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1. INTRODUCTION AND PRELIMINARY

CONSIDERATIONS

The interest in bi-anisotropic and bi-isotropic media [1–6], especially
what is termed chiral (also known as “optically active”) media, has
been growing recently. In the simplest terms, isotropic chiral media
are characterized by dyadic (or sometimes expressed in matric nota-
tion) constitutive parameters, manifesting rotation of the polarization
vector along the trajectory of propagation. This can be visualized by
a medium containing helix-like particles. Obviously right/left handed
helices preserve their right/left handedness property even if flipped
over, hence the phenomena depend on the chirality of the medium and
the propagation vector only. Another class of bi-anisotropic media is
afforded by gyrotropic media, e.g., a magnetized plasma. [1, 7, 8]. In
this case, which is characterized by a Hermitian constitutive matrix,
rotation of the polarization vector along the trajectory of propagation
is manifested too, but its sense (clockwise or anti-clockwise) depends
on the parallelness or anti-parallelness of the direction of propagation
with respect to the preferred spatial direction (e.g., the direction of the
external static magnetic field in magnetized plasmas, but this can also
happen in certain acoustical systems, see for example [9, 10]).

Consequently, chiral and gyrotropic media manifest different phe-
nomena on round trip propagation in the presence of (simple) reflec-
tion [1]: In the case of a chiral medium, the rotation of the polarization
vector, acquired on the leg towards the mirror, is canceled (unraveled
to zero) when the wave emerges after performing the return leg of the
trip. In contradistinction, in the presence of gyrotropic media, the ro-
tation is enhanced (doubled) after the round trip involving reflection
[1]. On the other hand, if the mirror is a retrodirector, the opposite
enhancement or cancellation phenomena happen.

It has been noticed [11] that on mirroring, in the vicinity of the
Brewster angle, in the case of a chiral medium, the rotation of the
polarization is enhanced when the wave emerges after performing the
return leg of the trip. We have dubbed this mirroring mechanism as
retrodirection [1], as opposed to (simple) reflection. This led to a quest
for more general situations regarding reflection and retrodirection: It
is then easy to show (merely by inspection of the graphical represen-
tations, [1]) that in the case of a gyrotropic medium and a retrodirec-
tor, the rotation is canceled. A consistent classification based on the
number of mirroring events and the nature of the individual mirrors
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Figure 1. Specular mirroring mechanisms expected in the presence
of corrugated and cylinder-lined surfaces. A → B → C is a (simple
reflection process, but D → E → F → G is a retrodirective process.

(depending on the number of reflectors and retrodirectors involved)
determines the overall performance of the system, i.e., whether the
rotation is enhanced or canceled.

We consider the effect of scattering by single cylinders as the rele-
vant mirroring mechanism, whether they behave as reflectors and/or
retrodirectors. Scattering by cylinders is a classical canonical bound-
ary-value problem, hence analytic computation is feasible. The con-
clusions of the present study depend on signs of particular coefficients,
and therefore the problem is outlined in some detail, to readily fa-
cilitate a re-examination of the results. The detailed calculations are
deferred to Appendix A in order to leave the main body of the article
more streamlined.

2. REFLECTION AND RETRODIRECTION FOR SPECU-
LAR MIRRORS

To obviate repetition, direct references to [1] will be made, indicated by
braces, e.g., thusly: Fig. {1} . The different cases of mirroring for fields
in the plane of incidence and perpendicular to it are carefully classified
[1], see Figs. {1 – 5} . Essentially, in simple reflection, either both the
E and H fields retain their original direction, or both are spatially
flipped over (reverse direction spatially). This is depicted in [1] in
Figs. {6, 7} for the case of dielectric mirrors, and the ensuing effect
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on chiral and gyrotropic media, respectively, and in Figs. {8, 9} for
magnetic mirrors. In Figs. {10, 12, 14, 15} retrodirection is displayed.
Essentially, the two field components (say, of the E field), in the plane
of incidence and perpendicular to it, undergo opposite processes: If
one is flipped over, then the other retains its original direction. The
difference between simple reflection and retrodirection can therefore
be expressed in the following manner: In simple reflection the E or
H fields of the incident and returned waves are either parallel or anti-
parallel (flipped over). In retrodirection, the total E or H fields of
the incident and returned waves are not parallel or anti-parallel, but
symmetrical (or skew-symmetrical) with respect to the cylindrical axis
of the system. This symmetry is demonstrated in [1] in Figs. {14, 15}
for the specific cases discussed there.

