefficient
of arrays composed of dielectric cylinder 1 and perfectly conducting
cylinder 2. Figure 2 shows the reflection coefficient R0 of TM wave
as functions of normalized wavelength h/λ0 for the two-cylinders array
with d1 = 0.3h, d2 = 0.15h, d12 = 0.55h, εr1 = 2.0, |εr2| = ∞, φgr =
90◦ , and φin = 90◦ . For comparison, the reflection coefficients of the
one-cylinder array are also plotted for a perfectly conducting cylinder
and a dielectric cylinder. It is seen that the reflection characteristics
are drastically changed in the two-cylinders array. When a dielectric
cylinder and a perfectly conducting cylinder are situated one after the
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Figure 2. Power reflection coefficient R0 as functions of the normal-
ized wavelength h/λ0 at normal incidence of TM wave for the pe-
riodic array composed of dielectric cylinder and perfectly conducting
cylinder per unit cell, where d1 = 0.3h, d2 = 0.15h, d12 = 0.55h, εr1 =
2.0, |εr2| = ∞, φgr = 90◦ , and φin = 90◦ . For the array of one con-
ducting cylinder, d = 0.15h and |εr| = ∞ , and for the one-dielectric-
cylinder array, d = 0.3h and εr = 2.0 .

other on the same array plane, an almost zero reflectance is achieved
for a wide range of wavelength over 0.6 ≤ h/λ0 ≤ 0.95 . The resonance
peak observed for the array of one dielectric cylinder is shifted towards
larger h/λ0 . Figure 3 shows the similar plots for TE wave, where the
values of parameters are the same as those in Fig. 2. We can see that
the resonance peak observed for the array of one dielectric cylinder
is shifted towards smaller h/λ0 under the influence of an additional
cylinder of perfect conductor. The multiple scattering effect between
two cylinders within unit cell makes the resonance profile sharp and
reduce the side-band reflectance noticeably.

Figure 4 shows how the resonance characteristics in reflection co-
efficient are effected by the permittivity εr1 of the dielectric cylinder
of the two-cylinders array. The curves for εr1 = 2.0 are the same as
those in Figs. 2 and 3. It is seen that a complete reflection for the TE
wave is obtained at the resonance wavelength, which can be controlled
by the value of relative permittivity εr1 of the dielectric cylinder 1.
Figures 5 to 7 show how the grating angle φgr of two cylinders relative
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Figure 3. Same as Fig. 2 but for the normal incidence of TE wave.

Figure 4. Power reflection coefficient R0 of the two-cylinders array
for two different values of relative permittivity εr1 of the dielectric
cylinder 1. The others are the same as those in Fig. 2.
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Figure 5. Power reflection coefficient R0 of the two-cylinders array
with the grating angle φgr = 75◦ for normal incidence of TM and TE
waves, where d1 = 0.3h, d2 = 0.15h, d12 = 0.55h, εr1 = 2.0, |εr2| =
∞ , and φin = 90◦ .

Figure 6. Same as Fig. 5 but for the grating angle φgr = 60◦ .



80 Kushta and Yasumoto

Figure 7. Same as Fig. 5 but for the grating angle φgr = 45◦ .

the array plane effects the reflection characteristics, where the other
parameters are the same as those in Fig. 2. The resonance wavelengths
in TM and TE waves change depending on φgr . When the grating
angle is 60◦ , we can realize an almost same resonance wavelength for
both polarizations as demonstrated in Fig. 6.

We examine next the reflection characteristics of the array of two
dielectric cylinders 1 and 2 per unit cell. Figure 8 shows the reflection
coefficient R0 of TM wave as functions of normalized wavelength
h/λ0 for the array with d1 = 0.3h, d2 = 0.15h, d12 = 0.55h, εr1 =
2.0, φgr = 90◦, φin = 90◦ , and two different values of εr2 . For com-
parison, the reflection coefficient of the array of one-dielectric-cylinder
is also plotted by the solid line. The array of one-dielectric-cylinder
shows a single resonance peak with a broad side-reflectance, whereas
the two-cylinders array exhibits two resonance peaks with very narrow
bandwidth. It is seen that the two resonance wavelengths and their
relative separation are controlled by the relative permittivity εr2 of
the second dielectric cylinder 2. Figure 9 shows the similar plot for
TE wave. Although the shift in the resonance wavelengths and the
reduction of side-band reflectance are not so noticeable, we can observe
the same features as in the TM wave case.

