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1. INTRODUCTION

The presence of forest foliage causes attenuation of radio waves along
a radio path and reduces the communication range of the radio equip-
ment. In planning a communication link, quantitative knowledge of the
excess transmission loss suffered by the radio waves due to the pres-
ence of the foliage is essential. Radio wave propagation in vegetated
environment has been the subject of intensive studies. Those earlier
studies usually considered radio propagation in forests modeled as a
homogeneous and isotropic dielectric layer placed over a conducting
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earth [1–5]. In that analysis, the Hertz potential theory was used, and
satisfactory results were obtained.

Recently, a four-layered model has been widely adopted and com-
monly used in the analysis of propagation mechanism in forest envi-
ronments [6–8]. Two lossy dielectric layers placed over a semi-infinite
ground plane are used to represent the canopy layer and trunk layer
of the forest, respectively. To solve the problem of the electromagnetic
wave propagation in this model, eigenfunction expansion of the dyadic
Green’s function is used in this paper. The use of the dyadic Green’s
function for the analysis of the electromagnetic wave propagation in
semi-infinite media was described by Tai [9] and a generalization of
these functions for the case of an N -layered medium [10], and ex-
pression for the coefficients of the scattered dyadic Green’s functions
in multi-layered medium have been recently obtained [11, 12]. The
similar ideas developed in [13] will be also implemented inside the
current paper. In [13], the analysis has been conducted only on the z -
components of the electromagnetic fields due to its length restriction,
so that the overall effects of the forest and the global contributions due
to all the electromagnetic field components cannot be seen clearly.

In this paper, the dyadic Green’s functions for the four-layered pla-
nar geometry are first determined. From these functions, all the the
electric field components of the electromagnetic waves radiated from
an inclined dipole antenna located in the trunk layer were obtained in
Section 2, and then were evaluated in Section 3, using the saddle point
technique which accounts for the direct and multiple reflected waves,
and the branch-cut integration technique which gives contributions of
lateral waves along various interfaces [14]. The transmission losses for
vertical, horizontal, and 45 ◦ inclined dipoles were finally calculated
numerically in Section 4 for typical forests. Also, an error occurring in
the publication [5] has been pointed out and corrected in this paper.

2. FORMULATION OF THE PROBLEM

The geometry that will be considered is shown in Fig. 1. The layer II
represents a medium of tree crowns (canopy) with dielectric parame-
ters ε2, µ2 and σ2 , while layer III represents a medium of tree trunks
(trunk) with dielectric parameters ε3, µ3 and σ3 . The height of layer
II measured along the z-direction is H1 , while the height of layer III
is H2 . Throughout the analysis, the air (layer I) and ground (layer
IV) are assumed to extend to infinity, with dielectric parameters given
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Figure 1. Geometry for the forest model of four-layers.

by ε0 and µ0 , and ε4, µ4 and σ4 , respectively.
An electric dipole with an inclination angle α with respect to the

boundary plane between layers and an observation point are both lo-
cated in layer III. The source that feeds the electric dipole has a har-
monic time dependence given by exp(−jωt ). The dielectric permit-
tivities of the four layers are expressed in their complex form, [i.e.,
ε� = εr�εo = ε′�(1 + jσ�/ωε′�) where εr� ( 
 = 1, 2, 3, 4 ) is the relative
complex dielectric constant, σ� the conductivity of medium 
 , and
εo the free space permittivity]. The wavenumbers for the four layers
are k1 in the air semi-space, k2 in the canopy layer, k3 in the trunk
layer, and k4 in the semi-space ground, where kn = ω

√
(µoεn) . The

magnetic permeability µ� in every layer is taken equal to that µ0 of
the free space.

The current density of an electric dipole with an inclination α with
respect to the boundary plane between layers, as shown in Fig. 1, may
be expressed as

J3(r′) = (Pxx̂+ Pzẑ)[δ(x′ − 0)δ(y′ − 0)δ(z′ − zo)]

= [Px(cosφ′ρ̂− sinφ′φ̂) + Pzẑ]
δ(ρ′)δ(z′ − zo)

2πρ′
, (1)

where z0 = z′ is the height of the dipole, and Px and Pz are the
horizontal and vertical dipole moments, respectively.
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Using the dyadic Green’s function for a four-layered planar geom-
etry given by Li et al. [12], and following a procedure similar to that
described by Cavalcante et al. [5], one obtains for the region
H2 ≥ z ≥ z′ :

E>3 (r) =− ωµ3

4π

∫ ∞
0

dλ

h3

[
Px

{[
(1 +A33

M )Mo1λ(h3) + C33
MMo1λ(−h3)

]
× e−jh3z′ +

[
B33
MMo1λ(h3) +D33

MMo1λ(−h3)
]
ejh3z′

− jh3

k3

[
(1 +A33

N )Ne1λ(h3) + C33
NNe1λ(−h3)

]
e−jh3z′

+
jh3

k3

[
B33
NNe1λ(h3) +D33

NNe1λ(−h3)
]
ejh3z′

}
+
Pzλ

k3

{[(
1 +A33

N

)
Ne0λ(h3) + C33

NNe0λ(−h3)
]
e−jh3z′

+
[
B33
NNe0λ(h3) +D33

NNe0λ(−h3)
]
ejh3z′

}]
, (2)

and the the region 0 ≤ z ≤ z′ :

E<3 (r) =− ωµ3

4π

∫ ∞
0

dλ

h3

[
Px

{[
A33
MMo1λ(h3) + C33

MMo1λ(−h3)
]
e−jh3z′

+
[
B33
MMo1λ(h3) + (1 +D33

M )Mo1λ(−h3)
]
ejh3z′

− jh3

k3

[
A33
NNe1λ(h3) + C33

NNe1λ(−h3)
]
e−jh3z′

+
jh3

k3

[
B33
NNe1λ(h3) +

(
1 +D33

N

)
Ne1λ(−h3)

]
ejh3z′

}
+
Pzλ

k3

{[
A33
NNe0λ(h3) + C33

NNe0λ(−h3)
]
e−jh3z′

+
[
B33
NNe0λ(h3) +

(
1 +D33

N

)
Ne0λ(−h3)

