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1. INTRODUCTION: A GENERALIZED
CONCEPTUALIZATION OF CONSTITUTIVE
RELATIONS

Maxwell’s Electromagnetism theory (Electrodynamics), e.g., see [1, 2],
is a branch of physics which reached maturity and can serve as proto-
typical for a general conceptualization of physical models in general.
This then reflects back on other theories like Continuum Mechanics
(e.g., Fluid Mechanics, Acoustics, Elastodynamics) [3–8]). The com-
mon denominator is that the mathematical formalism is indetermi-
nate and requires supplemental relations, dubbed Constitutive Rela-
tions. Thus for example in linear acoustics the equations are based
on Newton’s Mechanics, but in order to become determinate, the sup-
plemental compressibility relation is required, mediating between vol-
ume and pressure. Similarly in elastodynamics, in addition to the
Newtonian mechanical laws, the Hooke relation mediating stress and
strain must be supplemented. The distinction between the “laws”
proper, i.e., Newton’s Mechanics, and the supplemental constitutive
relations is often fuzzy, indicated by calling the latter “laws” as well;
this fuzziness characterizes electromagnetism as well, especially when a
phenomenological-empirical methodology is used to introduce the sub-
ject to engineers and applied scientists. In view of Einstein’s Special
Relativity theory, and it’s edifice of the covariance of Maxwell’s laws,
i.e., the equations governing Electromagnetism, the picture becomes
more focused.

Conversely, constitutive relations can be exploited to characterize
certain media and propose experiments to establish certain properties
of materials. However the general observations above sometimes pass
unnoticed, namely that the aim of acquiring constitutive relations, is
first and foremost to render the system of equations determinate. El-
evating constitutive relations to this level, there is nothing intrinsic
in them. Whether it is called “dielectric parameter”, “conductivity”,
etc., is a matter of convenience for categorizing certain material prop-
erties. Historically this general conceptualization arose in Relativistic
Electrodynamics [9] in an effort to derive the constitutive relations for
moving media. Researchers spent a lot of effort trying to figure out
the proper transformations for the constitutive parameters themselves
(see also [10] for some references). It was Minkowski [11] who noticed
that the objective is to provide relations amongst the fields, which
are the measurable quantities. Only a-posteriori statements about the
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new relations are of interest. Thus for example, moving simple me-
dia, possessing constant scalar ε, µ parameters in their rest frame of
reference, display bi-anisotropic properties when observed in moving
inertial systems, but their intrinsic properties are the parameters ε, µ
in their rest frame of reference, and only the relations between fields
show the effect of the motion. To later recast the results as displaying
bi-anisotropicity is optional. In some cases, e.g., for nonlinear me-
dia, the rearrangement of the results might be too complicated, and
not worth the effort, but nonetheless, the supplemental equations are
available.

Recently [12] an attempt was made to implement this general
methodology and present general integral and differential expressions
for constitutive relations. The class of media discussed included non-
linear media initially described by Volterra’s functional series, which
were represented in equivalent differential operator form. One impor-
tant outcome of this investigation was that dispersion and inhomogene-
ity must be put on the same footing: We are familiar with the phe-
nomenon of dispersion, i.e., the selective response of media to various
frequencies. But spatiotemporal inhomogeneities also effect spectral
responses. New frequencies appear when the inhomogeneity is tempo-
ral, introducing Doppler like phenomena, and new wave vectors enter
when a spatial inhomogeneity is present. These effects are sometimes
referred to as “geometrical dispersion”. At the other end of the gamut,
“material dispersion” can often be attributed to the local inhomogene-
ity, i.e., the structure of the constituent elemental particles comprising
the medium.

The quest for a systematic approach to the question of constitutive
relations was mainly theoretical [12]. Consequently the need arose for
some detailed analyses of examples. This is done here.

In the course of formulating the general background for working
out the examples, another interesting question posed itself, namely the
particle-field conundrum mentioned in the title. Only after clarifying
this facet, we will be ready for the examples themselves.

2. PARTICLES AND FIELDS

The particle-field conundrum is not new. The problem is quite basic
to our conception of physics and physical laws. In a strict sense the co-
nundrum can only be solved by introducing nonlinear relations into the
initially linear field and particle problems, and this makes it even more
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intriguing. It seems that historically the problem arose in continuum
mechanics, where it is referred to as the Lagrangian versus Eulerian
descriptions of material motion [3–5] (note in passing that Sommerfeld
attributes both descriptions to Euler), but the same features exist in
Electromagnetic theory, as well as any other field model. To begin
with, the question is geometrical and kinematical, although in the rel-
evant continuum mechanics treatment the dynamics is introduced in
an early stage, thus somewhat losing the basic general aspects. Also,
it is noted that a full four-dimensional treatment as given below is
lacking. The question revolves around the role of the spatiotemporal
coordinates and how dependent and independent variables are defined.

Mechanics in its elementary form, whether Newtonian or relativistic,
is the study of material point masses (henceforth “particles”). Let us
recall how the motion of particles is dealt with in mechanics. Except
for statics, mechanics deals with moving particles. To keep track of the
changing position of a particle in space we need to define its trajectory.
From geometry we know that a curve in space (except in one and
two dimensions) needs to be defined parametrically. We thus have a
trajectory defined as

x = x(τ) (1)

where x = (x, y, z) is a triplet of Cartesian spatial coordinates, and τ
is a parameter along the trajectory, usually τ is identified with time
(more precisely, in the context of Special Relativity, this should be the
particle’s proper time, as discussed below), but all we really need is a
scalar, real variable τ . Thus far (1) describes the kinematics of the
single particle. It also facilitates the definition of the particle’s velocity
and acceleration as the ordinary derivatives of (1), e.g.,

v(τ) =
dx(τ)

dτ
(2)

provided it is understood that τ = t . See Fig. 1. Similarly, for defining
the dynamics, Newton’s inertia law starts with,

a(τ) =
d2x(τ)

dτ2
=

dv
dτ

(3)

whereby acceleration, the ordinary derivative of (2) is involved. In (1)–
(3) the independent variable is τ . In contradistinction to the above
particle description, we have field descriptions. As a representative
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Figure 1. Depicts a trajectory x(τ) and its associated v(τ) embed-
ded in a Cartesian coordinate system.

