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1. INTRODUCTION

The scattering of electromagnetic waves by buried objects has wide
applications in civil and military environments. For example, the scat-
tering of electromagnetic waves from buried cylindrical objects has
application in remote sensing of buried pipes and cables and in the un-
derstanding of mutual interaction between the buried object and sur-
rounding media. This type of problems have been treated mainly by
integral equation combined with numerical techniques such as moment
method. Butler et al. [1] solved an integral equation using a numerical
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method for the induced currents on the, perfectly conducting circular
cylinder buried near the planer interface of the two homogeneous me-
dia. They used these currents to calculate the far-zone scattered fields
from coupled and partially buried cylinders at the interface between
two media [2, 3].

The exact analytic formulations of buried object are available in
some particular cases. The reason why such analytic results are few
and far between is that the determination of electromagnetic fields
scattered by inhomogeneities reduces to the solution of a Helmholtz’s
equation in a complicated configuration. The classical method of so-
lution of Helmholtz’s equation, i.e., method of separation of variables,
yields analytic results only for those inhomogeneities whose surfaces
coincide with the coordinate surfaces of orthogonal coordinate systems
in which Helmholtz’s equation is separable. The exact analytic anal-
ysis of a buried circular cylinder was first undertaken by D’Yakonov
[4] but the results of his analytic work are not suitable for numerical
evaluation. This has been pointed out by Howard [5] and Ogunade
[6]. Ogunade [6] extended D’Yakanov’s exact analytic solution to ob-
tain solution for the scattered field of an embedded circular cylinder
using conventional eigenfunction expansion. This treatment required
much numerical calculation to get the desired physical quantities as has
been pointed out by Hongo and Hamamura [7]. Ogunade [6] considers
conducting circular cylinder inside a dielectric cylinder and takes the
limit that the radius of the dielectric cylinder goes to infinity. There-
fore his results cannot be extended to arbitrary configurations and
other cross-sections. Hongo and Hamamura [7] calculated the far-zone
scattered field expressions for a strip buried in a dielectric half-space.
They have also given the numerical results for the perfectly conduct-
ing circular cylinder buried in a dielectric half-space. They assumed
in their analysis that the obstacle is so deeply buried that only the
first order reflection from the dielectric interface towards the buried
obstacle is important. Higher order multiple reflections between the
dielectric interface and the buried object were ignored to calculate the
total far-zone scattered fields from the buried object. They evaluated
the far-zone scattered fields directly without using the corresponding
induced current distribution on the buried obstacle.

The scattered fields from a cylinder can be calculated by integrat-
ing the Green’s function of the configuration over the corresponding
induced current distribution. Techniques for computing the radiated
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fields due to a line source located at the interface of the two media
or in one of the two half-spaces are available in the literature [1, 8–9].
The only complexity involved in the evaluation of scattered fields from
a buried cylinder is the determination of unknown induced current dis-
tribution on the buried cylinder. Although it is not possible to give a
general, exact and analytic solution for the induced current distribu-
tion on the buried cylinder, but there exists a situation in which one
can approximate the actual induced current distribution on the buried
cylinder. In this situation it is assumed that the cylinder is deeply
buried. The assumption of deeply buried states that the cylinder is
so deeply buried that the scattered fields due to primary induced cur-
rents on the cylinder, after reflection from the interface containing the
cylinder, have no interaction with the buried cylinder. Thus actual
induced current distribution on the deeply buried cylinder can be ap-
proximated with induced current distribution as if the cylinder is in a
homogeneous medium [10]. This approximate induced current may be
utilized to calculate the scattered fields from a cylinder deeply buried
in a certain configuration.

This assumption of deeply buried cylinder decouples the original
scattering problem into two relatively simple parts. One part deals
with the configuration of the scattering problem. In this part of the
problem, field radiated by a line source in the given configuration is
derived. The other part of the problem deals with the cylinder as if
it is in a homogeneous medium. In this part the currents excited on
the cylinder are calculated. Now the scattered field due to the buried
cylinder can be obtained by considering the primary induced current
on the buried cylinder as source and fields due to the line sources are
summed up to yield the scattered fields from the buried cylinder.