]
ejh3z′

}]
, (3)

where h� =
√
k2
� − λ2 ( 
 = 1, 2, 3 and 4), the coefficients A33

M,N ,

B33
M,N , C33

M,N , D33
M,N of scattered dyadic Green’s functions are ex-

pressed by Li et al. [12] and are not given here to save space.
Using the expressions for Me

onλ(h) and Ne
onλ(h) (see Tai [9] and

Li et al. [12]), expressions in cylindrical coordinates for the field com-
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ponents of (2) and (3) may be obtained as[
E>3z
E<3z

]
=
jωµo
4πk2

3

∫ ∞
0

λ2dλ

DV
3

{
PxJ1(λρ) cosφ

[
Φ>

+

Φ<
−

]
+
jPzλ

h3
J0(λρ)

[
Φ>
−

Φ<
+

]}
, (4a)[

E>3ρ
E<3ρ

]
= −ωµo

4π

∫ ∞
0

dλ

h3

{
Px cosφ

{
J1(λρ)
ρ

1
DH

3

×
[

Φ>
1ρ

Φ<
1ρ

]
+

(
h3

k3

)2 dJ1(λρ)
dρ

1
DV

3

[
Φ>

2ρ

Φ<
2ρ

]}

± jPzλh3

k2
3

dJ0(λρ)
dρ

1
DV

3

[
Φ>

3ρ

Φ<
3ρ

]}
, (4b)[

E>3φ
E<3φ

]
=
ωµo
4π

∫ ∞
0

dλ

h3
Px sinφ

{
dJ1(λρ)
dρ

1
DH

3

[
Φ>

1φ

Φ<
1φ

]
+

(
h3

k3

)2 J1(λρ)
ρ

1
DV

3

[
Φ>

2φ

Φ<
2φ

]}
, (4c)

where the intermediates Φ
>
<
± and Φ

>
<
(1,2,3)(ρ,φ) are derived as

Φ>
± =

[
1±RV3 ej2h3z′

] {[
RV2 +RV1 e

j2h2H1

]
ej2h3(H2−z)

+
[
1 +RV1 R

V
2 e

j2h2H1

]}
ejh3(z−z′), (5a)

Φ<
± =

[
1−RV3 ej2h3z

] {[
RV2 +RV1 e

j2h2H1

]
ej2h3(H2−z′)

±
[
1 +RV1 R

V
2 e

j2h2H1

]}
ejh3(z′−z), (5b)

Φ>
1ρ =

[
1−RH3 ej2h3z′

]
ejh3(z−z′)

{[
1 +RH1 R

H
2 e

j2h2H1

]
+

[
RH2 +RH1 e

j2h2H1

]
ej2h3(H2−z)

}
, (5c)

Φ<
1ρ =

[
1−RH3 ej2h3z

]
e−jh3(z−z′)

{[
1 +RH1 R

H
2 e

j2h2H1

]
+

[
RH2 +RH1 e

j2h2H1

]
ej2h3(H2−z′)

}
, (5d)

Φ>
2ρ =

[
1 +RV3 e

j2h3z′
]
ejh3(z−z′)

{[
1 +RV1 R

V
2 e

j2h2H1

]
−

[
RV2 +RV1 e

j2h2H1

]
ej2h3(H2−z)

}
, (5e)
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Φ<
2ρ =

[
1 +RV3 e

j2h3z
]
e−jh3(z−z′)

{[
1 +RV1 R

V
2 e

j2h2H1

]
−

[
RV2 +RV1 e

j2h2H1

]
ej2h3(H2−z′)

}
, (5f)

Φ>
3ρ =

[
1−RV3 ej2h3z′

]
ejh3(z−z′)

{[
1 +RV1 R

V
2 e

j2h2H1

]
−

[
RV2 +RV1 e

j2h2H1

]
ej2h3(H2−z)

}
, (5g)

Φ<
3ρ =

[
1 +RV3 e

j2h3z
]
e−jh3(z−z′)

{[
1 +RV1 R

V
2 e

j2h2H1

]
+

[
RV2 +RV1 e

j2h2H1

]
ej2h3(H2−z′)

}
, (5h)

Φ>
1φ =

[
1−RH3 ej2h3z′

]
ejh3(z−z′)

{[
1 +RH1 R

H
2 e

j2h2H1

]
+

[
RH2 +RH1 e

j2h2H1

]
ej2h3(H2−z)

}
, (5i)

Φ<
1φ =

[
1−RH3 ej2h3z

]
e−jh3(z−z′)

{[
1 +RH1 R

H
2 e

j2h2H1

]
+

[
RH2 +RH1 e

j2h2H1

]
ej2h3(H2−z′)

}
, (5j)

Φ>
2φ =

[
1 +RV3 e

j2h3z′
]
ejh3(z−z′)

{[
1 +RV1 R

V
2 e

j2h2H1

]
−

[
RV2 +RV1 e

j2h2H1

]
ej2h3(H2−z)

}
, (5k)

Φ<
2φ =

[
1 +RV3 e

j2h3z
]
e−jh3(z−z′)

{[
1 +RV1 R

V
2 e

j2h2H1

]
−

[
RV2 +RV1 e

j2h2H1

]
ej2h3(H2−z′)

}
; (5l)

the reflection coefficients RH,Vi ( i = 1, 2 and 3 ) for TE (H) mode
and TM (V) mode are given respectively by

RHf =
µfhf+1 − µf+1hf
µfhf+1 + µf+1hf

, (6a)

RVf =
µfhfk

2
f+1 − µf+1hf+1k

2
f

µfhfk
2
f+1 + µf+1hf+1k

2
f

; (6b)

and the denominator DH,V
3 is given by:

DV,H
3 = 1 +RV,H1 RV,H2 ei2h2H1 +

[
RV,H2 +RV,H1 ei2h2H1

]
RV,H3 ei2h3H2 .