Figure 10 shows the reflection coefficient R0 of TM and TE waves
for the array with d1 = 0.3h, d2 = 0.15h, d12 = 0.45h, εr1 =
2.0, εr2 = 2.25, φgr = 0◦ and φin = 90◦ . In this case the array
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Figure 8. Power reflection coefficient R0 of the two-dielectric-
cylinders array for normal incidence of TM wave, where d1 = 0.3h,
d2 = 0.15h, d12 = 055h, εr1 = 2.0, φgr = 90◦, φin = 90◦ , and
εr2 = 2.0 or 2.5. For the one-dielectric-cylinder array, d = 0.3h and
εr = 2.0 .

Figure 9. Same as Fig. 8 but for the normal incidence of TE wave.
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Figure 10. Power reflection coefficient R0 of the two-dielectric-
cylinders array with the grating angle φgr = 0◦ for normal incidence of
TM and TE waves, where d1 = 0.3h, d2 = 0.15h, d12 = 0.45h, εr1 =
2.0, εr2 = 2.25 , and φin = 90◦ .

of two cylinders may be regarded as two-layered arrays each of which
is constituted from one cylinder per unit cell. We can see that the
resonance wavelengths in TM and TE waves coincide and the band-
width of the TE-wave resonance is broader than that of the TM -wave
resonance. This suggests that two-layered arrays consisting of different
dielectric-cylinders may be utilized as a dual bandwidth narrow-hand
filters [6] by rotating the array along its surface normal.

Figures 11 shows the reflection coefficient R0 of TM and TE
waves for the array with d12 = 0.55h, εr1 = εr2 = 2.0 , and φgr = 75◦ ,
where the values of other parameters are the same as those in Fig. 10.
When the grating angle is chosen appropriately, there appear two res-
onance peaks for both polarizations in the complementary wavelength
region. The two resonances in TE wave have nearly same profiles,
whereas those in TM wave exhibit different features. It is seen that
the resonance at shorter wavelength near h/λ0 = 0.87 is narrow-band,
but the resonance at longer wavelength near h/λ0 = 0.85 is broad-
band. The broad-band resonance profile in TM wave can be reformed
changing the value of permittivity of the second cylinder. Figure 12
shows the similar plots for εr2 = 2.5 with other parameters same as
those in Fig. 11. We can see that two resonance peaks in TM wave
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Figure 11. Power reflection coefficient R0 of the two-dielectric-
cylinders array with the grating angle φgr = 75◦ for normal inci-
dence of TM and TE waves, where d1 = 0.3h, d2 = 0.15h, d12 =
0.55h, εr1 = 2.0, εr2 = 2.0 , and φin = 90◦ .

Figure 12. Same as Fig. 11 but εr1 = 2.0 and εr2 = 2.5 .
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become to be well separated and a very fine broad-band resonance
profile is obtained. The resonance features depicted in Fig. 12 may be
used to design a polarization-dependent double-resonance filters.

5. CONCLUSION

An efficient and accurate technique for the problem of two-dimensional
scattering from the arrays of two circular-cylinders per unit cell has
been presented. The method enables us to provide a complete de-
scription of the scattered fields in terms of the lattice sums for the
periodic arrangement of scatterers and the aggregate T -matrix of the
two-cylinders system in isolation. This greatly simplifies the analytical
and numerical procedure for the array problem. The numerical results
for the resonant scattering for TM and TE polarized waves demon-
strate the promising applications of two-cylinders array to a scattering
of polarization-dependent or polarization-independent narrow-band fil-
ters. The extension of the present method to scattering problems for
a multilayered structure of periodic arrays with N circular-cylinders
per unit cell is straightforward.
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