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1. INTRODUCTION

The geometry for the dipole source, the layered medium, the target
and observer are shown in figure 1. An electrically small dipole source
is located at the origin of a x, y, z -coordinate system.

Figure 1. Geometry for a dipole source above a layered medium con-
taining a target.

The electric and magnetic fields of a dipole source can be calculated
from the respective electric and magnetic Hertz potentials as

E =
1
−iωε∇×∇× π

e

H = ∇× πe

H =
1
iωµ
∇×∇× πm

E = ∇× πm

(1)

where the electric (πe) and magnetic (πm) Hertz potentials are
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represented by the Sommerfeld identity

π
e
m =

eik|R−R′|

4π|R−R′|

=
i

4π

∞∑
m=−∞

eim(φ−φ′)
∞∫
0

Jm(kρρ)Jm(kρρ′)eikz|z−z
′|kρ
kz
dkρ

kz = ±
√
k2 − k2

ρ

π =
{
−iωµmπm, magnetic dipole
−iωpπe, electric dipole

∇×∇× π e
m −∇ ∇ · π e

m − k2π
e
m + iωµσπ

e
m = 0

(2)

and R, R′ are shown in figure 1. Using the addition theorem for
cylindrical Bessel functions from Abramowitz and Stegun, (1965, page
363) equation (2) becomes

π
e
m =

eik|R−R′|

4π|R−R′|

=
i

4π

∞∫
0

J0

(∣∣∣ρ− ρ′∣∣∣) eikz|z−z′|kρ
kz
dkρ

=
1

4πr
, quasi-static

(3)

It is instructive to compare the Sommerfeld Hertzian potential ap-
proach (Sommerfeld, 1949, Wait, 1951, Banos, 1966) to the “propa-
gation matrix approach”, (with constraints, Chew, 1995, and without
constraints, Kong, 1972). The potential approach starts with the fol-
lowing expression for the scattered potential in region (1) ( eiωt time
convention);

φs1 =
(

1
4π

) (
Il

−iωε0

) ∞∫
0

R(λ)J0(λρ)e−ikz(z+d1) λdλ

−ikz
(4)

and the following expression for the scattered potential in region (2),

φs2 =
(

1
4π

) (
Il

−iωε0

) ∞∫
0

T (λ)J0(λρ)e−ik2zz+k1zd1
λdλ

−ik1z
(5)
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where,

k1z =
√
k2

0 − λ2 ∼= iλ

k2z =
√
k2

2 − λ2

k2 = k2
0

(
εr1 +

iσ1

ωε0

) (6)

The boundary conditions on tangential E and H (because of azimuth
symmetry only Eρ and Hφ ) require the scattered potentials in regions
(1) and (2) to satisfy

∂φs1
∂z

∣∣∣
z=0

=
∂φs2
∂z

∣∣∣
z=0

φs1 = n2φs2

(7)

which in turn yield the following results for the reflection and trans-
mission coefficients

R(λ) =
n2k1z − k2z

n2k1z + k2z

T (λ) =
2k1z

n2k1z + k2z

(8)

where Frazer-Smith (1987) makes the following additional approxima-
tion in the denominators of equation (8)

n2k1z =
(
εr2 +

iσ1

ωε0

)
(iλ) ∼= − σ1

ωε0
λ (9)

Further, to obtain the Frazer-Smith result, the following approxima-
tions are required in the denominators of equation (8)

R(λ)
σ1→∞

∼= 1 (10)

Substituting (6) and (9) into (4) gives

φs1 =
Il

2πσ1

∞∫
0

J0(λρ)e−
√

λ2−k2
2zz−λd1

λdλ

−ik1z
(11)
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The result in equation (11) assumes no lower boundary to simplify the
comparison with the “propagation matrix approach”. This assumption
results in the following approximation in the Frazer-Smith result

F1M =
1 + Y−1−Y0

Y−1+Y0
e2
√

λ2−k2
2(z−d2)

1−
(
Y−1−Y0
Y−1+Y0

) (
Y1−Y0
Y1+Y0

)
e
√

λ2−k2
2d2

→
d2→∞

1 (12)

Then the vertical component of the magnetic field is

H1z =
(
∂2

∂z2
+ k2

1

)
φs1

=
(

1
4π

) (
Il

−iωε0

) ∞∫
0

(−k2
1z + k2

1)R(λ)J0(λρ)e−ik1z|z+d1|dλ

Il→− iωµ0m, m = IA
ε→− µ0(−iωµ0m

iωµ0

) (
1
−i4π

)
=
−im
4π

H1z =
(−im

4π

) ∞∫
0

λ3√
k2

1 − λ2
J0(λρ)e−

√
k1z−λ2|z+d1|dλ (13)