(7)
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3. ANALYTICAL ELECTRIC FIELDS IN CLOSED FORM

To evaluate the integrals, it is convenient to convert the range of the
integral from (0→∞) to (−∞→∞) . Thus the Bessel functions and
their derivatives need to be transformed to the Hankel functions and
their derivatives. Since the frequency of interest here is 100 MHz or
above, the phase k0r in free space is 2πfr/c ≥ 2π100×106r/3×108 =
(2π/3)r . As the transmitter-receiver distance r is at least the height
of the vegetation layer height, i.e. r ≥ 20 m, so that the condition
k0r � 1 is always satisfied. Thus, the Hankel functions and derivatives
used may be replaced by their asymptotic expressions. In addition,
one over DH,V

3 may be expressed in an infinite series form (binomial
expansion).

For details of the field contributions, we separate the field into two
parts Ex and Ez due to contributions of horizontal ( x ) and vertical
( z ) dipole moments, respectively, and waves associated with TE and
TM modes. After exchanging the integration and the summation op-
erations and using the complex transformation λ = k3 sinβ , the field
integrals may be written as

[
E>z3z,TM

E<z3z,TM

]
= −ωµo

8π
Pz

√
2k3

πρ
e−j

π
4

∞∑
m=0

[
L>3z
L<3z

]
, (8a)

[
E>x3z,TM

E<x3z,TM

]
=
ωµo
8π
Px cosφ

√
2k3

πρ
e−j

π
4

∞∑
m=0

[
K>3z
K<3z

]
, (8b)

[
E>z3ρ,TM

E<z3ρ,TM

]
= ∓ωµo

8π
Pz

√
2k3

πρ
ej

3π
4

∞∑
m=0

[
L>3ρ
L<3ρ

]
, (8c)

[
E>x3ρ,TM

E<x3ρ,TM

]
= −ωµo

8π
Px cosφ

√
2k3

πρ
e−j

π
4

∞∑
m=0

[
K>3ρ
K<3ρ

]
, (8d)

[
E>x3ρ,TE

E<x3ρ,TE

]
= −ωµo

8πρ
Px cosφ

√
2

πk3ρ
e−j

3π
4

∞∑
m=0

[
G>3ρ
G<3ρ

]
, (8e)

[
E>x3φ,TM

E<x3φ,TM

]
=
ωµo
8πρ

Px sinφ
√

2
πk3ρ

e−j
3π
4

∞∑
m=0

[K>3φ
K<3φ

]
, (8f)

[
E>x3φ,TE

E<x3φ,TE

]
=
ωµo
8π
Px sinφ

√
2k3

πρ
e−j

π
4

∞∑
m=0

[G>3φ
G<3φ

]
, (8g)
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where the parameters in the integral domain are given by[
L>3z
L<3z

]
= qm sin

5
2 β

[
Φ>
−

Φ<
+

]
, (9a)[

L>3ρ
L<3ρ

]
= qm sin

3
2 β cosβ

[
Φ>

3ρ

Φ<
3ρ

]
, (9b)[

K>3z
K<3z

]
= qm sin

3
2 β cosβ

[
Φ>

+

Φ<
−

]
, (9c)[

K>3ρ
K<3ρ

]
= qm sin

1
2 β cos2 β

[
Φ>

2ρ

Φ<
2ρ

]
, (9d)[K>3φ

K<3φ

]
= qm sin−

1
2 β cos2 β

[
Φ>

2φ

Φ<
2φ

]
, (9e)[

G>3ρ
G<3ρ

]
= q′m sin−

1
2 β

[
Φ>

1ρ

Φ<
1ρ

]
, (9f)[G>3φ

G<3φ

]
= q′m sin

1
2 β

[
Φ>

1φ

Φ<
1φ

]
, (9g)

and

qm =
∫

Γ0

dβejk3ρ sinβ(−1)m
[(
RV2 +RV1 e

j2H1

√
k2
2−k2

3 sin2 β
)

RV3 e
j2H2k3 cosβ + RV1 R

V
2 e

j2H1

√
k2
2−k2

3 sin2 β
]m
, (10a)

q′m =
∫

Γ0

dβejk3ρ sinβ(−1)m
[(
RH2 +RH1 e

j2H1

√
k2
2−k2

3 sin2 β
)

RH3 e
j2H2k3 cosβ + RH1 R

H
2 e

j2H1

√
k2
2−k2

3 sin2 β
]m
. (10b)

To evaluate the integrals, the steepest descent method and the
branch cut integration technique are used. For more information on
the method, References [15] and [16] contain a good account of its
meaning and application.

3.1 Direct and Multiple Reflected Waves

The integrals for the electromagnetic field components have been
evaluated in this paper using the steepest descent method and hence
expressed in terms of direct and multiple reflected waves. Following
similar procedures as in [17] and [5], the saddle point part of the in-
tegrals have been evaluated and their solutions are given as (in the
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following, ∗ stands for > or < ):

E∗z,s3z,TM = −ωµ0Pz
4π

√
k3

|k3|
e−j

5π
8

∞∑
m=0

IVm

{[
1 +RV1,s(β

∗
1)RV2,s(β

∗
1)ebH1

]
a∗1

+
[
RV2,s(β

∗
2) +RV1,s(β

∗
2)ebH1

]
a∗2

−RV3,s(β∗3)
[
1 +RV1,s(β

∗
3)RV2,s(β

∗
3)ebH1

]
a∗3

− RV3,s(β∗4)
[
RV2,s(β

∗
4) +RV1,s(β

∗
4)ebH1

]
a∗4

}
, (11a)

E>x,s3z,TM =
ωµ0

4π
Px cosφ

√
k3

|k3|
e−j

5π
8

∞∑
m=0

IVm

{[
1 +RV1,s(β

>
1 )RV2,s(β

>
1 )ebH1

]
× a>1 c>1 +

[
RV2,s(β

>
2 ) +RV1,s(β

>
2 )ebH1

]
a>2 c

>
2

+RV3,s(β
>
3 )

[
1 +RV1,s(β

>
3 )RV2,s(β

>
3 )ebH1

]
a>3 c

>
3

+ RV3,s(β
>
4 )

[
RV2,s(β

>
4 ) +RV1,s(β

>
4 )ebH1

]
a>4 c

>
4

}
,(11b)