Fig. 1 depicts the specular processes expected for cylinder-lined,
or corrugated surfaces. The processes A → B → C involve a single
mirroring process, hence if the surface is a simple, dielectric or magnetic
reflector, the result will be a simple reflection. On the other hand, the
processes of type D → E → F → G involve two returns, which
for individual simple reflections correspond to an overall retrodirective
process, as in [1], Fig. {15} . Obviously the total output is in this case
a mixture of the two modes. This raises the question of separation of
those waves, as discussed below.

3. FILTERING OF REFLECTED AND RETRODIRECTED
WAVES

In many of the processes presently described, the creation of simply
reflected and retrodirected waves occurs simultaneously, and this raises
the question of filtering and separating the two modes. Let us assume
that the incident wave f is linearly polarized, such that either the
electric E-field or the magnetic H-field is polarized in the y-z plane
according to,

f = (fyŷ + fzẑ)eikx−iωt, f = E or H (1)

where ẑ is defined as the system’s cylindrical axis. In (1) k = ω
√

µε
is the propagation vector magnitude, with the constitutive parameters
µ, ε and (angular) frequency ω .

A simple reflection will identically affect the two field components,
fyŷ, fzẑ (1), depending on the nature of the reflector, and the field
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(f = E or H) under consideration, while a retrodirection inverts the
sign of one of the components. Thus the mirror yields a reflected,
retrodirected field,

fr = A(±fyŷ ± fz ẑ)e−ikx−iωt (2a)

fr = B(±fyŷ ∓ fz ẑ)e−ikx−iωt (2b)

given by (2a), (2b), respectively. In (2), A, B are complex coefficients
whose magnitudes express the yield for the two processes, while their
argument corresponds to the extra phase acquired in the scattering
process. Obviously a spatial angular shift is introduced between the
simply reflected and retrodirected components. To maximize the ef-
fect, one should strive to have a system in which |fry| = |frz| which
produces a π/2 spatial angle between the directions of polarizations.
An output polarizer will therefore effectively separate the two wave
modes.

4. SCATTERING BY A CYLINDER AT NORMAL
INCIDENCE

Twersky [12] considered scattering of a plane harmonic wave incident
normally with respect to the axis of a cylinder possessing an arbitrary
finite cross section, and various representations of the scattered wave.
The following discussion focuses on circular cylinders and normal inci-
dence, which provide the simplest example.

We start with an incident plane harmonic wave, whose field f (f =
E or H) is polarized along the cylindrical z-axis, propagating with an
amplitude f0 in the x-axis direction (cf. (1)),

f = ẑf0e
ikx−iωt (3)

The choice of the specific direction of propagation (3) does not impair
the generality of the model. A cylinder with a finite cross section in
the x-y plane is given. The incident wave (3) is now recast in terms
of a Bessel-Fourier series in cylindrical (in the present case reducing to
polar) coordinates, see for example Stratton [7],

f = ẑf0

∞∑
m=−∞

imJm(kr)eimθ−iωt (4)
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where Jm(kr) denotes the non-singular Bessel functions of order m
and argument kr . In (4), θ is the azimuthal angle. For simplicity, a
circular cross-section and a simple (homogeneous) material are chosen
to discuss the scattering problem. Accordingly we postulate the scat-
tered field as a solution of the wave equation in cylindrical coordinates,
represented in terms of a Hankel-Fourier series. In accordance with the
assumption that the cylinder is made of an homogeneous medium, no
depolarization effects occur, hence the scattered wave field is repre-
sented by