of a field model, Maxwell’s equations of the electromagnetic field are
chosen. In contemporary form and notation, in MKS units, we write
the set of vectorial, coupled partial differential equations as

∂x × E = −∂tB − jm
∂x × H = ∂tD + je
∂x · D = ρe

∂x · B = ρm

(4)

where ∂x and ∂t denote the space derivative (usually referred to as
“Del” or “Nabla”), and the partial time derivative, operators, respec-
tively. All the fields are space and time dependent, e.g., E = E(X) .
Here

X = (x; ict) (5)

symbolizes the space-time dependence. Actually we exploit the
Minkowski-space location vector notation, where c is the universal
constant of the speed of light, and i is the unit imaginary complex
number i2 = −1 but at this point there is no attempt to include any
relativistic considerations, and the same notation could also apply to
continuum mechanics models. For symmetry and completeness, in the
present representation, the Maxwell equations include the conventional
electric (index e) , as well as the fictitious magnetic (index m) , current
and charge density sources.

As a field model, the quadruplet (5) constitutes the four indepen-
dent spatiotemporal coordinates, in contradistinction to the particle
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description (1)–(3). I.e., (4) is from the outset written in the Eule-
rian method, whereby a geometrical space-time frame of reference is
assumed, and (4) relates what happens in this space-time, in contradis-
tinction to the Lagrangian method, where a certain material particle,
or parcel, is followed along a trajectory. In order to understand why
the two descriptions cannot coexist independently side by side, we have
to deeper peruse Maxwell’s equations (4): To begin with, (4) does
not involve any of the familiar quantities encountered in mechanics
or the rest of physics: Force, momentum, energy, etc. Consequently
additional mediating relations are required in order to connect elec-
tromagnetism to the rest of physics. The Coulomb or Lorentz force
formulas (which are part of the same concept under Special Relativ-
ity), or the alternative Poynting power flux formula try to fill this gap.
The Lorentz force formulas are given by

fe = qe(E + v × B)
fm = qm(H − v × D)

(6)

where qe, qm are point charges moving on known trajectories accord-
ing to (2), hence (6) is already part of the conundrum, in that (6)
involves a mixture of particle and field descriptions. Indeed, the co-
nundrum keeps popping up any time we try to relate (4) to mechanics.
Thus the Poynting vector formula in its raw form is given by

∂x ·(E×H) = H·∂x×E−E·∂x×H = −(H·∂tB+E·∂tD+H·jm+E·je)
(7)

which is then volume-integrated and the left side of (7) represented
as a surface integral using the Gauss theorem. Evidently the system
(4) is indeterminate, i.e., there are more unknowns than equations.
Therefore in order to derive any solution of (4) we need additional
relations involving the dependent field variables, namely the consti-
tutive relations. These have to be determined by the nature of the
media involved and their properties, and are not an integral part of
the electromagnetic hypothesis, or “law”, (4). As shown below, the
constitutive relations once again involve particles moving on trajecto-
ries, which brings us back to the particle-field conundrum. Without
constitutive relations (7) is practically useless, alas, even when consti-
tutive relations are available, the usefulness of (7) as an expression for
energy conservation is limited to special cases. A complete fundamen-
tal relation connecting electromagnetism to mechanics is still lacking.
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Figure 2. Depicts a member x(x0, τ) of a family of trajectories, in-
dividually defined by the position vector x0 locating the point of in-
tersection with a reference surface.

3. PARTICLES AND SPATIOTEMPORAL
TRAJECTORIES

In (1) a single particle and its trajectory are described, i.e., the particle
in its motion traces out this trajectory. In order to describe a stream
of particles moving on the same line in space, an additional parameter
is required, e.g., the particle’s initial time at some reference point in
space. To that end we now define in (1)–(3)

τ = t − t0 (8)

and accordingly all particles traverse the same trajectory in space, each
according to its initial time. Another extension of (1) provides a family
of trajectories: A surface is defined, providing a reference position for
all trajectories. The trajectories are given now by

x = x(x0, τ) (9)

see Fig. 2. Upon combining (8) and (9), we get streams of particles
on these trajectories. This is still a three-dimensional depiction of the
trajectories. Consider now the generalization of (9) to the form

x = x(x0, t0, τ) (10)
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In (10) for each initial time a different trajectory is defined, thus if (8)
is understood, the family of trajectories is constantly changing, with
each particle tracing out its own trajectory. At this point it is realized
that a much broader statement is feasible, namely a four-dimensional
Minkowski-space formulation: Let the reference surface be given by

f(X0) = 0 (11)

which adds another degree of freedom, allowing the surface to change
as a function of the initial time t0 , but of course we do not have to use
this most general feature, leaving (11) as a three-dimensional surface
nonvarying in time f(x0) = 0 . The trajectories are then given by

X = X(X0, τ) (12)

This is a very interesting result, more so if we consider the spatial and
temporal components

x = x(X0, τ) (13)
t = t(X0, τ) (14)

While (13) is already expressed by (10), the temporal part (14) is
a general relation of t to the parameter τ along the trajectories.
Obviously (8), in a narrow sense, is one choice of this relation. The way
(12)–(14) work is the following: A location X0 is chosen that satisfies
(11). This defines time and space reference location for a trajectory
on which X = X(X0, τ) , i.e., (12), or (13), (14) are computed for
a specific particle. Obviously in (12)–(14), X0 is independent of τ ,
therefore

Vτ (X0, τ) =
dX
dτ

∣
∣
∣
∣
X0

=
∂X
∂τ

=
(

∂x
∂τ

; ic
∂t

∂τ

)

(15)

defines the four-vector velocity Vτ , where X0 is held constant. The
components of (15) yield the three-dimensional velocity v as

vτ (X0, τ) =
∂τx
∂τ t

(16)

which is everywhere tangential to the trajectory. If the constancy of
X0 is understood, then we can write (16) in a form conforming with
the chain rule of calculus as

vτ =
dx
dt

=
dx
dτ

dτ

dt
(17)
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The corresponding four-acceleration is given by

Wτ (X0, τ) =
d2X
dτ2

∣
∣
∣
∣
X0

=
∂2X
∂τ2

=
∂Vτ

∂τ
=

(
∂2x
∂τ2

;
∂2t

∂τ2

)

(18)

with the three-dimensional acceleration given similarly to (16) by

aτ (X0, τ) =
∂τvτ

∂τ t
(19)

We do not have to, but it is very suggestive to consider τ as the
proper time in the Special Relativistic sense. As a consequence we
now have (15), (18) denoting the four-velocity and four-acceleration,
respectively, in the Minkowskian sense.