The Sommerfeld approach has the following limitations: 1) The dis-
tances are not necessarily small to a wavelength in the medium so that
both electric and magnetic dipole moments need to be considered. 2)
In order to insure higher order multipoles are not important, the max-
imum dimension of the underground object must be small compared
to the geometric mean of the source and observer distances. 3) The
maximum dimension of the buried object must be small compared to
the distance between the object and the interface so that higher order
interactions are not important. It is important to note that the Plane-
Wave Scattering Matrix formulation (Kern, 1981, a spectral approach
to the various field quantities) would overcome all three of these re-
strictions; however, the mathematical derivation for the Plane-Wave
formulation at present has not been derived for the case of three lay-
ers. The two interface case with a buried target has been treated by
Ott (1996) (Three interface, two region case with a buried object has
been submitted for publication, Ott, 1998). In general, the Sommer-
feld formulation is equivalent to the Plane-Wave Scattering Matrix
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formulation except the double integrals over kx, ky space are cast into
polar form with the φ -integration performed analytically and gener-
ating the Bessel functions as above. In cases where the scattered near
fields are needed, and the receiving antenna is located near the inter-
face, the Plane-Wave Scattering Matrix formulation can be evaluated
numerically by a two-dimensional fast Fourier transform over a grid of
field values at discrete values of (x, y) . Both formulations have the
potential of including near field effects. The advantage of the Sommer-
feld approach is its easy generalization of objects of different shapes
in terms of their polarizabilities. In the Plane-Wave Scattering Matrix
approach, the scattered fields from the objects are calculated using a
Born scattering approximation.

The propagation matrix approach for the vertical component of the
magnetic field for magnetic dipole above a layered medium is (Chew,
1995)

H1z(ρ, z) =
(−im

4π

) ∞∫
0

k3
ρ√

k2
1 − k2

ρ

J0(λρ)

[
e−k1z|z| + R̃TE

12 e
ik1zz+2ik1zd1

]
dkρ (14)

where the 2 nd term in brackets is the scattered field from the interface
as in (13) when the approximation in (10) R̃TE

12 → 1 is made. Also, the
origin for the Frazer-Smith result is at the interface, while the origin
for the Chew result is at the dipole, accounting for the factor of 2 in
(14).

This paper derives the fields scattered in the upper layer by a buried
target in the middle layer, for all possible polarizations of the incident
field in the upper layer. All possible combinations of polarization for
the induced dipole moment of the scatterer in the middle layer of a 3-
layer medium are considered. Some published results are available for
a single incident polarization (e.g. VMD, VED) in a 2-layer medium.
Also, the quasi-static approximations for all polarization cases are de-
rived.
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2. TARGET ILLUMINATED BY A VERTICAL MAGNETIC
DIPOLE (VMD) in REGION (1)

2.1 Unperturbed Fields in Region (1)

In the “propagation matrix approach”, tangential E and H are
continuous across each interface and in addition, Chew (1995) includes
the extra phase factor e2ik1zdi to insure R(kρ ) and T(kρ ) are prop-
erly defined as reflection and transmission coefficients.

Although the distances in our problem are much less than the free-
space wavelength, they are not necessarily small to a wavelength in
region (2). Consequently, the induced electric dipole moment and
the induced magnetic dipole moment must be considered. Since both
type of dipole moments are induced, both the unperturbed electric and
magnetic fields at the target center (x′, y′, z′) = (x0, y0,−d) must be
derived. The unperturbed fields involve both z -and transverse com-
ponents. In general, in any region, the transverse components can
be obtained from the z -component using (Chew, 1995) the following
results (for the integrands of the fields):

Et =
1
k2
ρ




(
eρ

∂
∂ρ +

eφ
ρ

∂
∂φ

) (
∂Ez
∂z

)
−iwµez ×

(
eρ

∂
∂ρ +

eφ
ρ

∂
∂φ

)
Hz




Ht =
1
k2
ρ




(
eρ

∂
∂ρ +

eφ
ρ

∂
∂φ

) (
∂Hz
∂z

)
iwεez ×

(
eρ

∂
∂ρ +

eφ
ρ

∂
∂φ

)
Ez




(15)

The z -component of the unperturbed field in region (1) is given in
(14); however, we derive it here for completeness rather than quoting
Chew’s result.