u = ẑf0

∞∑
m=−∞

imamHm(kr)eimθ−iωt (5)

where H
(1)
m denotes Hankel functions of the first kind, The choice of

H
(1)
m together with the time exponent in (5) guarantees outgoing scat-

tered waves. Of course, this is a physical argument based on the notion
of causality, and is not prescribed by the mathematics of the problem.
The corresponding wave field in the internal domain is similarly given
by

fi = ẑf0

∞∑
m=−∞

imbmJm(Kr)eimθ−iωt (6)

where the nonsingular Bessel functions, (6), are appropriate inside the
scatterer, subscript i indicates the internal domain, and K = ω

√
µiεi ,

involves the relevant constitutive parameters. Using the Sommerfeld
integral representation for the cylindrical functions,

imH(1)
m (ρ) =

1
π

∫ +(π/2)+i∞

−(π/2)−i∞
eiρ cos(τ)+imτdτ (7)

(5) is recast as a sum of plane waves

u(r, t) = ẑ
f0

π

∫ θ+(π/2)−i∞

θ−(π/2)+i∞
eikr cos(θ−τ)−iωtg(τ)dτ (8)

propagating in complex directions indicated by the complex angle τ ,
where the scattering amplitude, i.e., the weight function for each such
plane wave, is given by the Fourier series,

g(θ) =
∞∑

m=−∞
ameimθ (9)
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Exploiting the leading term of the asymptotic series for the Hankel
functions [7], or the saddle point approximation for (8), in the far field
the scattered field is represented by,

u = ẑf0

√
2

iπkr
eikr−iωtg(θ) (10)

The boundary conditions at the surface of the scatterer, namely the
continuity of the tangential components of F = E and F = H , where
F = f + u denotes the total field in the external domain, can be
expressed as

n̂× F = n̂× fi
∣∣∣
at the surface

(11)

n̂×∇× F = αn̂×∇× fi
∣∣∣
at the surface

(12)

where n̂ is a unit normal vector, and (12) is obtained by substitution
from Maxwell’s equations. For F = E,H we have α = µ/µi, ε/εi ,
respectively. For a circular cylinder of radius d in particular, (11),
(12) become,

Jm(kd) + amHm(kd) = bmJm(Kd) (13)

J ′m(kd) + amH ′m(kd) = ZbmJ ′m(Kd) (14)

respectively, where Z = Kα
k and the prime denotes differentiation with

respect to the argument. The solution of the simultaneous equations
(13), (14) yields,

am =
Jm(Kd)J ′m(kd)− ZJm(kd)J ′m(Kd)
ZHm(kd)J ′m(Kd)− Jm(Kd)H ′m(kd)

(15)

which must be carefully evaluated for thin cylinders under various con-
ditions. See Appendix A.

Inasmuch as a circular cylinder is assumed, the scattered wave must
be symmetrical with respect to the direction of incidence. In (9, 10)
this means,

g(θ) = g(−θ) (16a)

and therefore (9) can be rewritten as,

g(θ) =
∞∑

m=−∞
ameimθ = a0 + 2

∞∑
m=1

am cos(mθ) (16b)
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Figure 2. For thin highly conducting cylinders. Electric-type mir-
ror. The E-field is flipped over, while the H-field retains its original
direction.

The various leading terms for thin cylinders, both highly conducting
and dielectric, are analyzed in Appendix A. The results will be used
to examine backscattering processes in the presence of thin cylinders.