At this point we are ready to discuss the transition from the tra-
jectory representation (12)–(19) to a field representation. As we cover
a certain region with trajectories, each such trajectory defines points
X in space-time according to (12)–(14), and at each point the velocity
(16) and acceleration (19) (as well as higher derivatives, if needed) are
computed according to (15)–(19). In principle the data enables us to
map out the fields

Vτ = Vτ (X)
Wτ = Wτ (X)

(20)

including the three-dimensional functions of interest

vτ = vτ (X) (21)
aτ = aτ (X) (22)

Hence in principle the transition from (15)–(19) to (20)–(22) is feasible,
but the index tag τ must be kept, reminding us how the new fields
were derived.

Obviously the relation of (21) to (22) is not simple. In view of (16),
(19), one cannot simply differentiate (21) in order to obtain (22). How
is this question related to the straightforward application of the chain
rule of calculus in the form

dv
dt

=
∂v
∂x

· dx
dt

+
∂v
∂t

=
∂v
∂x

· v +
∂v
∂t

(23)

which appears in practically every textbook on continuum mechanics?
Expression (23) is usually referred to as the “material derivative”, or
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“moving derivative”, and supposedly describes the acceleration of a
medium parcel. Let us consider the expression

dvτ

dτ
=

∂vτ

∂X
· dX

dτ
=

∂vτ

∂x
· dx
dτ

+
∂vτ

∂t

dt

dτ
=

∂vτ

∂x
· vτ +

∂vτ

∂t

dt

dτ
(24)

where the derivatives with respect to X and x (i.e., the four-gradient
and three-dimensional gradient, respectively) are obtained by differ-
entiating (20), (21), respectively, the derivatives with respect to τ
are obtained from (12)–(14). If it is assumed that τ is the special-
relativistic proper time in the moving particle’s frame of reference,
then for slow velocities relative to c , we have τ = t . Consequently
(24) becomes

aτ =
dvτ

dt
=

∂vτ

∂x
· vτ +

∂vτ

∂t
(25)

which for τ = t tallies with (19) on one hand, and on the other hand
is very similar to (23). However the index tag τ in (25) must be kept,
and means that all the differentiations were made along the trajectory.

In order to discuss constitutive relations, electrically charged mate-
rial point particles (i.e., electrons, atoms or molecules) must be con-
sidered. This again can only be done in the context of the mechanical
particle concept, discussed above.

The classical derivation of constitutive relations based on polariz-
able media assumes simple conditions [13] i.e., homogeneous media.
Moreover, either explicitly or implicitly (23) or (25) is assumed in a
simplistic manner, and only the linear term is retained

aτ =
dvτ

dt
=

∂vτ

∂t
(26)

This is essentially the classical linear oscillator model, leading to the
associated frequency domain permittivity. It assumes that if a spa-
tiotemporal driving field exists, the particle is affected by the temporal
part only, and the spatial position x is held fixed in spite of the motion
of the particle. This stratagem circumvents the need for a trajectory
description of the particle’s motion, simply by assuming a particle at
rest. The aim of the present section is to perform the calculations and
derive a spatiotemporal domain differential operator representation for
the constitutive relation, which will also take into account the possibil-
ity of inhomogeneity. This will serve as a model for more complicated
cases, discussed subsequently.
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We start by defining a number density

N = N(X0, τ) (27)

along trajectories and their vicinities. this takes into account the pos-
sibility that a bunch of particles moves along a single trajectory, i.e.,
trajectories can coalesce in certain regions, or adjacent trajectories
might be considered a single one. This is the key to describing inho-
mogeneous media. After applying to (27) the mapping out process, as
explained above, we derive a particle density field in the form

N = N(X) (28)

similar to the method resulting in (20)–(22). The conventional defini-
tion of current density as the product of charge density and velocity,
now yields

j(X0, τ) = qN(X0, τ)vτ (X0, τ) (29)

and mapping out the data over a region of space-time will yield the
field representation

j(X) = qN(X)v(X) = ρ(X)v(X) (30)

where the charge and current densities, whether indexed e or m ,
appear also in Maxwell’s equations (4). Note that (29), (30), i.e., the
definition of current density as moving charge density, already amounts
to a constitutive relation, because it relates two fields given in the
original Maxwell equations! Evidently, we are assuming in (29), (30) a
single species of charges. There is no need to unnecessarily complicate
the present discussion by assuming a mixture of species [13]. We will
also assume that for the time being only e type entities are involved,
and suppress the index.

Current is sometimes defined as the time rate of change of polariza-
tion. We could start with this idea too: The traditional definition of
polarization as p = qx cannot be used here except for the trivial case
of straight line trajectories. There the conventional definition starts
with the mute assumption of having a homogeneous medium. The def-
inition is usually extended heuristically to slowly varying media, which
are locally approximated as homogeneous. This locality property has
to be carefully examined in each case, i.e., the electromagnetic field
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space and time scales must be carefully compared to the correspond-
ing scales of the medium parameters. For example, this appears in the
context of ray theory, i.e., as a high frequency approximation. Inas-
much as we strive here to present a general case, a differential definition
is adopted

dp = qdx (31)

where according to (13) the displacement is along the trajectory. Thus
we obtain

dp
dt

= q
∂τx
∂τ t

= qvτ (32)

and for a number density given by (27), the previous form (29) follows.
For a single particle of mass m the equation of motion is governed

by
ma + αv + mω2

0x = F = F1 + F2 + F3 (33)

where the total force is the sum of the inertial force, the velocity de-
pendent (so called wet-) friction force, and the displacement dependent
(“spring action”) force. The inertial force is associated with the mass
m , the friction force is characterized by the coefficient α , and the
spring constant is the eigenvalue of the frictionless free oscillation mo-
tion expressed by the equation a + ω2