E<x,s3z,TM =
ωµ0

4π
Px cosφ

√
k3

|k3|
e−j

5π
8

∞∑
m=0

IVm

{
−

[
1 +RV1,s(β

<
1 )RV2,s(β

<
1 )ebH1

]
× a<1 c<1 +

[
RV2,s(β

<
2 ) +RV1,s(β

<
2 )ebH1

]
a<2 c

<
2

+RV3,s(β
<
3 )

[
1 +RV1,s(β

<
3 )RV2,s(β

<
3 )ebH1

]
a<3 c

<
3

− RV3,s(β<4 )
[
RV2,s(β

<
4 ) +RV1,s(β

<
4 )ebH1

]
a<4 c

<
4

}
, (11c)

E>z,s3ρ,TM = −ωµo
4π
Pz

√
k3

|k3|
e

3π
8

∞∑
m=0

IVm

{[
1 +RV1,s(β

>
1 )RV2,s(β

>
1 )ebH1

]
a>1 e

>
1
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−
[
RV2,s(β

>
2 ) +RV1,s(β

>
2 )ebH1

]
a>2 e

>
2

−RV3,s(β>3 )
[
1 +RV1,s(β

>
3 )RV2,s(β

>
3 )ebH1

]
a>3 e

>
3

+ RV3,s(β
>
4 )

[
RV2,s(β

>
4 ) +RV1,s(β

>
4 )ebH1

]
a>4 e

>
4

}
,(11d)

E<z,s3ρ,TM =
ωµo
4π
Pz

√
k3

|k3|
e

3π
8

∞∑
m=0

IVm

{[
1 +RV1,s(β

<
1 )RV2,s(β

<
1 )ebH1

]
a<1 e

<
1

+
[
RV2,s(β

<
2 ) +RV1,s(β

<
2 )ebH1

]
a<2 e

<
2

+RV3,s(β
<
3 )

[
1 +RV1,s(β

<
3 )RV2,s(β

<
3 )ebH1

]
a<3 e

<
3

+ RV3,s(β
<
4 )

[
RV2,s(β

<
4 ) +RV1,s(β

<
4 )ebH1

]
a<4 e

<
4

}
, (11e)

E∗x,s3ρ,TM = −ωµo
4π
Px cosφ

√
k3

|k3|
e−

5π
8

∞∑
m=0

IVm

{[
1 +RV1,s(β

∗
1)RV2,s(β

∗
1)ebH1

]
× a∗1f∗1 −

[
RV2,s(β

∗
2) +RV1,s(β

∗
2)ebH1

]
a∗2f

∗
2

+RV3,s(β
∗
3)

[
1 +RV1,s(β

∗
3)RV2,s(β

∗
3)ebH1

]
a∗3f

∗
3

− RV3,s(β∗4)
[
RV2,s(β

∗
4) +RV1,s(β

∗
4)ebH1

]
a∗4f

∗
4

}
, (11f)

E∗x,s3ρ,TE = −ωµo
4πρ

Px cosφ
e−

9π
8√

k3|k3|
∞∑
m=0

IHm

{[
1 +RH1,s(β

∗
1)RH2,s(β

∗
1)ebH1

]
a∗1

+
[
RH2,s(β

∗
2) +RH1,s(β

∗
2)ebH1

]
a∗2

−RH3,s(β∗3)
[
1 +RH1,s(β

∗
3)RH2,s(β

∗
3)ebH1

]
a∗3

− RH3,s(β∗4)
[
RH2,s(β

∗
4) +RH1,s(β

∗
4)ebH1

]
a∗4

}
, (11g)
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E∗x,s3φ,TM =
ωµo
4πρ

Px sinφ
e−

9π
8√

k3|k3|
∞∑
m=0

IVm

{[
1 +RV1,s(β

∗
1)RV2,s(β

∗
1)ebH1

]
a∗1g
∗
1

−
[
RV2,s(β

∗
2) +RV1,s(β

∗
2)ebH1

]
a∗2g
∗
2

+RV3,s(β
∗
3)

[
1 +RV1,s(β

∗
3)RV2,s(β

∗
3)ebH1

]
a∗3g
∗
3

− RV3,s(β∗4)
[
RV2,s(β

∗
4) +RV1,s(β

∗
4)ebH1

]
a∗4g
∗
4

}
, (11h)

E∗x,s3φ,TE =
ωµo
4π
Px sinφ

√
k3

|k3|
e−

5π
8

∞∑
m=0

IHm

{[
1 +RH1,s(β

∗
1)RH2,s(β

∗
1)ebH1

]
a∗1

+
[
RH2,s(β

∗
2) +RH1,s(β

∗
2)ebH1

]
a∗2

−RH3,s(β∗3)
[
1 +RH1,s(β

∗
3)RH2,s(β

∗
3)ebH1

]
a∗3

− RH3,s(β∗4)
[
RH2,s(β

∗
4) +RH1,s(β

∗
4)ebH1

]
a∗4

}
, (11i)

where the intermediate parameters such as θ∗� , β∗� RH,V�,s , a∗� , b , c∗� ,
d∗± , e∗� , f∗� , and g∗� have been given in the Appendix.

3.2 Lateral Waves

The solutions of the integrals in (8b)–(8g) can be evaluated using
the residue theorem in a way similar to that available in the literature
[17], [15] and [16]. Correspondingly, the branch cut contributions of
h2 = 0 and h4 = 0 to the fields have been obtained, respectively.
The lateral waves along three different ways namely, the lateral waves
at the air-canopy interface, at the canopy-trunk interface, and at the
trunk-ground interface have been from the analysis. The mixed modes
propagation mechanisms of radio waves in the trunk layer radiated by
a dipole antenna located inside the trunk layer have been clearly shown
in Fig. 2. For the cases that are considered here, while the lateral waves
along the second and third interfaces are highly attenuated due to the
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Figure 2. Mixed mode propagation of the radio waves radiated by a
dipole antenna located inside the forest trunk layer.

high conductivity of canopy and ground media, the lateral wave at the
air-canopy interface is propagating primarily in a lossless medium.