In this paper, approximation to the induced currents is utilized on
a circular cylinder which is deeply buried in a dielectric half-space con-
figuration. Circular cylinder is selected for buried object, because it
can be a model for various practical cylindrical objects, e.g., pipes and
cables. Far-zone scattered fields and other scattering parameters of
deeply buried circular cylinder are calculated. It is found that after
this approximation to the induced currents the problem becomes rela-
tively easy and the resulting expression is quite simple to give a phys-
ical interpretation. Different scattering parameters can be studied in
terms of corresponding scattering parameters for the case of homoge-
neous medium. In this way one can develop better understanding of



40 Naqvi et al.

Figure 1. A perfectly conducting circular cylinder deeply buried in a
dielectric half-space.

interaction between the buried object and surrounding media. It may
be noted that this approximation may be extended to other parallel
layer configurations and objects of arbitrary shapes.

2. EXCITATION OF CURRENTS

Geometry of the scattering problem is shown in Fig. 1. A perfectly
conducting circular cylinder of radius a is deeply buried in a dielectric
half-space. The depth of the circular cylinder from the dielectric inter-
face is b . The cylinder is of infinite extent and its axis is coincident
with z coordinate axis. Medium 1 has propagation constant k1 and
fills space y > b, while medium 2 has propagation constant k2 and is
placed in space y < b.

2.1. TE Case

A perpendicularly polarized plane wave is normally incident from
medium 1 whose electric field is given as

Ei
z = exp {−ik1(y − b)} .
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The incident field varies harmonically with time as exp(−iωt) which
has been suppressed. The field transmitted in medium 2 is given as

Et
z = T12 exp(−ik2y) (2.1)

where T12 is the Fresnel transmission coefficient for the fields traveling
from medium 1 to medium 2 and is given as

T12 =
2k1

k1 + k2
exp(ik2b).

Since the cylinder is deeply buried, therefore transmitted field (2.1) is
considered as a field incident on the embedded cylinder. The electric
field given by (2.1) is now converted in a series of cylindrical waves
to facilitate the application of the boundary conditions in cylindrical
coordinates (ρ, φ). Using the plane wave expansion, the transmitted
field can be written as

Et
z = T12

n=∞∑

n=−∞
(−1)nJn(k2ρ) exp(inφ).

The scattered field due to the cylinder can be represented as

Esh
z =

n=∞∑

n=−∞
AnH(1)

n (k2ρ) exp(inφ) (2.2)

where An are constants which are easily determined by applying
boundary condition, that total tangential electric field must be zero on
the cylinder. The constants An are given as

An = −(−1)nT12Jn(k2a)

H
(1)
n (k2a)

.

Since the problem is independent of z coordinate so total tangential
magnetic field Htot

φ from the Maxwell’s equation can be calculated as

Htot
φ =

i

ωµ

∂Etot
z

∂ρ
(2.3)

where Etot
z = Esh

z +Et
z is the total electric field in the medium 2. The

surface current density on the perfect conductor is given as

eρ × Hφeφ = Jsz(ρ, φ)ez, at ρ = a (2.4)
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where eρ is outward normal to the conductor. Therefore,

Jsz(a, φ) =
2T12

πωµa

n=∞∑

n=−∞
(−1)n exp(inφ)

H
(1)
n (k2a)

(2.5)

where the Wronskian for the Hankel function has been used to simplify
the expression.

2.2. TM Case

A parallel polarized plane wave is normally incident from medium 1
whose magnetic field is given as

H i
z = exp {−ik1(y − b)} .

The corresponding induced current distribution on the circular cylinder
is

Jsφ(a, φ) =
−i2T12

πk2a

n=∞∑

n=−∞
(−1)n exp(inφ)

H
(1)′
n (k2a)

. (2.6)

The surface current distributions in (2.5) and (2.6) will now be used to
calculate the scattered field taking into account the effect of interface
between the two dielectric media.

3. FAR-ZONE SCATTERED FIELDS

The scattered electric field above the dielectric interface due to the
perfectly conducting cylinder can be obtained by calculating the scat-
tered field for each element of current on the conducting cylinder and
summing over all such elements of the surface current.

3.1. TE Case

The total scattered electric field due to the perfectly conducting
cylinder can be written as

Es
z = a

∫ 2π

0
Jsz(a, φ′)Ge(ρ, φ; a, φ′)dφ′ (3.1)

where

Ge(ρ, φ; a, φ′) =
{

Ge1(ρ, φ; a, φ′), y ≥ b
Ge2(ρ, φ; a, φ′), y ≤ 0.