5. REFLECTION AND RETRODIRECTION
BACKSCATTERING

For an incident wave (3) a scattered wave (5) is obtained, which in
the far field is approximated by (10), and for circular cylinders and
backscattering θ = π , hence (10, 16) yield:

u = ẑf0

√
2

iπkr
eikr−iωt

[
a0 + 2

∞∑
m=1

(−1)mam

]
(17)

For thin cylinders the predominant terms in brackets in (17) must be
considered. The detailed analysis is given in Appendix A. It is noted
that all coefficients am, m = 0, 1, 2, . . . in (17), possess a common
factor iπ , and of course all multipoles have the same phase determined
by the square root and exponential factors in (17).
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Figure 3. For thin highly conducting cylinders. Magnetic-type mir-
ror. The H-field is flipped over, while the E-field retains its original
direction.

Firstly, let us discuss perfectly conducting thin cylinders:

Consider an incident wave given by (1), and a scattered field as given
in (17). The z-component in (1) is taken as an E-field, accordingly
(17) applies to an E-field too. According to (A6), the monopole term is
predominant, and suppressing phase factors common to all multipole
terms, we refer to the monopole field in (17) as −E

(v)
0 , and on account

of the sign, use the phrase that the vertically polarized scattered E-field
is flipped over compared to the incident vertical E-field. This means,
of course, that the corresponding H-field preserves its direction. See
Fig. 2.

Consider an incident wave given by (1), and a scattered field as given
in (17), but now the y-component in (1) is taken as the E-field, and
the z -component is therefore an H-field. Accordingly (17) applies
to a z-component H-field too. According to (A8) and (A10), the
monopole and dipole terms are now predominant. Furthermore, they
are identical, except for sign. Let us consider first the monopole term
−H

(v)
0 . Similarly to the previous case of Fig. 2, this field is flipped

over, because of the sign, and discarding phase factors common to all
multipole terms, the results of Fig. 3 are obtained. This means that the
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Figure 4. For thin highly conducting cylinders. Combines the effects
of Figs. 2, 3, for an arbitrarily polarized incident wave, demonstrating
the resulting retrodirective process.

E-field must retain its original direction, in order for the plane wave
to maintain the proper relation of the fields and conform to backward
direction of propagation.

By inspection of (A8), (A10), the monopole and dipole terms have
opposite signs. However, for m = 1 in (17), we get another sign
inversion, and the final effect is once again depicted by Fig. 3.

An arbitrarily polarized wave, Fig. 4, can be decomposed into E,
H polarizations (referred to the z-axis), as depicted in Figs. 2, 3,
respectively. By inspection of Figs. 2, 3, it is clear that Fig. 2 displays
the electric-type mirror (like simple reflection from a highly conducting
plane) property, while Fig. 3 corresponds to a simple reflection by a
magnetic-type wall. It follows that the field which retains its original
direction in one case, is flipped over in the other case. The total effect
of Figs. 2, 3, is displayed in Fig. 4. We conclude therefore that thin
highly conducting cylinders should act as retrodirectors.

We now turn our attention to thin dielectric cylinders. According to
Appendix A, (A11), For F = E polarization, we have a predominant
monopole term, which appears with a positive sign, hence behaving
as a magnetic wall mirror, see Fig. 5. For F = H polarization (A15)
predicts a leading dipole term having the same sign, which according
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to (17) and m = 1 acquires a sign change. Therefore the H-field
is now flipped over, and the E-field retains its original polarization.
This is once again behaving as a magnetic wall mirror, as depicted in
Fig. 3. The combined effect is depicted in Fig. 6. Unlike the case of
thin conducting cylinders, this phenomenon is a simple reflection from
a magnetic wall.

The question of the conducting cylinder as the limit where εi/ε→
∞ , is discussed in Appendix A, and the apparent paradox is resolved.
In essence, the present results for dielectric cylinders only hold for small
arguments Kd for the nonsingular Bessel functions in the internal
domain.

6. SUMMARY AND CONCLUDING REMARKS

The present discussion has been limited to two extreme cases: Large
(with respect to wavelength) structures for which specular mirroring
is expected, and single cylinders of circular cross section. In the latter
case, analytical approximations for thin cylinders are available.