3.2.1 Along the air-canopy interface

Using the parameters given in the appendix, the branch cut con-
tribution due to branch point h1 , which is equivalent to lateral wave
along the air-canopy interface, can be expressed as

L>c13z = −j2n2
2n1

√
2π(1− n2

1)1/2

n2
2 − n2

1

e−j
π
4
ejb1

b
3/2
2

(−1)mΓ1d
m
1

[
a1 +

mc1d2

d1

]
,

(12a)

K>c13z =

√
1− n2

1

n1

Γ2

Γ1
L>,c13z , (12b)

L>c13ρ = −j2n2
2

√
2π

n2
2 − n2

1

(1− n2
1)

3
4 e−j

π
4
ejb1

b
3/2
2

(−1)mΓ1d
m
1

[
a2 +

mc1d3

d1

]
,

(12c)

K>c13ρ =

√
1− n2

1

n1

Γ2

Γ1
L>c13ρ , (12d)

G>c13ρ = j2

√
2π(1− n2

1)1/2

n2
2 − n2

1

e−j
π
4
ejb1

b
3/2
2

(−1)mΓ3d
m
4

[
a3 +

mc2d5

d4

]
, (12e)
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K>c13φ =
1
n1
K>c13ρ , (12f)

G>c13φ = n1G>c13ρ , (12g)

and

K<c13z = −j2n2
2

√
2π(1− n2

1)3/2

n2
2 − n2

1

e−j
π
4
ejb1

b
3/2
2

(−1)mΓ4d
m
1

[
a4 +

mc1d6

d1

]
,

(13a)

L<c13ρ = −j2n2
2

√
2π

n2
2 − n2

1

(1− n2
1)

3
4 e−j

π
4
ejb1

b
3/2
2

(−1)mΓ5d
m
1

[
a5 +

mc1d7

d1

]
,

(13b)

and the expressions for L<cl3z , K<c13ρ , G<c13ρ , K<c13φ , and G<c13φ are given
by (12a), (12d), (12e), (12f), and (12g) respectively, with the positions
of z and z′ interchanged.

Similar procedures can be employed to obtain the branch cut con-
tributions due to h2 and h4 , which accounts for the lateral waves
at canopy-trunk interface, and trunk-ground interface. The complete
solutions of the lateral waves along the two interfaces are presented
below.

3.2.2 Along the canopy-trunk interface

Using the parameters given in the appendix,

L>c23z = j2n2

√
2πe−j

π
4
ejb1

b
3/2
2

Γ1 e
−j2mh3H2

×
[
n2

1(1− n2
2)

1/4√
n2

1 − n2
2

a1 − (1− n2
2)
−1/4a2

]
, (14a)

K>c23z =

√
1− n2

2

n2

Γ2

Γ1
L>c23z , (14b)

L>c23ρ = −j2
√

2π(1− n2
2)e
−j π4

ejb1

b
3/2
2

Γ1 e
−j2mh3H2

×
[
−a1

(1− n2
2)

1
4

+ a2n
2
1

√
(1− n2

2)1/2

n2
1 − n2

2

]
, (14c)



150 Li et al.

K>c23ρ =

√
1− n2

2

n2

Γ2

Γ1
L>c23ρ , (14d)

G>c23ρ = −j2
√

2π(1− n2
2)

1
4 e−j

π
4
ejb1

b
3/2
2

Γ3 e
−j2mh3H2

×
[

a2√
n2

1 − n2
2

− a1√
n2

3 − n2
2

]
, (14e)

K>c23φ =
1
n2
K>c23ρ , (14f)

G>c23φ = n2G>c23ρ , (14g)

and

K<c23z = j2n2

√
1− n2

2

n2

√
2πe−j

π
4
ejb1

b
3/2
2

Γ4 e
−j2mh3H2

×
[
n2

1(1− n2
2)

1/4√
n2

1 − n2
2

a4 − (1− n2
2)
−1/4a3

]
, (15a)

L<c23ρ = −j2
√

2π(1− n2
2)e
−j π4

ejb1

b
3/2
2

Γ5 e
−j2mh3H2

×
[

a4

(1− n2
2)

1
4

− a3n
2
1

√
(1− n2

2)1/2

n2
1 − n2

2

]
, (15b)

and the expressions for L<c23z , K<c23ρ , G<c23ρ , K<c23φ , and G<c23φ are given
by (14a), (14d), (14e), (14f), and (14g) respectively, with the positions
of z and z′ interchanged.

3.2.1 Along the trunk-ground interface

Again, using the parameters give in appendix,

L>c43z = j2n4

√
2π

(1− n2
4)1/2

e−j
π
4
ejb1

b
3/2
2

(−1)m Γ1a
m
3

[
a1 +

mc1a2

a3

]
,
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(16a)

K>c43z =

√
1− n2

4

n4
L>c43z with a1 = ej2h3z′ , (16b)

L>c43ρ = j2
√

2π(1− n2
4)

1
4 e−j

π
4
ejb1

b
3/2
2

(−1)m Γ2a
m
3

[
a1 +

mc1a2

a3

]
,

(16c)

K>c43ρ =

√
1− n2

4

n4
L>c43ρ with a1 = ej2h3z′ , (16d)

G>c43ρ = −j2
√

2π

(1− n2
4)

1
2

e−j
π
4
ejb1

b
3/2
2

(−1)m Γ3a
m
5

[
a1 +

mc2a4

a5

]
,

(16e)

K>c43φ =
1
n4
K>c43ρ , (16f)

G>c43φ = n4G>c43ρ , (16g)

and

K<c43z = j2
√

2π(1− n2
4)1/2e

−j π4
ejb1

b
3/2
2

(−1)m Γ4a
m
3

[
a6 +

mc1a7

a3

]
,

(17a)

L<c43ρ = j2
√

2π(1− n2
4)

1
4 e−j

π
4
ejb1

b
3/2
2

(−1)m Γ5a
m
3

[
a8 +

mc1a9

a3

]
.

(17b)

Expressions for L<c43z , K<c43ρ , G<c43ρ , K<c43φ , and G<c43φ used as above
are given by (16a), (16d), (16e), (16f), and (16g), respectively, with
the positions of z and z′ interchanged. This concludes the analysis
of all the radio waves propagating in such a four-layered medium.