Scattering of electromagnetic waves 43

Substituting the value of Green’s function Ge1(ρ, φ; a, φ′) from [11]
and current density (2.5), expression for the scattered field is obtained

Es
z =

−2T12k1

π
√

2π(k2
1 − k2

2)
exp(ik1ρ − iπ/4)√

k1ρ{
k1 sin2 φ − sinφ

√
k2

2 − k2
1 cos2 φ

}

× exp(−ik1b sinφ + ib
√

k2
2 − k2

1 cos2 φ)
n=∞∑

n=−∞

(−1)n

H
(1)
n (k2a)

×
∫ 2π

0
exp(−ik1a cos φ cos φ′

− ia
√

k2
2 − k2

1 cos2 φ sinφ′ + inφ′) dφ′. (3.2)

Simplifying the integral in above expression by substituting

φ0 = tan−1

√(
k2

k1 cos φ

)2

− 1

and converting resulting exponential term to corresponding plane wave
representation, it can be easily integrated as follows

k=∞∑

k=−∞

∫ 2π

0
(−i)kJk(k2a) exp{i(n + k)φ′ − ikφ0}dφ′

= 2π(−i)nJn(k2a) exp(inφ0). (3.3)

Substituting these results in (3.2) yields

Es
z =

−8k2
1√

2π(k2
1 − k2

2)(k1 + k2)
exp(ik2b − ik1b sinφ + ib

√
k2

2 − k2
1 cos2 φ)

×
{
k1 sin2 φ − sinφ

√
k2

2 − k2
1 cos2 φ

} n=∞∑

n=−∞

{
(i)nJn(k2a) exp(inφ0)

H
(1)
n (k2a)

}

× exp {ik1ρ − iπ/4}√
k1ρ

, (0 ≤ φ ≤ π). (3.4)
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This is the total scattered field in medium 1 due to the buried perfectly
conducting cylinder of radius a .

Substituting the value of Green’s function Ge2(ρ, φ; a, φ′) from [11]
and current density (2.5), the far-zone field scattered from a buried
perfectly conducting circular cylinder is obtained as

Es
z =

−T12 exp(iρ − iπ/4)
π
√

2π
√

k2ρ

n=∞∑

n=−∞
(−1)n I− + R(−φ)I+ exp(−i2k2b sinφ)

H
(1)
n (k2a)

(3.5)
where I− and I+ are defined as

I± =
∫ 2π

0
exp{−ik2a cos(φ ± φ′) + inφ′}dφ′.

The integral I− and I+ can be solved in a same way as the integral
involved in the scattered field expression for medium 1. Thus (3.5)
simplifies to

Es
z =

−4k1 exp(ik2b) exp(ik2ρ − iπ/4)√
2π(k2 + k1)

√
k2ρ

×
n=∞∑

n=−∞

(i)nJn(k2a)

H
(1)
n (k2a)

{exp(inφ) + exp(−inφ)R(−φ) exp(−i2k2b sinφ)} ,

(−π ≤ φ ≤ 0) (3.6)

where

R(−φ) =
n sinφ −

√
1 − n2 cos2 φ

n sinφ +
√

1 − n2 cos2 φ
.

The above expression gives the total far-zone scattered field due to the
perfectly conducting cylinder of radius a in the region whose propa-
gation constant is k2.

3.2. TM Case

The scattered magnetic field by the cylinder can be obtained using
following relation

Hs
z = a

∫ 2π

0
Jsφ(a, φ′)Gh(ρ, φ; a, φ′)dφ′ (3.7)
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where

Gh(ρ, φ; a, φ′) =
{

Gh1(ρ, φ; a, φ′), y ≥ b
Gh2(ρ, φ; a, φ′), y ≤ 0.