From equations (1), (2) and (3) we have, for the unperturbed z -
component of the magnetic field in region 1:

Hz(ρ, z) =
1

−iωµ0
(−iωµ0mz)

(
∂2

∂z2
+ k2

1

)
πmz

= mz
−i
4π


k2

1π
m
z +

∞∫
0

kρ
k1z
J0

(
kρ|ρ− ρ′|

) ∂2

∂z2
eik1z|z−z′|dkρ



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=
−imz

4π

∞∫
0

kρ
k1z
J0

(
kρ|ρ− ρ′|

)
(k2

1 − k2
z)e

ik1z|z−z′|dkρ

=
−imz

4π

∞∫
0

k3
ρ

k1z
J0

(
kρ|ρ− ρ′|

)
eik1z|z−z′|dkρ (16)

From equation (15), the unperturbed transverse components of the
magnetic field in region (1) are:

Ht = eρ
1
k2

∂2Hz

∂ρ∂z

= eρ

(−imz

4π

) ∞∫
0

1
k2
ρ

k3
ρ

k1z

∂

∂ρ

{
J0

(
kρ|ρ− ρ′|

)} ∂

∂z
eik1z|z−z′|dkρ

= eρ

(−imz

4π

)
(−)(i)

∞∫
0

k2
ρJ1

(
kρ|ρ− ρ′|

)
eik1z|z−z′|dkρ

=
(−mz

4π

)
(ex cosφ+ ey sinφ)

∞∫
0

k2
ρJ1

(
kρ|ρ− ρ′|

)
eik1z|z−z′|dkρ

(17)

Including the reflection from the interface, the ρ -component of the
unperturbed field in region (1) is, from equations (14) and (15),

Hunpert
1ρ (ρ, z) =

(−mz

4π

) ∞∫
0

k2
ρJ1

(
kρ|ρ− ρ′|

)

·
[
(∓)eik1z|z−z′| + R̃TE

12 e
ik1z(z−z′)+2ik1z

]
dkρ (18)

In order to compare the result in equation (18) with Kong (1972),
the following replacements for the current moments are necessary in
Kong’s expressions,

Il→
{
−iωp, electric dipole
−iωµm, m = IA = magnetic dipole moment (19)

If the replacements in (19) are made in equation (36b), page 992, Kong
(1972), equation (18) agrees with Kong’s result. A similar comparison
shows agreement for Eunpert

1φ and equation (36c), page 992, Kong.
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An additional reason for using dipole moments versus current mo-
ments is in the following derivations involving the Sommerfeld identity
for the fields in the various regions, in is more consistent to use the
electric polarizability (dipole moment) for both the induced electric
and magnetic dipole moments.

2.2 Unperturbed Fields in Region (2)

A VMD in region (1) produces a z -component (TE) field in region
(2) given by (Chew, 1995)

Hunpert
2z (ρ, z) =

(−im
4π

) ∞∫
0

k3
ρ

k1z
J0

(
kρ|ρ− ρ′|

)

·ATE
2

[
e−ik2z(z−z′) + R̃TE

23 e
i2k2zd2+ik2z(z−z′)

]
dkρ (20)

where z < 0 , since the field point is in region (2). In Barrick’s (1995)
notation

k2z = i
√
k2
ρ − k2

2 = −γs (21)

The propagation constants and wave-numbers in the various regions
are given by

k2
1 = ω2ε0µ0

k2
2 = k2

1

(
εr1 +

iσ1

ωε0

)

k2
3 = k2

1

(
εr2 +

iσ2

ωε0

)

k1z =
√
k2

1 − k2
ρ
∼= ikρ

k2z =
√
k2

2 − k2
ρ
∼= i

(
kρ −

k2
2

2kρ

)

k3z =
√
k2

3 − k2
ρ
∼= i

(
kρ −

k2
3

2kρ

)
(22)

The reflection and transmission coefficients in equations (14) and (20)
are given by (µ1 = µ2)

R̃TE
12 = RTE

12 +
T TE

12 R
TE
23 T

TE
21 e

2ik2z(d2−d1)

1−RTE
21 R

TE
23 e

2ik2z(d2−d1)
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RTE
12 =

k1z − k2z

k1z + k2z

RTE
23 =

k2z − k3z

k2z + k3z

RTE
21 = −RTE

12

T TE
21 =

2k1z

k1z + k2z

T TE
21 =

k2z

k1z
T TE

12

A1 = 1

ATE
2 =

A1T
TE
12 e

i(k1z−k2z)d1

1−RTE
21 R

TE
23 e

2ik2z(d2−d1)
(23)