0x = 0 , reduced from (33). In
the electromagnetic case it is assumed that the total force is balanced
by the Coulomb force

F = F1 + F2 + F3 = qE (34)

where (34) involves a single particle, and E is the locally effective
field acting on this particle. It is noted that the right hand side of
(34) expressing the Coulomb force is only adequate for charges at rest,
otherwise it must be replaced by the Lorentz force formula, first line
in (6). This means that low velocities (relative to the speed of light
c) are assumed. At this time there is no external static magnetic field
assumed, as in the case of a magnetized plasma (e.g., in the terrestrial
ionosphere). Obviously the difficulties associated with the particle-field
conundrum are already indicated in (33), (34): As a field entity we have
E = E(X) with X = X(x, ict) , i.e., four independent variables as in
(4), while the mechanical forces are expressed in particle form, i.e., by
using ordinary derivatives and trajectories as in (1) etc.
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Consider the spring force first. Similarly to the argument leading
to (17), we have a differential form

dF3(τ)
dτ

= mω2
0

dx(τ)
dτ

= mω2
0vτ (τ) (35)

for a single particle, and for many, noninteracting, single species par-
ticles characterized by the same parameter ω2

0 , we adopt the method-
ology leading to (29), yielding

dF3(X0, τ)
dτ

= F′
3 = mω2

0N(X0, τ)vτ (X0, τ) (36)

where for brevity the apostrophe denotes differentiation with respect
to τ . In view of (29), in terms of current density, we get

F′
3 =

mω2
0

q
j(X0, τ) (37)

Similarly, for the friction term, including the density effect, we have

F2(X0, τ) = αN(X0, τ)vτ (X0, τ) (38)

hence

dF2

dτ
= F′

2 = αvτ
dN

dτ
+ αN

dvτ

dτ
= α(vτN

′ + Naτ ) (39)

It is noted that in (39) N ′ , the rate of change of the particle density,
is not neglected. This is the key to our systematic approach of treating
dispersion and inhomogeneity on the same footing. Differentiating (29)
yields

j′ = q(vτN
′ + Naτ ) (40)

hence from (39), (40) we obtain

F′
2 =

α

q
j′ (41)

The inertia force for single species particles of density N is given by

F1 = Nmaτ (42)
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hence we derive

dF1

dτ
= F′

1 = m
(

aτN
′ + Na′

τ

)

(43)

By taking derivatives of (29) and substituting into (43), it can be recast
as

F′
1 =

m

q

(

j′′ − j′
N ′

N
− j

(
N ′

N

)′)

(44)

Adding up the various contributions, we now have an expression for
the total force derivative

F′ = F′
1 + F′

2 + F′
3 (45)

differentiated with respect to τ , in terms of the current density (29)
and the particle density of charge carriers. It is assumed that N and
its derivatives are known coefficients. On the other hand, j is one of
the dependent variables appearing also in the electromagnetic system
of equations (4).

Our mission now is to relate the force derivative (45) to the electro-
magnetic field (4), and derive the appropriate constitutive relations.
This invokes the particle-field conundrum: Once again we consider the
process of mapping out functions included in (45) on a region of the
spatiotemporal domain, as in (20)–(22), (28), (30). From (28) defining
a local instantaneous density, and (34) describing the force on a single
particle, the Coulomb force density (per unit volume) is given by

F(X) = qN(X)E(X) (46)

therefore
F′ = q(NE′ + N ′E) (47)

In all above formulas, culminating in (45), (47), the apostrophe denotes
differentiation with respect to τ along the trajectory, i.e.

d

dτ
=

∂

∂τ
+ vτ · ∂

∂x
=

∂

∂τ
+

j
qN

· ∂

∂x
(48)

Sometimes nonlinear effects in material media are attributed to nonlin-
ear mechanisms on the level of the single material particle. While this
may be true, the nonlinear nature is already displayed in (24), (48) as
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a general feature of the particle-wave conundrum. In view of the sec-
ond derivatives in (44), the explicit representation of (45), (47), leads
to a very complicated nonlinear expression. The decision whether to
“linearize” the equations, i.e., neglect the gradient in (48), or to deal
with the full complexity of (48), is an arbitrary heuristic step which
must be decided on the merit of the individual problem at hand. For
the time being, we decide to reduce the problem to its linear part.
Moreover, as was done above, in the transition from (24) to (25), it
is assumed that τ is the special-relativistic proper time in the mov-
ing particle’s frame of reference, and for slow velocities relative to c ,
we have τ = t . Therefore in (45) and all the previous constituent
formulas, and (47), the apostrophe de facto denotes the partial time
derivative. Consequently (45) becomes

F′ =
[
m

q

((

ω2
0 −

(
N ′

N

)′)

+
(

α

m
− N ′

N

)

∂t + ∂2
t

)]

j

= A(X, ∂X)j(X) (49)

symbolized as an operator involving the spatiotemporal coordinates
and their associated differential operators (although for the present
case the left side (49) involves time derivatives only), operating on the
current density field. Similarly (47) is rewritten as an operator acting
on the field E

F′ = q(N ′ + N∂t)E (50)

Applying A in (49) to the second equation (4), and substituting from
(50), we obtain

A∂x × H = ε0A∂tE + A j = BE
B(X, ∂X) = ε0A∂t + q(N ′ + N∂t)

(51)

Evidently in (51) we have accomplished our goal stated in Section 1
above: All the extraneous constitutive factors, namely the mechanical
variables, have been eliminated, hence in the general conceptual sense
the job is finished. The rest from here on is optional. In the general
case it has only a notational and symbolical value: We recast (51) in
the symbolic form

∂x × H =
B
AE = σE (52)
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and symbolically the ratio of operator multiplying E can be referred
to as the conductivity differential operator. In order to define a corre-
sponding dielectric differential operator, one must recast (52) as

∂x × H = σE = ∂t(εE) (53)