Gh(ρ, φ; a, φ′) is the Green’s function due to an arbitrary oriented
electric dipole placed at point (ρ′, φ′) in medium 2 [3,12]. Substituting
the expressions Gh1, the corresponding Green’s function in medium 1
and the current distribution Jsφ in Eq. (3.7), following is obtained

Hs
z =

−8ε1k1k2√
2π(k1 + k2)

{
exp(ik2b − ik1b sinφ + ib

√
k2

2 − k2
1 cos2 φ)

ε1
√

k2
2 − k2

1 cos2 φ + ε2k1 sinφ

}
sinφ

× exp(ik1ρ − iπ/4)√
k1ρ

n=∞∑

n=−∞
(i)n J ′

n(k2a) exp(inφ0)

H
(1)′
n (k2a)

, (0 ≤ φ ≤ π). (3.8)

The far zone scattered magnetic field in medium 2, below the perfectly
conducting buried cylinder is given as

Hs
z =

−2T12√
2π

exp (ik2ρ − iπ/4)√
k2ρ

×
n=∞∑

n=−∞

(i)nJ ′
n(k2a)

H
(1)′
n (k2a)

{exp(inφ) + Rh(−φ) exp(−i2k2b sinφ) exp(−inφ)} ,

(−π ≤ φ ≤ 0) (3.9)

where

Rh(−φ) =
sinφ + n

√
1 − n2 cos2 φ

sinφ − n
√

1 − n2 cos2 φ
.

4. THE SCATTERED FIELDS

The complicated looking expression for the total scattered electric field
obtained in the previous section can be explained quite simply. A
combination of wave and ray optics will be used for explaining the form
of the scattered field. For this purpose it is expedient to introduce some
new variables. The relative index of refraction is defined as n = k2/k1.
Two angles ψ1 and ψ2 are defined, which are angles of refraction and
incidence respectively, for a ray traveling from medium 2 to medium 1.
Analytically these angles can be written as
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ψ1 =
π

2
− φ, ψ2 = sin−1

(
sinψ1

n

)
, 0 ≤ φ ≤ π.

Using these definitions, expression (3.4) can be rewritten after some
manipulation as a product of various factors which are defined below

Es
z = PQSWTUV (4.1)

where

P =
2

1 + n

Q = exp(ik2b)

S = −
√

2
π

exp
(−iπ

4

) ∞∑

m=−∞
(i)m Jm(k2a)

H
(1)
m (k2a)

exp
{

im
(π

2
− ψ2

)}

W =
cos ψ1

n cos ψ2

T =
2n cos ψ2

cos ψ1 + n cos ψ2

U = exp{ik1b(n cos ψ2 − cos ψ1)}

V =
exp(ik1ρ)√

k1ρ
.

Consider a unit amplitude TE wave normally incident on a plane di-
electric interface. In medium 2 a transmitted wave is excited with
an amplitude given by the Fresnel transmission coefficient. This con-
tributes the factor P in (4.1). As this wave travels towards the cylin-
der it undergoes a phase change ik2b. This is indicated by the factor
Q. The scattering of a plane wave by a circular cylinder in a homo-
geneous medium is a well known problem. The scattered field due
to the cylinder for large distance from the cylinder can be written as
E0Sexp(ik2ρ)/

√
k2ρ, where E0 is the amplitude of the incident plane

wave. In the present case this amplitude is given as PQ. The factor S
describes the angular distribution of the field scattered from the cylin-
der buried in a homogeneous medium. Therefore the field scattered by
the cylinder in medium 2 is a cylindrical wave whose amplitude in any
given direction is PQS. Consider Fig. 2 in which a ray of the scattered



Scattering of electromagnetic waves 47

Figure 2. Ray diagram of scattered fields from buried cylinder for
above the dielectric interface.

field in direction ψ2 strikes the plane interface at point L after cover-
ing a distance r2. The field at L is given as, PQSexp(ik2r2)/

√
k2r2.

This ray is now diffracted by the plane interface and the amplitude
of this ray is modified by the Fresnel transmission coefficient T from
medium 2 to medium 1 for the angle at which the ray is incident.
Therefore the field at point M, just above the interface, on this ray
is given as, PQST exp(ik2r2)/

√
k2r2. The radius of curvature of the

incident wavefront at point L is r2. The radius of curvature of the
diffracted wavefront is denoted by r1. The relation between the two
radii of curvature following Born and Wolf [13] may be easily calculated
as

r1 = r2
cos2 ψ1

n cos2 ψ2
. (4.2)

As the diffracted ray travels to point N, at a distance l1 from M
in medium 1, the field amplitude on the ray according to the inverse
squar law becomes

PQST
exp(ik2r2)√

k2r2

√
r1

r1 + l1
exp(ik1l1).