The transverse components of the unperturbed field in region (2) are
obtained by substituting (20) into (15) yielding the TE fields

Hunpert
2ρ (ρ, z) =

−m
4π

∞∫
0

k2
ρ

k2z

k1z
J1

(
kρ|ρ− ρ′|

)

·ATE
2

[
−e−ik2z(z−z′) +RTE

23 e
ik2z(z−z′)+2ik2zd2

]
dkρ

Hunpert
2φ (ρ, z) = 0

Eunpert
2φ (ρ, z) =

ωµ0m

4π

∞∫
0

k2
ρ

k1z
J1

(
kρ|ρ− ρ′|

)

·ATE
2

[
e−ik2z(z−z′) +RTE

23 e
ik2z(z−z′)+2ik2zd2

]
dkρ

Eunpert
2ρ (ρ, z) = 0

Eunpert
2ρ (ρ, z) = 0(TE) (24)

2.3 Scattered Fields

From the expressions for the induced electric and magnetic dipole
moments in terms of the electric and magnetic polarizabilities, and the
unperturbed electric and magnetic fields (the polarizabilities will be
treated in the following section), it is possible to compute the scat-
tered fields from the target. For the VMD case, by superposition,



Detection of buried objects in a two layer medium 31

the scattered magnetic fields can be written in terms of its rectangular
components as the sum of the following three contributions,

Hs
x = Hv

x +Hh
x +He

x

Hs
y = Hv

y +Hh
y +He

y

Hs
z = Hv

z +Hh
z +He

z (25)

where (Hv
x , H

v
y , H

v
z ) are the reradiated fields for the induced vertical

magnetic dipole moment, (Hh
x , H

h
y , H

h
z ) are the reradiated fields for

the induced horizontal magnetic dipole moment, and (He
x, H

e
y , H

e
z ) are

the reradiated fields for the induced electric dipole moment.

3. QUASI-STATIC FIELDS IN TERMS OF INDUCED
DIPOLE MOMENTS

In a later section, an example will be considered as a demonstration of
the accuracy of the quasi-static approach for the range of frequencies
considered in this work (i.e., from 3 to 30 KHz). The z -component
of the unperturbed magnetic field in region 1, is given in equation
(16) and, using the approximations in equation (22) for k1z , in the
integrand of 16 we have

Hunpert
1z (ρ, z) =

imz

4π

∞∫
0

k3
ρ

k1z
J0

(
kρ|ρ− ρ′|

)
eik1z|z−z′|dkρ

∼= imz

4π

∞∫
0

k3
ρ

ikρ
J0

(
kρ|ρ− ρ′|

)
eikρ|z−z

′|dkρ

=
imz

4π
[2(z − z′)2 − (x− x)2 − (y − y′)2]

r
5
2

=
mz

4πr
5
2

[3(z − z′)2 − r2]

r =
√

(x− x′)2 + (y − y′)2 + (z − z′)2

(26)

In section 5, the induced electric and magnetic dipole moments are
given as the product of the electric and/or magnetic polarizabilities
and the unperturbed electric and magnetic fields. The resulting elec-
tric and magnetic fields reradiated to an observer, and these radiated
fields will be evaluated using the above quasi-static approach. The



32 Ott

result in (26) can also be derived staring with the near-field spherical
coordinate components for a small loop (Harrington, 1965), and rec-
ognizing that the quasi-static magnetic field does not depend on the
medium properties; i.e., changes in ε or µ across a boundary. This is
exactly the reason a small loop is better for detecting buried objects
than a vertical dipole. Using Harrington’s result we have

Hθ =
m

4πr3
sin θ

Hr =
m

2πr3
cos θ

(27)

and converting these to rectangular coordinates gives

Hx =
3mzxz

4πr5

Hz =
mz

4πr5
(3z2 − r5)

(28)

in agreement with (26).
Similarly, the magnetic field of a x -directed electric dipole with