Obviously a general way of relating σ, ε , is not feasible. Therefore
it should be realized that our ability to reduce the general form (51)
to (52) and thus derive something that can be called “conductivity”
is just incidental. But according to the general Minkowskian method-
ology that the constitutive relations are a means to render Maxwell’s
equations (4) determinate, the identification of dielectric, conductiv-
ity, etc., entities is not essential for deriving solutions, indeed, it is not
even necessary for characterizing a medium. It is also realized that
Heaviside’s operational calculus can only be applied in a system with
constant coefficients, i.e., an homogeneous medium, hence the deriva-
tion of an inverse operator that will bring A in (52) into the numerator
is not feasible in general. A similar way of looking at the same situa-
tion is to realize that a Fourier or Laplace transform of (51) will not
simply replace the derivatives by algebraic factors, it will also trans-
form the spatiotemporally dependent coefficients, and since products
of spatiotemporal terms are present in (51), this will lead to convo-
lution integrals in the transform space. The related case of nonlinear
constitutive relations is even more complicated [12]. If the coefficients
are treated as constants, i.e., their derivatives are neglected, then we
are in the realm of the ray, or WKB approximation, which applies only
to spectrally narrow-band signals. Therefore the ratio of operators in
(52) must be understood in the original sense of (51), i.e., that in (52)
the operator in the denominator acts on the left side of the equation.

With the above analysis we have provided a concrete example for
the abstract discussion given before [12].

4. ADDITION OF AN EXTERNAL MAGNETIC FIELD

In gyrotropic materials an external magnetic field B0 is present, which
affects the force balance equation (45), adding a force term, including
a spatiotemporal density N

F4 = qNv × B0 = −B0 × j (54)

The expression (54) follows from the Lorentz force (6) assuming van-
ishing E field and subject to (29). Assuming space-time dependent
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fields for B0 and j, (54) yields on differentiation

F′
4 = −B′

0 × j − B0 × j′ = −(B′
0 + B0∂t) × j (55)

where in the last term (55) we already made the concession that the
problem is linearized, and τ = t . Consequently (55) must be added
to (45), and the operator in brackets in (49) is accordingly modified
to include the right hand side of (55). Note that the operator now
involves the vectorial cross operation, and becomes therefore a dyadic
Ã(X, ∂X) . However, this does not introduce any conceptual difficulties
into our problem. As in (51), the new operator is now applied to the
second equation (4), and a new dyadic operator B̃(X, ∂X) is defined.
Finally similarly to (51), we obtain

Ã · ∂x × H = B̃ · E
B̃ (X, ∂X) = ε0Ã ∂t + Ĩ q(N ′ + N∂t)

(56)

where Ĩ is the idemfactor (unit) dyadic. Finally the symbolical form
(52) is derived once again, with the appropriately modified operator

∂x × H =
B̃ ·
Ã ·

E (57)

provided we keep in mind that it represents (56), otherwise a division
by a dyadic that does not have an inverse is meaningless. We can still
call the new construct in (57) “conductivity”, especially because of its
dimensions, but its use as a separate entity is dubious. Nevertheless,
it accomplishes the goal of rendering the system (4) determinate.

5. A MODEL FOR A CHIRAL MEDIUM

The discussion above suggests that we use the same methodology for
more complicated media as well, e.g., chiral media. Chiral media in
the presence of time harmonic fields have been extensively investigated
for many years now. See [14], a comprehensive study including many
references. For time harmonic waves such a model of a chiral medium
accounts for the characteristic elliptical wave polarization effects found
in such media, i.e., constitutive relations for chiral media in the pres-
ence of time harmonic fields involve complex numbers, and i factor
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(i.e., the imaginary unit number) parameters indicates that two effects
are present, with a π/2 phase shift between them.

This phenomenon must also be explained by the model proposed
here, however in the present analysis the objective is to transcend the
steady state harmonic time dependence and deal with general spa-
tiotemporal behavior. As a concrete example, a model of a “chiral
particle” is proposed and analyzed. This facilitates the derivation of
the pertinent constitutive operators, which will also take into account
the particular elements of the linear oscillator model used for the non-
chiral media above. I.e., we take here into account chirality, inertia,
friction, and “spring action”. In addition, the effect of gyrotropicity,
caused by an external magnetic field, can also be included.

Unlike the Tellegen particle [14], involving permanent electric and
magnetic dipoles, our model involves induced polarization only, con-
sistent with the linear oscillator model above, which has no permanent
remnant polarization. This is mandatory for combining the properties
of the linear oscillator and the present chiral model. Also it is shown
that such a model displays the expected temporal phase shift between
electric and magnetic fields, which is important for properly describing
the induced elliptical polarization effects for time harmonic waves.

It must be kept in mind that the thrust of the present paper is
mainly to discuss constitutive relations conceptually, and provide some
examples, not to classify or analyze in detail chiral media. Additional
information on such specifics can be found in [14–17], which also pro-
vide starting points to the extensive literature on the subjects. Our
model patently belongs to the “wire and loop” class (but not the spe-
cial uniaxial variety discussed in some of the papers cited above and
their references). Also unlike [16] for example, the present analysis
assumes material scales small compared to wavelength. The direct
consequence is that resonance effects on the present structures do not
occur, or in other words, structural dispersion related to the chiral
particles is excluded from our discussion. This vastly simplifies the
analysis and obviates a lot of detail, while leaving enough space to
bring out the essentials of the present problem. The two right and left
handed chiral particles are depicted in Figs. 3, 4, respectively. Geo-
metrically we have here right and left handed structures, respectively.
Physically, it is assumed that the structures are made of conducting
wires. Hence approximately, in the circuit sense, we deal here with a
capacitor-inductor (L-C) circuit, where the two arms of the lineal wire
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Figure 3. The chiral particle model consists of a lineal conducting
segment connected to a perpendicular loop. The present particle is
defined as right handed.

Figure 4. Like in Fig. 3, but being a mirror image, the present particle
is left handed.

segment provide (most of) the capacitance, while the loop provides
(most of) the inductive element. Of course, this is only an idealized
lumped elements approximation, because the electric and magnetic
fields are distributed.