Finally as the ray travels to a point ρ in the far-zone from N it travels
an additional distance ρ− l2, where l2 is the distance from the origin
to the interface on a ray parallel to the emergent ray. The amplitude
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at ρ will be

Es
z =PQST

exp(ik2r2)√
k2r2

√
r1

r1 + l1
exp(ik1l1)

√
r1 + l1

ρ − l2 + l1 + r1
exp{ik1(ρ − l2)}.

As ρ is much greater than r1, l1 and l2, therefore ρ � l1 − l2 + r1.
Using (4.2) the expression for the scattered field reduces to

Es
z = PQSWT exp(ik2r2 + ik1l1 − ik1l2)

exp(ik1ρ)√
k1ρ

.

From Fig. 2, it can be easily shown that the phase factor k2r2 +k1l1−
k1l2 can be written as k1b(n cos ψ2 − cos ψ1). Thus the last two terms
in the above expression can be identified as the factors U and V.

The scattered field below the interface can be explained in a similar
manner, by rewriting them as a sum of two terms containing various
factors which are defined below. Let

Es
z = PQ(S+)V + PQ(S−)RUV (4.3)

where

P =
2

1 + n

Q = exp(ik2b)

S± = −
√

2
π

exp
(−iπ

4

) ∞∑

m=−∞
(i)m Jm(k2a)

H
(1)
m (k2a)

exp(±imφ)

V =
exp(ik2ρ)

k2ρ

U = exp(−2ik2b sinφ)

R =
−k2 sinφ −

√
k2

1 − k2
2 cos2 φ

−k2 sinφ +
√

k2
1 − k2

2 cos2 φ
.

Consider Fig. 3, where a plane wave with amplitude PQ is incident
on the cylinder. The field scattered by the cylinder in the two regions
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Figure 3. Ray diagram of scattered fields from buried cylinder for
below the dielectric interface.

0 < φ < π and π < φ < 2π is separated and corresponding angular
distributions are denoted by S− and S+ respectively. The scattered
field in the direction φ is contributed by two rays. One ray gives the
directly scattered field and its contribution is PQ(S+)V. The ampli-
tude on a ray traveling towards the interface is PQ(S−). This ray
is now reflected by the plane interface and the amplitude of this ray
is modified by the Fresnel reflection coefficient R from medium 2 to
medium 1 for the angle at which the ray is incident. Therefore the
field at point M1, just below the interface, on this ray is given as
PQ(S−)Rexp(ik2r2)/

√
k2r2. Finally as the ray travels to a point ρ in

the far-zone from M1 it travels an additional distance ρ + r3 than
the direct scattered ray, where r3 is the distance from the dielectric
interface to the point M2. The amplitude at ρ will be

PQ(S−)R
exp(ik2r2)√

k2r2

√
r2

ρ + r3
exp{ik2(ρ + r3)}.

The expression for the scattered field contributed by both rays is
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Es
z = PQ(S+)V + PQ(S−)R exp{ik2(r2 + r3)}

exp(ik2ρ)√
k2ρ

.

From Fig. 3 it can be easily shown that the phase factor 2k2(r2 + r3)
can be written as −2k2b sinφ. Thus the last two terms in the above
expression can be identified as the factors U and V.

5. FIELD PATTERNS

The normalized field is obtained by dividing the field component |Es
z |

by its value at φ = π/2, i.e.,

En =
|Es

z |
|Es

z(π/2)| . (5.1)

The normalized field expression for buried circular cylinder contains
slowly convergent series. The coefficients of the series are Jm(k2a)/
H

(1)
m (k2a). These coefficients for fixed argument k2a, taking m to be

large behave as [14]

1
1 − 2i{k2a exp(1)/2m}−2m

.

In order to truncate the series, the value of m corresponding to the
coefficient value 10−30 of the series is selected. The values of m which
give the coefficients less than 10−30 are neglected.