4. RESULTS AND DISCUSSION

The forest model described can be employed to estimate or predict
the performance of communication systems operating within forested
environment. This section looks at the transmission loss when the
transmitter and the receiver are both located in the same layer (trunk).
The radio loss L from an inclined dipole to a vertical receiving antenna
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is given by [1]

L(dB) = 36.57 + 20 log10 f + 20 log10 |Eo| − 20 log10 |E| (18)

where f is the frequency in GHz and Eo is the reference field in the
absence of the forest given by

|Eo| =
ωµo
4π

√
P 2
x + P 2

z

ρ2 + (z − z′)2 . (19)

Having obtained all the different components of the electric field, we
can find the total overall electric field which is given by

|E3, total|2 = |E3z|2 + |E3ρ|2 + |E3φ|2. (20)

It should be pointed out that the optimum angle obtained in [5] is not
correct. It is simply because there is a constant factor missing in the
presentation of the electric field z-component . If we consider the total
contribution of all the components as given in (20), the expression of
the optimum angle in [5] is also incorrect.

For a tropical ‘dense’ forest, the ground has a relative permittivity
εr = 50 and conductivity σ = 0.1 S/m, the canopy medium has
relative permittivity εr = 40 and conductivity σ = 0.0003 S/m, and
the trunk medium has a relative permittivity εr = 35 and conductivity
σ = 0.0001 S/m. The transmitter is located at a height of 10 m and
the receiver at a height of 15 m. Heights of trunk and canopy layers
are typically 10 and 20 m, respectively.

Using these parameters for the forest, transmission loss has been
computed for different orientations of the dipole transmitter and vari-
ous frequencies, and depicted subsequently from Fig. 3 to Fig. 8.

The path losses for the vertical, horizontal and 45 ◦ inclined dipoles
are shown in Fig. 3 as functions of the distance between transmitter and
receiver at 500 MHz, along the x-direction . As observed, direct and
multiple reflected waves dominate the field at near zone. Lateral waves
become, however, the dominant radio wave propagation mechanism
when the distance increases. Transmission attenuation saturates at
large distances since propagation is dominated by lateral wave along
the lossless air medium at the air-canopy interface. Above 4 km at this
frequency, electric field is primarily determined from the lateral wave.
For our case, overall electric field from a horizontal dipole suffers less
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Figure 3. Attenuation of total electric field due to a dipole with dif-
ferent orientations in the trunk layer at 500 MHz and φ = 0◦.

Figure 4. Attenuation of total electric field due to a vertical dipole in
the trunk layer.
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Figure 5. Attenuation of total electric field due to a horizontal dipole
in the trunk layer at φ = 0◦.

Figure 6. Attenuation of total electric field due to a 45◦ inclined
dipole in the trunk layer at φ = 0◦.
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Figure 7. Attenuation of total electric field at 500 MHz and ρ = 2 km.

Figure 8. Attenuation of total electric field at 500 MHz and ρ = 6 km.
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attenuation as compared to that from a vertical dipole, about 14 dB
lesser. It is also observed from Fig. 3 that, for given conditions the
radio wave due to a horizontal dipole has least attenuation in the far
zone and most transmission loss in the near zone as compared to the
other orientations, and certainly the wave due to a vertical dipole has
the inverse conclusion.

The effect of frequency on the transmission loss experienced by the
radio wave propagation in the presence of forest is shown in Figs. 4, 5
and 6. As frequency increases, there is a trend of increasing attenuation
for all three orientation of dipoles considered here. In the near zone
(from 0 to 4 km without respect to the wavelength), the speed of such
a attenuation increase is much higher than that in the far zone (from
4 km to 8 km or above).

The effect of varying the position of the receiver in the cylindrical
angle, φ on the attenuation experienced by the electric field is shown
in Figs. 7 and 8. Apparently, the field is not isotropic with respect
to the polar angle φ , but periodic instead. For field dominated by
direct and multiple reflected wave, received overall field suffers least
attenuation at 90 ◦ from horizontal dipole, and at around 70 ◦ from
dipole with a 45 ◦ inclination. For lateral wave dominated field, least
attenuation occurs at 180 ◦ for both horizontal and inclined dipoles.

5. CONCLUSIONS

In this paper, the propagation of electromagnetic waves in a medium
with four horizontal layers has been studied using dyadic Green’s func-
tions. This method presents some advantages as (i) the dyadic Green’s
functions outside the source region allow a higher degree of flexibility
with respect to the space coordinates and assure a good exponential
convergence; (ii) the source may contain an arbitrary current distribu-
tion; and (iii) the medium may be isotropic or anisotropic. The exact
integral solution of the electric field due to an electric dipole of an ar-
bitrarily inclination has been obtained. The asymptotic expressions of
all the electric field components are further obtained by the use of the
saddle point technique and the branch cut integrations. Correspond-
ingly, three types of waves, i.e., the direct wave, the (multi-)reflected
waves, and lateral waves, have been represented in their closed forms.
The transmission losses of these waves have been computed numeri-
cally and compared each other. It is found that the only the lateral
wave propagating along the upper air-canopy interface dominates the
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total field in the far zone while the direct wave together with reflected
waves of several hops play an important role in the total field in the
quite near zone. The results presented in this paper give an insight into
the behavior of the electromagnetic waves due to an inclined dipole lo-
cated in the trunk layer and into the mechanism of the mixed mode
propagation of the waves in such a four-layered forest model.

APPENDIX. FORMULAS USED IN THE ANALYSIS

Note that there is a repetition of the parameters used in the analysis
of the saddle point part and lateral wave contributions of the field.