The corrugated, or thick cylinders lined surface, where specular mir-
roring is expected, involves both reflection and retrodirection, as dis-
cussed above, see Fig. 1. The analysis of scattering by thin cylinders
propounds that a surface lined with non-interacting, thin, highly con-
ducting cylinders, will act as a retrodirector. This is an interesting
novel observation that might explain the behavior of existing struc-
tures, or suggest new methods for mirroring polarimetry, in systems
where such a method is desired.

As the corrugation step length, or the cylinder radius, increases, the
analytical results for the thin cylinder become invalid. In the case of a
single cylinder, numerical simulations of (10), (15) might demonstrate
the gradual transition to specular mirroring. It is also shown that
moderately dielectric (as opposed to highly conducting) cylinders, be-
have as simple reflectors. Hence a surface lined with such cylinders will
show predominantly simple reflection, until the regime where the size
and number of cylinders will also involve double mirroring, as shown
in Fig. 1. The separation of reflection and retrodirection contributions
to the total field may be effected by appropriately oriented polarizers,
as explained above.

Beyond the analysis presented here, there are many conjectures
which require experimental verification: The feasibility of efficient
separation of reflected and retrodirected products, for example. The
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Figure 5. For thin dielectric cylinders. Magnetic-type mirror. The
H-field is flipped over, while the E-field retains its original direction.

Figure 6. For thin dielectric cylinders. Magnetic-type mirror. Com-
bines the effects of Figs. 5, 6, for an arbitrarily polarized incident wave,
demonstrating the resulting retrodirective process.
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behavior of surfaces lined with thin conducting cylinders requires ex-
perimentation: To what extent can the single cylinder properties found
above be extrapolated to a surface lined by such cylinders? Additional
analytic and numerical investigations are necessary for basic questions,
for example, the effects produced by a plane wave obliquely incident
on single thin cylinders of various materials, conducting or dielectric,
or, the effect of non-circular cylinders.

APPENDIX A: SCATTERING BY THIN CIRCULAR
CYLINDERS

Scattering by circular cylinders and various representations is given by
Twersky [12]. For limiting cases involving thin cylinders see Twersky
[12], but note that the present case is a special “single space” special-
ization of his general formulation. The results given here are sensitive
to sign in predicting reflection or retrodirection.

We start with (13) specialized to perfectly conducting cylinders,
which is tantamount to considering finite µ, µi and taking εi →
∞ , i.e., and therefore Z → ∞, 0 for f = E,H , respectively, and
consequently (15) becomes,

am =
−Jm(kd)
Hm(kd)

(A1)

am =
−J ′m(kd)
H ′m(kd)

(A2)

for f = E,H , respectively. If εi � ε , we assume the limiting case
εi → 0 , and therefore Z → 0, ∞ for f = E,H , respectively, and (A2),
(A1) to f = E,H , respectively. Similarly for magnetic materials we
consider first finite ε, εi , and take µi  µ , resulting in Z → 0, ∞ ,
and yielding (A2), (A1), for f = E,H , respectively. Finally for µi �
µ , we find Z → 0, ∞ , and (A1), (A2), for f = E,H , respectively.
To avoid the complications, let us consider only the first case above,
i.e., perfectly conducting cylinders, and (A1), (A2), for f = E,H ,
respectively.

For thin cylinders we exploit the leading terms of the series expan-
sion for the nonsingular Bessel functions,

Jm(ρ) =
∞∑
l=0

(−1)l

l!(m + l)!