The normalized field patterns En of the buried circular cylinder are
plotted in Fig. 4. It is seen that at the dielectric interface field pattern
has a null. Above the dielectric interface field pattern contains a single
lobe. The lobe has its maximum value in the direction φ = π/2.
Below the dielectric interface the field patterns is divided into three
sectors. In sectors 2π−φc ≤ φ ≤ 2π and π ≤ φ ≤ π+φc field pattern
contains many lobes. The number of lobes in the field pattern increases
with the increase in the depth. The increase in the side lobes is due
to the increase in the interference between the scattered field and the
scattered field reflected by the dielectric interface. In the middle sector
the field pattern contains one lobe with ripples. The variation in the
field pattern in the sector π + φc ≤ φ ≤ 2π − φc is low.
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Figure 4. The normalized field pattern of buried cylinder.

In the radar scattering problems, the scattered field above the di-
electric interface is of interest. The field pattern above the dielectric
interface contains single lobe regardless of radius of the circular cylin-
der and dielectric in which the circular cylinder is buried. Three dB
beamwidth of this lobe above the dielectric interface is π−2φ∗. Where
φ∗ is the angle at which En decreases to 1/

√
2. Three dB beamwidth

of the lobe as function of radius a/λ1 of the buried cylinder and di-
electric constant n is shown in Fig. 5, where λ1 is the wavelength in
medium 1.
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Figure 5.a The effect of radius a/λ1 on the beamwidth.

Figure 5.b The effect of relative dielectric constant εr on the
beamwidth.
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6. SCATTERING WIDTH AND SCATTERED POWER

6.1. TE Case

From the geometry in Fig. 1, it is clear that field is independent of
z and has only the components Es

z , Hs
φ and Hs

ρ . By the use of (2.3),
Hs

φ can be calculated from a knowledge of Es
z . The Poynting vector

in the far-zone has only the ρ component and is given as

P± =
1
2

√
ε±
µ
|Es

z |2, ε+ = ε1, ε− = ε2 (6.1)

where P+ is the far-zone Poynting vector in the region above the
dielectric interface of two homogeneous media and P− for below the
dielectric interface.

One of the important parameters in two dimensional scattering
problems is the scattering width. When the transmitter and receiver
are at same location the scattering width is referred to as monostatic
scattering width. The monostatic scattering width σ for the buried
circular cylinder is [15]

σ = lim
ρ→∞

2πρ
P+(π/2)

P inc
(6.2)

which is obtained by taking the ratio of Poynting vector in the back-
ward direction to the incident power. The incident power P inc is√

ε1/4µ. Using (6.2) yields the following expression for the scattering
width

σ =
64

(1 + n)4k1

∣∣∣∣∣

∞∑

m=−∞
(−1)m Jm(k2a)

Hm(k2a)

∣∣∣∣∣

2

.

The scattering width of the buried cylinder in terms of scattering width
of the cylinder in homogeneous medium 2 is

σ = nT 4
12σ1

where σ1 is the scattering width of the cylinder placed in a homo-
geneous whose propagation is k2. This expression gives the relation
between the scattering widths of the circular cylinder in homogeneous
medium and when buried in dielectric half-space.

Another quantity of interest is the total scattered power from the
buried cylinder. For this purpose the Poynting vector in the far-zone
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both above and below the dielectric interface is calculated. Substi-
tuting the values of Es

z from (3.4) and (3.6) in (6.1), the following
expression for scattered power above and below the dielectric interface
are obtained

P+ =
G

ρ
|T (φ)|2 |Q(ψ)|2

P− =
G

ρ
|Q(φ) + R(φ)F (φ)Q(−φ)|2

(6.3)

where

G =
4

πωµ(1 + n)2

Q(φ) =
∞∑

m=−∞
(i)m Jm(k2a)

H
(1)
m (k2a)

exp(imφ)

ψ = tan−1
√

(n/ cos φ)2 − 1

F (φ) = exp{−i2nk1b sinφ}

R(φ) =
−n sinφ −

√
1 − n2 cos2 φ

−n sinφ +
√

1 − n2 cos2 φ

T (φ) =
2 sinφ

1 − n2

{
sinφ −

√
n2 − cos2 φ

}
.

The total scattered power from the buried perfectly conducting cylin-
der in the far-zone is

P =
∫ π

0
P+ρdφ +

∫ 2π

π
P−ρdφ.