A little reflection immediately reveals that the combination of el-
ements depicted in Figs. 3, 4, is actually a bare-bones rendition of
the celebrated helical chiral particles, cited in many books and articles
[14], which possesses the combined lineal and the loop properties in
its structure. If you stretch the helix, the linear dimension becomes
emphasized; if you squeeze the helix, the lineal dimension diminishes
and the loop characteristics is emphasized.

The circuit analogy immediately explains the phase shifts encoun-
tered in the system: Consider the external electric field as the driving
force. It charges and discharges the capacitor. A charged capacitor,
in the sense of Thevenin’s equivalence theorems, can be replaced by a
voltage source in series with the (uncharged) capacitor. Alternatively,
if the driving force is the external magnetic field, then we consider the
current induced in the loop by the external magnetic field to be equiv-
alent to a current source connected in parallel to the inductor. Thus
our basic circuit is depicted in Fig. 5. When the capacitor is charged
by the external field we get the equivalent circuit Fig. 6a, which can
be redrawn in the form shown in Fig. 6b. Similarly, Fig. 7a depicts
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Figure 5. The basic L-C circuit model for the chiral particle.

V

V

(a) (b)

Figure 6. (a) Adding a Thevenin representation of the charged capac-
itor; (b) recasting (a) as a voltage generator connected to a series L-C
circuit.

the equivalent current source parallel to the inductor, resulting from
the magnetic field, and Fig. 7b is just another rendition of the same
circuit.

For both voltage and current excitations there exists a π/2 phase
shift between voltage and current at the reactive elements, this is in-
dicated by the i factor in the capacitive and inductive impedances.
Hence the same phase shift exists between the electric and magnetic
fields, respectively, created by the chiral particles. In the time domain
this will show up in the time derivatives in the pertaining differential
equation.

Let us consider now the behavior of our chiral particle in the pres-
ence of a plane, linearly polarized, time harmonic excitation wave. Let
the wave propagate in the z-direction, its E-field polarized in the x-
direction and its H-field polarized in the y-direction, pointing out of
the page, as depicted in Fig. 8. We present three prototypical orienta-
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I
I

(a) (b)

Figure 7. (a) Adding a Thevenin representation of the current carry-
ing inductor; (b) recasting (a) as a current generator connected to a
parallel L-C circuit.

x

y

z

Ei

Hi

Hd

Figure 8. Positioning the chiral element of Fig. 3 for E-field excitation.
The dashed segment is the part of the loop below the page.

tions of the chiral particles. If the orientation of the chiral particle in
space is a random variable, the ensemble average will yield an equiva-
lent bi-isotropic medium.

Imagine the lineal part of the chiral particle in Fig. 3 to be aligned in
the x-direction, Fig. 8, where the dashed line indicates the part of the
loop below the page. Here the incident wave Ei excites the lineal part
of the chiral particle, acting like a short lineal wire antenna. Also note
that Ei , being perpendicular to the loop, cannot induce current in it
(recall the dimensions of the loop are small compared to wavelength!).
The charges that are created and moving along the lineal segment,
are hurled through the loop part, thus creating the induced field Hd .
The direction of the field is dictated by the sense of rotation of the
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x
y

z

Ei
Hi

dE

Figure 9. Positioning the chiral element of Fig. 3 for H-field excita-
tion. The dashed segment is the part of the loop below the page.

loop, which in Fig. 8 is a right handed helix. As long as the loop,
be it right or left handed, is perpendicular to the lineal segment, we
get an induced field Hd which is perpendicular to the initial magnetic
field Hi . It is shown below that Hi and Hd are shifted by π/2 ,
thus giving rise to elliptically polarized waves in the chiral medium
in the time harmonic regime. Also note that the magnetic excitation
Hi , being parallel to the loop, cannot induce voltage in it. In other
words, no E.M.F. voltage, in the sense of Faraday’s “law” (referred to
as “law” because it is already included in (4)), can be present. Also
note that Hi cannot induce current in the lineal segment, because
they are perpendicular. Of course, the new field Hd is associated
with a corresponding Ed prescribed by (4), and in the far field these
two fields behave like the components of a plane wave.

The analogous configuration is depicted in Fig. 9, where we retain
the chirality of the particle, but change its orientation in space. Here
the incident field Ei affects neither the lineal segment of the chiral
particle, which is perpendicular, nor the loop segment which is parallel.
On the other hand, Hi induces an E.M.F. in the loop, producing
current that is forced to flow through the lineal segment and thus
causing polarization and the appearance of an induced field Ed . The
incident Ei and induced Ed fields are perpendicular and possess a
π/2 phase shift, thus again conducive to elliptically polarized waves.

In the configuration depicted in Fig. 10 no induced fields are created.
This is an interesting observation, telling us that when the present
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x

y

z

Ei

Hi

Figure 10. Positioning the element perpendicularly with respect to the
excitation fields. The lineal and loop elements can be excited neither
by the excitation E nor H fields.

chiral elements are envisioned as small spirals, as usually presented in
many texts, they have no effect on the total field when aligned with
their axes along the direction of propagation of the incident wave.
Any orientation of a chiral element in space can be considered as the
superposition of three elements depicted in Figs. 8–10.

We will now analyze the circuit parameters and the corresponding
fields in more detail: Consider the chiral particle depicted in Fig. 3,
and positioned as in Fig. 8. Obviously this corresponds to the equiva-
lent circuit in Fig. 6b. Assuming small particles and avoiding the more
intricate details of antenna theory, it is seen that the incident field
induces an in-phase voltage V , which drives a current I through the
reactive elements, and therefore the current’s phase is shifted by π/2 .
Whether the current is leading or lagging depends on the combined ca-
pacitive and inductive reactance. Usually the latter will be dominant.
In any case, the current is then proportional and in phase with respect
to the associated magnetic field, and thus Hd is created. The incident
wave’s magnetic field Hi is in phase with Ei , hence we get two fields,
Hi and Hd which are normal in space and in quadrature in time, asso-
ciated with their mate fields Ei and Ed according to (4), thus giving
rise to a combined elliptically polarized wave once again. Essentially
the same analysis and the same conclusions are derived from Figs. 7b,
8.