A.1 Direct and Multiple Reflected Waves

Ray-path distances are given by:

r>± =
√
ρ2 + (2mH2 + z ± z′)2, (21a)

r
′>
± =

√
ρ2 + [2(m+ 1)H2 − z ± z′]2, (21b)

r<± =
√
ρ2 + (2mH2 + z′ ± z)2, (21c)

r
′<
± =

√
ρ2 + [2(m+ 1)H2 − z′ ± z]2. (21d)

Angles of incidence, β� ( 
 = 1, 2, 3, 4 ), and angles of total internal
reflection, θ� ( 
 = 1, 2, 3, 4 ) are listed by:

θ>1 = sin−1

(
2mH2 + z − z′

r>−

)
, (22a)

θ>2 = sin−1

(
2(m+ 1)H2 − z − z′

r
′>
−

)
, (22b)

θ>3 = sin−1

(
2mH2 + z + z′

r>+

)
, (22c)

θ>4 = sin−1

(
2(m+ 1)H2 − z + z′

r
′>
+

)
, (22d)

θ<1 = sin−1

(
2mH2 + z′ − z

r<−

)
, (22e)

θ<2 = sin−1

(
2(m+ 1)H2 − z′ − z

r
′<
−

)
, (22f)
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θ<3 = sin−1

(
2mH2 + z′ + z

r<+

)
, (22g)

θ<4 = sin−1

(
2(m+ 1)H2 − z′ + z

r
′<
+

)
, (22h)

β>1 =
π

2
− θ>1 , β>2 =

π

2
− θ>2 , β>3 =

π

2
− θ>3 , β>4 =

π

2
− θ>4 ,

(22i)

β<1 =
π

2
− θ<1 , β<2 =

π

2
− θ<2 , β<3 =

π

2
− θ<3 , β<4 =

π

2
− θ<4 .

(22j)

Reflection coefficients at the interfaces ( i = 1 , 2, 3 and 4, and again
∗ denotes < or > ) are:

RV1,s(β
∗
i ) =

k2
2

√
k2

1 − k2
3 sin2 β∗i − k2

1

√
k2

2 − k2
3 sin2 β∗i

k2
2

√
k2

1 − k2
3 sin2 β∗i + k2

1

√
k2

2 − k2
3 sin2 β∗i

, (23a)

RV2,s(β
∗
i ) =

k2
3

√
k2

2 − k2
3 sin2 β∗i − k2

2k3 cosβ∗i

k2
3

√
k2

2 − k2
3 sin2 β∗i + k2

2k3 cosβ∗i
, (23b)

RV3,s(β
∗
i ) =

k2
4k3 cosβ∗i − k2

3

√
k2

4 − k2
3 sin2 β∗i

k2
4k3 cosβ∗i + k2

3

√
k2

4 − k2
3 sin2 β∗i

, (23c)

RH1,s(β
∗
i ) =

√
k2

2 − k2
3 sin2 β∗i −

√
k2

1 − k2
3 sin2 β∗i√

k2
2 − k2

3 sin2 β∗i +
√
k2

1 − k2
3 sin2 β∗i

, (23d)

RH2,s(β
∗
i ) =

k3 cosβ∗i −
√
k2

2 − k2
3 sin2 β∗i

k3 cosβ∗i +
√
k2

2 − k2
3 sin2 β∗i

, (23e)

RH3,s(β
∗
i ) =

√
k2

4 − k2
3 sin2 β∗i − k3 cosβ∗i√

k2
4 − k2

3 sin2 β∗i + k3 cosβ∗i
. (23f)

Substituted parameters (where ∗ stands for either < or > ) are given
as follows:

IH,Vm =
[
RH,V3,s (RH,V2,s +RH,V1,s e

j2H1

√
k2
2−k2

3)
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+RH,V1,s R
H,V
2,s e

j2H1

√
k2
2−k2

3

]m
(−1)m, (24a)

a∗1 =
ejk3r

∗
−√

ρr∗−
, a∗2 =

ejk3r
′∗
−√

ρr
′∗
−

, a∗3 =
ejk3r

∗
+√

ρr∗+
, a∗4 =

ejk3r
′∗
+√

ρr
′∗
+

, (24b)

b = j2
√
k2

2 − k2
3, (24c)

c∗1 =
|d∗−|
ρ
, c∗2 =

|d′∗− |
ρ
, c∗3 =

|d∗+|
ρ
, c∗4 =

|d′∗+ |
ρ
, (24d)

e∗1 =
ρ2|d∗−|
(r∗−)3

, e∗2 =
ρ2|d′∗− |
(r′∗− )3

, e∗3 =
ρ2|d∗+|
(r∗+)3

, e∗4 =
ρ2|d′∗+ |
(r′∗+ )3

, (24e)

f∗1 =
ρ(d∗−)2

(r∗−)3
, f∗2 =

ρ(d
′∗
−)2

(r′∗− )3
, f∗3 =

ρ(d∗+)2

(r∗+)3
, f∗4 =

ρ(d
′∗
+)2

(r′∗+ )3
,

(24f)

g∗1 =
(d∗−)2

ρr∗−
, g∗2 =

(d
′∗
−)2

ρr
′∗
−
, g∗3 =

(d∗+)2

ρr∗+
, g∗4 =

(d
′∗
+)2

ρr
′∗
+

, (24g)

where

d>± = 2mH2 + z ± z′, (25a)

d
′>
± = 2(m+ 1)H2 − z ± z′, (25b)
d<± = 2mH2 + z′ ± z, (25c)

d
′<
± = 2(m+ 1)H2 − z′ ± z. (25d)

A.2 Lateral Wave

Reflection coefficients at interfaces are provided by:

RH2,c1 =

√
k2

3 − k2
1 −

√
k2

2 − k2
1√

k2
3 − k2

1 +
√
k2

2 − k2
1

, (26a)

RH3,c1 =

√
k2

4 − k2
1 −

√
k2

3 − k2
1√

k2
4 − k2

1 +
√
k2

3 − k2
1

, (26b)

RV2,c1 =
k2

3

√
k2

2 − k2
1 − k2

2

√
k2

3 − k2
1

k2
3

√
k2

2 − k2
1 + k2

2

√
k2

3 − k2
1

, (26c)

RV3,c1 =
k2

4

√
k2

3 − k2
1 − k2

3

√
k2

4 − k2
1

k2
4

√
k2

3 − k2
1 + k2

3

√
k2

4 − k2
1

, (26d)
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RH3,c2 =

√
k2

4 − k2
2 −

√
k2

3 − k2
2√

k2
4 − k2

2 +
√
k2

3 − k2
2

, (27a)

RV3,c2 =
k2

4

√
k2

3 − k2
2 − k2

3

√
k2

4 − k2
2

k2
4

√
k2

3 − k2
2 + k2

3

√
k2

4 − k2
2

, (27b)