Substituting the values of P+ and P− in the above equation yields
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P =G

{∫ π

0
|T (φ)|2 |Q(ψ)|2dφ +

∫ 2π

π
|Q(φ)|2dφ

+
∫ 2π

π
|R(φ)|2|Q(−φ)|2dφ +

∫ 2π

π
Q∗(φ) R(φ)F (φ)Q(−φ)dφ

+
∫ 2π

π
Q(φ)R∗(φ)F ∗(φ)Q∗(−φ)dφ

}
. (6.4)

It can be easily shown that sum of first three integrals in the (6.4) is∫ 2π
0 |Q(φ)|2dφ.

P = G

∫ 2π

0
|Q(φ)|2dφ + G

{∫ 2π

π
W (φ) exp(−i2k2b sinφ)dφ

+
∫ 2π

π
W ∗(φ) exp(i2k2b sinφ)dφ

}
(6.5)

where

W (φ) = Q∗(φ)R(φ)Q(−φ).

Since the cylinder is deeply buried, the last two integrals of (6.5) are
solved asymptotically for large k2b. The method of stationary phase
[16] is used. The stationary point of integrand for the both integrals
is at φ = −π/2. It is found that (6.5) yields the following expression
for the scattered power from buried circular cylinder in the far-zone

P = G

∫ 2π

0
|Q(φ)|2dφ + G

√
π/k2b

[
W (−π/2) exp{−i(2k2b − π/4)}

+ W ∗(−π/2) exp{i(2k2b − π/4)}
]

where

W (−π/2) =
(

n − 1
n + 1

)
Q∗(−π/2)Q(π/2).

The first term of above expression is the total scattered power from the
cylinder in homogeneous medium with propagation constant k2. The



56 Naqvi et al.

incident power on the cylinder is
√

ε2/4µ T 2
12. The second term gives

the effect of the interaction between cylinder and the dielectric inter-
face. Using a result obtained by Papas [17] the total scattered power
from the circular cylinder in homogeneous medium can be written as

P = G2π�[Q(−π/2)]

×
{

1 +
√

π/k2b
n − 1

π(n + 1)
|Q∗(−π/2)Q(π/2)|

�[Q(−π/2)]
cos(2k2b − π/4)

}

= C1 + C2

√
1/k2b cos(2k2b − π/4) (6.6a)

where � stands for the real part. The first term C1 and factor C2

of the second term in (6.6a) are functions of radius a. It is clear from
above expression that the behaviour of the total scattered power from
the buried cylinder is decaying oscillatory around a mean value C1

as the depth b of buried cylinder is increased. The period of these
decaying oscillations with depth is λ2/4, where λ2 is the wavelength
in medium 2. It is numerically observed that when a is large, the ratio

lim
a→∞

|Q∗(−π/2)Q(π/2)|
�[Q(−π/2)]

tends to π
√

a/2λ2. Using the numerical results (6.6a) simplifies to

P = G2π�[Q(−π/2)]
{

1 +
√

a

b

n − 1
2(n + 1)

cos(2k2b − π/4)
}

. (6.6b)

Above expression gives the total scattered power from circular cylin-
ders of large radii in the far-zone. This expression shows that the
behaviour of total scattered power with the increase in depth is de-
caying oscillatory with period λ2/4 around a mean value which is
the power scattered from the cylinder in homogeneous medium having
propagation constant k2.
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6.2. TM Case

The far zone poynting vector for TM case is given as

P±
h =

1
2

√
µ

ε±
|Hs

z |2, ε+ = ε1, ε− = ε2.

The corresponding expression for scattering width therefore becomes

σh =
64

(1 + n)4k1

∣∣∣∣∣

n=∞∑

n=−∞
(−1)n J ′

n(k2a)

H
(1)′
n (k2a)

∣∣∣∣∣ = nT 4
12σ1. (6.7)

The poynting vectors in the far zone, both above and below the inter-
face have been calculated as

P+
h =

Gh

ρ
|Th(φ)|2|Qh(ψ)|2 (6.8)

P−
h =

Gh

ρ
|Qh(φ) + Rh(−φ)F (φ)|Qh(−φ)|2 (6.9)

where
Gh =

4
πωε1(1 + n)2

Qh(φ) =
m=∞∑

m=−∞
(i)m J ′

m(k2a) exp(imφ)

H
(1)′
m (k2a)

ψ = tan−1
√

(n/ cos φ)2 − 1

F (φ) = exp(−i2nk1b sinφ)

Th(φ) =
2 sinφ√

1 − (cos φ/n)2 + n sinφ
.