328 Censor

6. CHIRAL MEDIUM: ELECTRO-MECHANICAL
PROPERTIES AND CONSTITUTIVE RELATIONS

We will now consider a mechanical model for a chiral medium, con-
sistent with the model given above for polarizable media. Of course,
the chiral particles themselves are not moving under the influence of
the fields, they only provide the constrains for the motion of the e
and m type charges, as described above for the single wire and loop
chiral particle. Thus for our case electric (e type) charges move on the
metallic conductors of the lineal segment and the loop comprising the
chiral particle, but the magnetic fields originating on the loop part can
be attributed to associated magnetic charges. The transition from a
lumped element to a continuous medium concept is now needed. As for
simple polarizable materials, our goal here is to express the mechani-
cal properties in terms of the current density j, and substitute (in the
operator sense) into (4) to get rid of j and thus have a “pure” electro-
magnetic representation in terms of constitutive differential operators
acting on the fields E, H, B, D.

Let us recall what we did before: In polarizable materials, e.g., an
ionized plasma, we interpret the situation as having a matrix which
keeps the environment electrically neutral, and within this space mo-
bile electrons can move. The inertia is provided by their mass, the
friction can be explained in terms of inelastic interactions with the
embedding matrix, and the “spring action” as due to the tendency of
the medium to remain electrically neutral, i.e., when charges move,
they are disturbing the neutrality and thus Coulomb forces appear
which pull them back. In the case of a medium consisting of polariz-
able atoms or molecules (as opposed to an ionized plasma with a free
moving “cloud” of electrons), the same situation is understood, in spite
of the fact that the charges are attached to the polarizable particles and
not completely free to move around in the embedding medium. This
is the backdrop for the classical linear oscillator model [13]. This ap-
proach must now be adapted to describe a continuous chiral medium.
Thus according to our lumped chiral element depicted in Figs. 3, 4,
we envisage a medium which causes charges to move along trajectories
under the influence of fields, and simultaneously perform helical mo-
tion. Conceptually this is somewhat similar to the transition from a
lumped element to a distributed element transmission line. Consider
the case of homogeneous media first. By inspection of Fig. 8, we see
that electrical polarization pe is induced in the lineal segment by the
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source electrical field Ei . In Fig. 9, due to the source magnetic field
Hi , and by virtue of Faraday’s “law”, an E.M.F. voltage is created.
The voltage created along the loop wire appears between the terminals
of the loop, driving a current through the lineal segment and thus pro-
ducing an electrical polarization proportional to the time-derivative of
the magnetic field. The Faraday “law” invoked here is already embod-
ied in Maxwell’s equations, in the first equation (4). Hence we combine
the two effects writing

pe = ã · E − b̃ · ∂tH (58)

where ã, b̃ are the pertinent dyadics which take into account the ge-
ometry and orientation of the (bi-isotropically average) chiral particle.
The time derivative −∂tH including the sign takes into account the
Faraday law formula.

Analogously, we have magnetic polarization too. The analog of the
first term in (58) is derived from Fig. 9. Here the source magnetic
field Hi excites magnetic polarization by inducing a current in the
loop, acting like the equivalent current source in Fig. 7b. The field
Hd in Fig. 8, due to the current produced in the lineal segment and
driven into the loop, creates magnetic polarization. The current is
related to the time derivative of the electrical field. Therefore Hd and
the associated magnetic polarization are proportional to ∂tE . This
relation of the magnetic field to the derivative of the electric field is
based on the second equation (4), and therefore a change of sign has
been incorporated. The magnetic polarization is therefore written as

pm = c̃ · H + d̃ · ∂tE (59)

where again we have dyadics c̃, d̃ , depending on the geometry of the
chiral particle in some average sense. No attempt is done here to decide
common characteristics and symmetries in the dyadics above.

Assuming spatiotemporally constant dyadics in (58), (59), and rec-
ognizing in the linear regime current densities as the partial time
derivatives of polarization densities, the time derivatives of (58), (59),
yield

je = ã · ∂tE − b̃ · ∂2
t H (60)

jm = c̃ · ∂tH + d̃ · ∂2
t E (61)
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The combined set of (4) and (60), (61) provides a determinate system of
equations that can now be solved for specific problems. Moreover, upon
substitution of (60), (61) into (4), the current densities are eliminated,
and new so-called chiral constitutive relations can be defined. In the
present case everything is assumed to take place in the spatiotemporal
domain, and the chiral constitutive relations are stated as differential
operators.

Our goal is to derive the pertinent relations for inhomogeneous chi-
ral media, and include all the elements that came into play in the
linear oscillator analysis above, including the external magnetic field
introduced in Section 4. Here however, we encounter magnetic qm as
well as electric qe charges, and their corresponding current densities
jm, je . It follows that we have to include both e and m type forces,
as given in (6). To be consistent with our above analysis for the electri-
cally polarizable media, we assume a magnetic Coulomb force obtained
from (6) by taking v = 0 .

The analogue of the Lorentz force for the external magnetic field
(54) follows from (6) on taking E = 0 and subject to the current
definition as in (29), where now m-type current is involved. Conse-
quently, similarly to (40), we now add to our system of forces for a
single particle also

Fm4 = −qmv × Dm (62)

Consequently we can have gyrotropic effects of e and m types also in
the presence of chiral media, in principle.

The rest is now a systematic implementation of this outline. Corre-
sponding to (46) we now have

Fe(X) = qeN(X)
(

ã · E(X) − b̃ · ∂tH(X)
)

(63)

where now the varying density as in (46) has been included. For con-
crete applications it is of course a question of the actual medium at
hand. Here we have chosen the chiral properties to be constant in
space and time. In the case of a bi-anisotropic medium this prescribes
that all particles are identically aligned in space. For bi-isotropic me-
dia constant dyadics imply some local averaging. One can also assume
spatiotemporally dependent dyadics, and in addition include disper-
sion in the form ã(X, ∂X) etc. In any case, the dyadic fields must be
given a-priori as known functions and cannot depend on the electro-
magnetic or mechanical fields themselves, because this would already
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constitute a nonlinear effect. Corresponding to (59) and similarly to
(63), we now have

Fm(X) = qmN(X)
(

c̃ · H(X) + d̃ · ∂tE(X)
)