(ρ

2

)m+2l
, m = 1, 2, . . . (A3)
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and use the leading term l = 0 , unless the expression vanishes, forcing
us to use the next term l = 1 . For the Hankel functions we use,

Hm(ρ) = Jm(ρ) + iNm(ρ) ≈ iNm(ρ) (A4)

noticing that near the origin ρ ≈ 0 the Neumann function Nm(ρ) is
predominant, and given by [7],

N0(ρ) ≈ − 2
π

ln
(

2
δρ

)
, δ = 1.781 . . . (A5a)

Nm(ρ) ≈ −(m− 1)!
π

(
2
ρ

)
, m = 1, 2, . . . (A5b)

Note that for small radii, ρ ≈ 0 , both expressions (A5) retain their
sign. Using (A3)–(A5a), we obtain for a0 in (A1), for F = E ,

a0 ≈
−iπ

2 ln(2/δkd)
(A6)

To obtain higher terms in (A1) for F = E , use (A3), (A4), (A5b),
This yields,

am ≈
−iπm(kd/2)2m

(m!)2
, m = 1, 2, . . . (A7)

Evidently (e.g., use L’Hospital’s rule), the monopole term a0 is pre-
dominant with respect to higher multipole coefficients m = 1, 2, , . . .
in (A7).

For F = H we use (A2). For a0 this prescribes the differentiation
of (A3) for m = 0 , The term l = 0 vanishes, therefore the term
l = 1 must be retained. Alternatively, the relation Z ′0 = −Z1 , valid
for any cylindrical function Zm can be applied to (A3), yielding a0 =
−J1(kd)/H1(kd) , which upon expansion is approximated by,

a0 ≈ −iπ(kd/2)2 (A8)

Higher multipole coefficients are obtained from (A2), using (A3), (A4),
(A5b), and differentiating. with respect to the argument, yielding,

am ≈
iπm(kd/2)2m

(m!)2
, m = 1, 2, . . . (A9)
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It is seen that the dipole term,

a1 ≈ iπ(kd/2)2 (A10)

is identical to the monopole term (A8), except for the sign, and (A8),
(A10) are the predominant terms.

Next, consider dielectric cylinders with finite ε/εi . For F = E , we
have α = µ/µi = 1 , hence the impedance is Z = K/k . Using in (15)
Z ′0 = −Z1 for the relevant cylindrical functions, we get for the l = 0
approximation of (A3) a0 = 0 , so l = 1 must be retained. Using
(A5), and noting (e.g., using L’Hospital’s rule) that near the origin
N1  N0 , i.e., N1 , is predominant, we finally get,

a0 ≈ iπ

(
kd

2

)2 (εi
ε
− 1

)
(A11)

Note carefully that the transition from (A11) to (A6) by simply as-
suming that a conducting cylinder can be represented by εi/ε→∞ in
(A11) is not justified. A more careful derivation, based on Z ′0 = −Z1 ,
in which the actual limit N0(ρ)/N1(ρ)→ ρ as ρ→ 0 is used, leads to
(A11) divided by 1− 2(Kd/2)2 . Clearly, going to the limit εi/ε→∞
would violate the assumption that Kd is infinitesimal.

For a1 , the first order approximation of (A3) in the numerator of
(13) vanishes, hence we keep the terms l = 0, 1 in the series (A3).
With the appropriate approximations in the denominator we finally
find the order of magnitude

a1 ∝ d4 (A12)

For higher terms we find,

am ∝ d2m, m = 2, 3, . . . (A13)

showing that the monopole term in (A11) is dominant.
For F = H polarization, we have α = ε/εi , hence the impedance

is Z = Kα/k = k/K . Consequently for a0 the numerator in (15)
vanishes for the l = 0 truncation of (A3), and upon retaining l = 0, 1
terms, and performing the appropriate approximations in the denom-
inator, we find the order of magnitude,

a0 ∝ d4 (A14)
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for the monopole term. For higher terms we get the order of magnitude
(A13).

Specifically for a1 we find in the present case,

a1 ≈ iπ

(
kd

2

)2 (εi
ε
− 1

)
/

(εi
ε

+ 1
)

(A15)

Obviously (A11) and (A15) are of same order of magnitude and sign.
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