Hence for TM case, the total power scattered from the buried conduct-
ing cylinder in the far zone is

Ph =
∫ π

0
P+

h ρdφ +
∫ 2π

π
P−

h ρdφ .
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Substituting P+ and P− in the above equation and after manipula-
tion following results are obtained

Ph = Gh2π�[Qh(−π/2)]

×
{

1 +
√

π/k2b
n − 1

π(n + 1)
|Q∗

h(−π/2)Qh(π/2)|
�[Qh(−π/2)]

cos(2k2b − π/4)
}

= C ′
1 + C ′

2

√
1/k2b cos(2k2b − π/4). (6.10)

The behaviour of the total scattered power from the buried cylinder is
decaying oscillatory around a mean value C ′

1 as the depth b of buried
cylinder is increased.

REFERENCES

1. Butler, C. M., X. B. Xu, and A. W. Glisson, “Current induced on
a conducting cylinder located near the planer interface between
two semi-infinite half-spaces,” IEEE Trans. Antennas Propagat.,
Vol. 33, 616–624, June 1985.

2. Xu, X. B., and C. M. Butler, “Current induced by TE excita-
tion on a conducting cylinder located near the planer interface
between two semi-infinite half-spaces,” IEEE Trans. Antennas
Propagat., Vol. 34, 880–890, July 1986.

3. Xu, X. B., and C. M. Butler, “Scattering of TM excitation by
coupled and partially buried cylinders at the interface between
two media,” IEEE Trans. Antennas Propagat., Vol. 35, 529–538,
May 1987.

4. D’Yakonov, B. P., “The diffraction of electromagnetic waves by a
circular cylinder in a homogeneous half-space,” Bull. Acad. Sci.
U.S.S.R., Geophysics, Ser. No. 9, 950–955, 1959.

5. Howard, A. Q., “The electromagnetic fields of a subterranean
cylindrical inhomogeneity excited by a line source,” Geophysics,
Vol. 37, 975–984, Dec. 1972.

6. Ogunade, S. O., “Electromagnetic response of an embedded cylin-
der for line current excitation,” Geophysics, Vol. 46, 45–52, Jan.
1981.

7. Hongo, K., and A. Hamamura, “Asymptotic solutions for the
scattered field of plane wave by a cylindrical obstacle buried in a
dielectric half-space,” IEEE Trans. Antennas Propagat., Vol. 34,
1306–1312, Nov. 1986.

8. Engheta, N., C. Elachi, and C. H. Papas, “Interface extinction
and subsurface peaking of the radiation pattern of a line source,”
Caltech Antenna Lab., Report No. 107, Apri 1981.



Scattering of electromagnetic waves 59

9. Chommeloux, L., C. Pichit, and J. C. Bolomey, “Electromag-
netic modeling for microwave imaging of buried cylindrical in-
homogeneities,” IEEE Tran. Microwave Theory Tech., Vol. 34,
1064–1076, Oct. 1986.

10. Naqvi, Q. A., and A. A. Rizvi, “An approximation to the induced
currents on a deeply buried circular cylinder,” IEEE National
Multitopic Conference, 172–175, April 1997.

11. Naqvi, Q. A., “Scattering of electromagnetic waves from a buried
cylinder,” Ph.D. Thesis, Qauid-i-Azam University, Islamabad,
Pakistan, 1997.

12. Yaqoob, Z., “Polarization of electromagnetic fields scattered from
a buried conducting cylinder,” M.Phil. Thesis, Qauid-i-Azam
University, Islamabad, Pakistan, 1996.

13. Born, M., and E. Wolf, Principles of Optics, Pergamon Press,
1989.

14. Abramowitz, M., and I. A. Stegun, Handbook of Mathematical
Functions, Dover Publications, New York, 1972.

15. Balanis, C. A., Advanced Engineering Electromagnetics, John
Wiley & Sons, 1989.

16. Bender, C. M., and S. A. Orszag, Advanced Mathematical Meth-
ods for Scientists and Engineers, McGraw-Hill, New York, 1978.

17. Papas, C. H., “Diffraction by a cylindrical Obstacle,” J. Appl.
Phys., Vol. 21, 318–325, April 1950.