πx =
−ωεm
4πr

is

Hy =
km

4πrη0

4. POLARIZABILITY

4.1 Sphere

The magnetic field lines normal to a perfectly conducting sphere
do not exist. However, in the plane perpendicular to the direction of
the incident H field loops currents are induced on the surface. These
loop currents cancel the incident H field, and in doing this satisfy the
condition that the total normal H is zero. It is useful to remember
that the scattered magnetic dipole moment of a small sphere in free
space is one-half the scattered electric dipole moment
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The induced magnetic dipole moments for a spherical scatterer are
(Wait, 1968)

mx = −2πa3[3(M − iN)]Hunpert
x

my = −2πa3[3(M − iN)]Hunpert
y

mz = −2πa3[3(M − iN)]Hunpert
z

(29)

where the unperturbed fields in (29) are evaluated at the target in
figure 1 (x′, y′, z′) = (x0, y0,−d) in region (2). In equation (29) Wait
shows

3(M − iN) =

− 2µs(sinhα− α coshα) + µ0(sinhα− α coshα+ α2 sinhα)
µs(sinhα− α coshα)− µ0(sinhα− α coshα+ α2 sinhα)

α =
√
−iωµsσsa

(30)

and for a scatterer with free-space magnetic permeability, (30) reduces
to

3(M − iN)
µs=µo

= 1 +
3(sinhα− α coshα)

α2 sinhα
(31)

Equation (30) has the high-frequency limit

lim
α→∞

[3(M − iN)] = 1 (32)

the low-frequency limits

3(M − iN)
α→0

= 1 +
3 sinhα− α coshα

α2 sinhα

= 1 +
3

(
α+ α3

3! + α3

5!

)
− 3α

(
1 + α3

2! + α3

4!

)
α2

(
α+ α3

3! + α3

5!

)

= 1 +
3α+ α3

2 + α5

40 − 3α− 3α3

2 − α5

8

α3
(
1 + α2

6

)

= 1 +
−α3 − α5

10

α3
(
1 + α2

6

)

= 1−
(

1 +
α2

10

) (
1− α

2

6

)

=
α2

15
(33)
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If we assume σs � σ1 then the induced electric current moment is
given by (Van de Hulst, 1957)

(Idl){x,y,z} = 4πσ1a
3Eunpert
{x,y,z} (34)

which is valid even if α is not large (Wait, 1960). The electric current-
moment has dimensions of current times length and differs by a factor
−iω from the electric-dipole moment which has dimensions of charge
times length; i.e.,

p{x, y, z}︸ ︷︷ ︸
electric
dipole

moment

=
(Idl)
−iω =

4πσ1a
3

−iωεo
εoE

unpert
{x,y,z}

= 4πε̂a3εoE
unpert
{x,y,z}

ε̂ = εr1 +
iσ1

ωεo

p{x,y,z} ∼= 4π
( iσ1

ωεo

)
a3εoE

unpert
{x,y,z}

= αeE
unpert
{x,y,z}

αe = 4πa3ε̂εo

(35)

In equation (35) we note that the electric dipole moment p{x,y,z} con-
tains the factor ε , while the magnetic dipole moment, m{x,y,z} does
not contain µ .

Another method for obtaining the dipole-moment for buried scatter-
ers is the Born approximation (Hill and Cavcey, 1988). This method
is useful for the case of targets of arbitrary shape since the targets
volume is included in the formulation. The method is best suited to
a plane-wave spectrum (Kerns, 1981) representation for the incident
fields on the scatterer. In contrast, our formulation represents the in-
cident field as a Sommerfeld integral. For completeness, we show the
Born approximation since it shows how to treat the case where the
buried object is a dielectric or even a void in the layer. The Born ap-
proximation is valid even in the near-or far-field, but only for scatterers
of small contrast to the surrounding medium. In the Born approxima-
tion the dipole-moment for a sphere is given by
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p{x,y,z} = εo
∫
V

(ε̂− 1)E{x,y,z}(x
′, y′, z′)dr′

= εo(ε̂− 1)
4πa3

3
Eincident
{x,y,z}

=
4πa3

3
εEincident
{x,y,z}

(36)

and the “contrast” (ε̂ − 1) in an expression for the dipole-moment
indicates a “Born” result. In contrast, an expression of the form

(ε̂− 1)
(ε̂+ 2)

(37)

indicates a “boundary value” solution of the problem of a dielectric
sphere immersed in a static electric field. For example, in the case of
a sphere, the field inside the sphere in a boundary value approach is

Einside =
3

(ε̂+ 2)
Eincident

∼= Eincident, ε̂ ∼= 1
(38)

Substituting the first line of equation (38) into the first line of (36)
gives

p{x,y,z} = εo
∫
V

(ε̂− 1)Einsidedr′

= 3εo
∫
V

(ε̂− 1)
(ε̂+ 2)