(64)

with the same provisos applying to the chiral dyadics.
On the other side of the equation stand the mechanical forces. The

argument (27)–(30), (35)–(37) for the spring action is retraced, and
it is again noted that we do not differentiate the parameters of the
particles as they move along their trajectories. Hence we reproduce
(37) with the appropriate modifications, deriving

F′
e3 =

meω
2
0e

qe
je(X) (65)

and for the corresponding magnetic force

F′
m3 =

mmω2
0m

qm
jm(X) (66)

Note that we have assumed different free resonance for the electric
and magnetic parameters, but nevertheless, we have a single species
system of particles. However this implies that we attribute some mass
mm to the magnetic charge qm . This perplexing problem is actually a
different way of expressing the mechanical properties, actually the mass
mm already enters the free oscillations eigenvalue ω2

0m appearing in
(66) and should not be more surprising than the concept of magnetic
current density jm . Ultimately it is the mass of the electrons hurled
around the loop that enters the expression for the mass of the fictitious
magnetic charges.

Following the argument (38)–(41), the friction term yields

F′
e2 =

αe

qe
j′e (67)

and
F′

m2 =
αm

qm
j′m (68)

for the electric, magnetic particles, respectively. The inertia force term
(44) is now rewritten with the appropriate indices e, m . Therefore
(44) now becomes

F′
e1 =

me

qe

(

j′′e − j′e
N ′

N
− je

(
N ′

N

)′)

(69)
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and

F′
m1 =

mm

qm

(

j′′m − j′m
N ′

N
− jm

(
N ′

N

)′)

(70)

for the electric and magnetic forces, respectively.
The gyrotropic forces follow from (54)–(55). We thus have for the

time derivatives of the forces

F′
e4 = −(B′

0 + B0∂t) × je (71)

and
F′

m4 = (D′
0 + D0∂t) × jm (72)

where the fields B0, D0 are considered to be known, as before. More-
over, the chiral and gyrotropic aspects are treated here as additive,
which means that there is no interaction between the two aspects. If
the fields B0, D0 cannot be treated as quasi-static fields, obviously
the model (71), (72) is inadequate, and the fields must be considered
as part of the source fields. If the time derivatives of B0, D0 are
negligent, only the second term in parenthesis in (71), (72) applies.

We now repeat the process (49)–(52), this time including the gy-
rotropic effects (71), (72). Thus we combine all the force derivative
terms to get an operator as in (49). Note that including terms as in
(71), (72), will lead to dyadic operators, thus we have for the analog
of (49)

F′
e = Ã e(X,B0, ∂X) · je(X) (73)

and
F′

m = Ã m(X,D0, ∂X) · jm(X) (74)

for the electric, magnetic forces, respectively. The force F′
e , (73) is

equated to the electromagnetic force derivative obtained by differenti-
ating (63)

F′
e =

(

qeN
(

ã · E − b̃ · ∂tH
))′

= qeN
′
(

ã · E − b̃ · ∂tH
)

+ qeN
(

ã · ∂tE − b̃ · ∂2
t H

)

(75)

Similarly F′
m , (74) is equated to the electromagnetic force derivative

obtained by differentiating (64)

F′
m = qmN ′

(

c̃ · H + d̃ · ∂tE
)

+ qmN
(

c̃ · ∂tH + d̃ · ∂2
t E

)

(76)
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The same strategy used in (51) is now implemented. The second Max-
well equation in (4) is multiplied by Ã e(X,B0, ∂X)· given in (73),
and the first equation (4) is multiplied by Ã m(X,D0, ∂X)· in (74).
Now substitute from (75), (76), respectively, to eliminate in (4) the
current densities je, jm . The final result is a “pure” electromagnetic
representation in terms of E, H, B, D.

7. CONCLUDING REMARKS

Maxwell’s Electromagnetism model (4) is indeterminate. In spite of
its seemingly perfection, we need to add constitutive relations in order
to solve any problem. Recently it was attempted to state constitutive
relations for dispersive as well as inhomogeneous media, linear as well
as nonlinear, in a general and consistent manner [12]. The present
study shows that at least for a certain class of media, as described
above, the approach is valid.

In the course of examining the constitutive relations, which stem
from mechanical considerations relevant to the medium at hand, it be-
came clear that a much deeper question is involved, what we called the
particle-field conundrum. While Maxwell’s equations are field equa-
tions, with the dependent variables depending on the spatiotemporal
coordinates, the mechanics of particles are stated for ordinary deriva-
tives and trajectories, and the spatiotemporal coordinates become de-
pendent on the parameters defining the trajectories. In continuum
mechanics this puzzling situation has been recognized long ago, and
appears under the titles of Eulerian and Lagrangian descriptions. But
the difficulty is not resolved by recognizing the problem itself, and we
end up with using approximations, or confronting the question of non-
linear systems, although Maxwell’s Electromagnetism is essentially a
linear theory.

It remains to show how intrinsically nonlinear systems can be dealt
with, using the methods used in this article.

A cardinal aspect of electromagnetic research in general is the
Minkowski methodology, which appears in all its acuteness in the
present study too. It started in connection with finding the constitu-
tive relations for moving media. The Minkowski paradigm prescribes
that we do not try to derive the “equivalent dielectric constant” etc.
for the new system, but rather express the new relations in terms of
the original parameters and the fields involved. This gave rise to the
celebrated Minkowski constitutive relations for moving media, which
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contain neither a definite dielectric parameter, nor a definite magnetic
parameter. Later, it prompted the research in general bi-anisotropic
media in general. However, Minkowski’s original idea got lost in the
process, but should be always guiding us: The name of the game is
not finding specific constitutive relations, but rather providing sufficient
equations for rendering Maxwell’s equation determinate. Sometimes we
succeed in deriving new parameters that can be dubbed in terms of old
ones, like the conductivity differential operator in (52), (57), which is
already quite contrived. We must be ready for constitutive relations
that cannot be categorized in terms of the already known classes of
materials, in fact, the class of constitutive relations is infinite, and the
only criterion is the solvability of Maxwell’s equation.

The above argumentations are not electromagnetic-specific: The
particle-field conundrum and the Minkowski methodology are general
to all branches of continuum physics.
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