RH1,c4 =

√
k2

2 − k2
4 −

√
k2

1 − k2
4√

k2
2 − k2

4 +
√
k2

1 − k2
4

, (28a)

RH2,c4 =

√
k2

3 − k2
4 −

√
k2

2 − k2
4√

k2
3 − k2

4 +
√
k2

2 − k2
4

, (28b)

RV2,c4 =
k2

2

√
k2

1 − k2
4 − k2

1

√
k2

2 − k2
4

k2
2

√
k2

1 − k2
4 + k2

1

√
k2

2 − k2
4

, (28c)

RV2,c4 =
k2

3

√
k2

2 − k2
4 − k2

2

√
k2

3 − k2
4

k2
3

√
k2

2 − k2
4 + k2

2

√
k2

3 − k2
4

. (28d)

A.2.1 Along the air-canopy interface

Substituted parameters are given by:

a1 = ej2h2H1 [RV2,c1e
j2h3(z−H2) + 1], (29a)

a2 = ej2h2H1 [RV2,c1e
j2h3(z−H2) − 1], (29b)

a3 = ej2h2H1 [RH2,c1e
j2h3(z−H2) + 1], (29c)

a4 = ej2h2H1 [1−RV2,c1ej2h3(z′−H2)], (29d)

a5 = ej2h2H1 [RV2,c1e
j2h3(z′−H2) + 1], (29e)

b1 = k1ρ+ k3[2(m+ 1)H2 − z − z′]
√

1− n2
1, (30a)

b2 = k3ρ
√

1− n2
1 − k1[2(m+ 1)H2 − z − z′], (30b)

c1 = ej2h2H1 [RV3,c1 +RV2,c1e
−j2h3H2 ], (31a)

c2 = ej2h2H1 [RH3,c1 +RH2,c1e
−j2h3H2 ], (31b)
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d1 = RV2,c1R
V
3,c1 − ej2h2H1 [RV3,c1 +RV2,c1e

−j2h3H2 ], (32a)

d2 = ej2h3(z−H2) +RV2,c1 − ej2h2H1 [RV2,c1e
j2h3(z−H2) + 1], (32b)

d3 = ej2h3(z−H2) −RV2,c1 − ej2h2H1 [RV2,c1e
j2h3(z−H2) − 1], (32c)

d4 = ej2h2H1 [RH3,c1 +RH2,c1e
−j2h3H2 ] +RH2,c1R

H
3,c1, (32d)

d5 = ej2h2H1 [RH2,c1e
j2h3(z−H2) + 1] +RH2,c1 + ej2h3(z−H2), (32e)

d6 = RV2,c1 − ej2h3(z′−H2) − ej2h2H1 [1−RV2,c1ej2h3(z′−H2)], (32f)

d7 = ej2h3(z′−H2) +RV2,c1 − ej2h2H1 [RV2,c1e
j2h3(z′−H2) + 1], (32g)

Γ1 = 1−RV3,c1ej2h3z′ , (33a)

Γ2 = 1 +RV3,c1e
j2h3z′ , (33b)

Γ3 = 1−RH3,c1ej2h3z′ , (33c)

Γ4 = 1−RV3,c1ej2h3z, (33d)

Γ5 = 1 +RV3,c1e
j2h3z. (33e)

A.2.2 Along the canopy-trunk interface

Substituted parameters are given by:

a1 = 1− ej2h3(z−H2), (34a)

a2 = 1 + ej2h3(z−H2), (34b)

a3 = 1− ej2h3(z′−H2), (34c)

a4 = 1 + ej2h3(z′−H2), (34d)

b1 = k2ρ+ k3[2(m+ 1)H2 − z − z′]
√

1− n2
2, (35a)

b2 = k3ρ
√

1− n2
2 − k2[2(m+ 1)H2 − z − z′], (35b)

Γ1 = 1−RV3,c2ej2h3z′ , (36a)

Γ2 = 1 +RV3,c2e
j2h3z′ , (36b)

Γ3 = 1−RH3,c2ej2h3z′ , (36c)

Γ4 = 1−RV3,c2ej2h3z, (36d)

Γ5 = 1 +RV3,c2e
j2h3z. (36e)
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A.2.3 Along the trunk-ground interface

Substituted parameters are given by:

a1 = −ej2h3z′ , (37a)
a2 = 1− ej2h3z′ , (37b)

a3 = RV2,c4 +RV1,c4e
j2h2H1 +RV1,c4R

V
2,c4e

j2(h2H1−h3H2), (37c)

a4 = 1 + ej2h3z′ , (37d)

a5 = RH1,c4R
H
2,c4e

j2(h2H1−h3H2) −RH2,c4 −RH1,c4ej2h2H1 , (37e)

a6 = −ej2h3z, (37f)
a7 = 1− ej2h3z, (37g)
a8 = ej2h3z, (37h)
a9 = 1 + ej2h3z, (37i)

b1 = k4ρ+ k3[2(m+ 1)H2 − z − z′]
√

1− n2
4, (38a)

b2 = k3ρ
√

1− n2
4 − k4[2(m+ 1)H2 − z − z′], (38b)

c1 = RV2,c4 +RV1,c4e
j2h2H1 , (39a)

c2 = RH2,c4 +RH1,c4e
j2h2H1 , (39b)

Γ1 = (1 +RV1,c4R
V
2,c4e

j2h2H1)ej2h3(z−H2) + (RV2,c4 +RV1,c4e
j2h2H1),

(40a)

Γ2 = (1 +RV1,c4R
V
2,c4e

j2h2H1)ej2h3(z−H2) − (RV2,c4 +RV1,c4e
j2h2H1),

(40b)

Γ3 = (1 +RH1,c4R
H
2,c4e

j2h2H1)ej2h3(z−H2) + (RH2,c4 +RH1,c4e
j2h2H1),

(40c)

Γ4 = (RV2,c4 +RV1,c4e
j2h2H1)− (1 +RV1,c4R

V
2,c4e

j2h2H1)ej2h3(z′−H2),

(40d)

Γ5 = (RV2,c4 +RV1,c4e
j2h2H1) + (1 +RV1,c4R

V
2,c4e

j2h2H1)ej2h3(z′−H2).

(40e)
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