Eincident
{x,y,z} dr

′

= 3εo
(ε̂− 1)
(ε̂+ 2)

4πa3

3
Eincident
{x,y,z}

= 4πa3 (ε̂− 1)
(ε̂+ 2)

εoE
incident
{x,y,z}

(39)

Equation (39) yields the proper limit

lim p{x,y,z}
σ→∞

= 4πa3εoE
incident
{x,y,z} (40)

Equation (34) shows that, in general, we need to solve a boundary
value problem to determine the exact values for the polarizability for
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an arbitrary shaped target. Stratton (1941) solves a boundary value
problem for a dielectric sphere and ellipsoid. Both solutions can be
analytically continued to treat the case of a complex permitivity to
include the effect of a finite conductivity. Van de Hulst (1957) also
gives the electric polarizability for a conducting ellipsoid and sphere.
Collin (1960) gives the electric and magnetic polarizability for perfectly
conducting spheres, ellipsoids, and spheroids.

We summarize the electric and magnetic polarizability for a sphere

αe = 4πa3εo
(ε̂− 1)
(ε̂+ 2)

ε̂ = εr +
iσ

ωεo

(41)

and for σ
ωεo
� 1,

αe = 4πa3
( iσ
ωεo

)
εo =

4πa3σ

−iω (42)

and the corresponding electric current-moment is

Idl = −iωαe(≡ p) = 4πa3σ (43)

in agreement with the Van de Hulst result in equation (34) given above.
The corresponding magnetic dipole moment is

αm = −2πa3[3(M − iN)]

= −2πa3

{
1, σ →∞
iωµoa2

15 , σ → 0
(44)

4.2 Polarizability for an Ellipsoid

Stratton (pages 212-213) solved the boundary value problem for an
ellipsoid in a static electric field and the result is

Eperturbed
{x,y,z} =

Eincident

1 + abc
2ε2

(εobject − ε2)L{x,y,z}
(45)
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so that the electric polarizability is

α{ex,ey,ez} =
(εobject − ε2)

(
4πabc

3

)
Eincident

1 + abc
2ε2
L{x,y,z}

(46)

where

Li =
l1l2l3

2

∞∫
0

dx

(x+ l2i )
√

(x+ l21)(x+ l22)(x+ l23)

L1 + L2 + L3 = 1

(47)

The result in (47) agrees with Ishimaru (page 291, equation (10-47)).
By duality, the magnetic polarizability for an ellipsoid is

αm =
(µobject − µ2)

(
4πabc

3

)
H incident

1 + abc
2µ2

(µobject − µ2)Li

(48)

For a spheroid, two axes of the ellipsoid are equal (Li = Lj).

5. SCATTERED FIELDS IN REGION (1) FOR A VMD IN
REGION (1)

5.1 Theory

The quasi-static magnetic field does not depend of the medium prop-
erties; i.e., changes in ε or σ , and therefore, should be the optimum
source for detecting most underground objects. The induced dipole
(electric and magnetic) at the target in region (2) are the product of
the electric and magnetic polarizabilities and the unperturbed electric
and magnetic fields. The unperturbed fields in equations (20) and (24)
are evaluated at

R′ = 0

R = (xo, yo,−d)
(49)
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and from (29) and (35) the induced electric and magnetic dipole mo-
ments are

mx = αmx cosφ′Hunpert
2ρ (xo, yo,−d)

my = αmy sinφ′Hunpert
2ρ (xo, yo,−d)

mz = αmzH
unpert
2z (xo, yo,−d)

px = αex(− sinφ′)Eunpert
2φ (xo, yo,−d)

py = αey(cosφ′)Eunpert
2φ (xo, yo,−d)

pz = αezE
unpert
2z (xo, yo,−d) = 0(TE to z)

tanφ′ =
yo
xo

(50)

where αe, αm depend on the particular target shape (e.g., sphere, el-
lipsoid, spheroid, parallelepiped). From (50) we see that the VMD in
region 1, causes the target to reradiate a VMD, HMD and HED.
These dipole moments are now located in region 2 (in the layer) and
the field at the observation point R = (x, y, z) corresponding to the
induced moments at the secondary source point R = (x, y,−d), for
the VMD, are from equations (16) and (17), modified to take into
account the secondary source is in the layer, given by

Hv
1x(x, y, z) =

−mz

4π
cosφ

·
∞∫
0

k2
ρ

k1z

k2z
J1

(
kρ

√
(x− xo)2 + (y − yo)2

)
F TE

+ (z,−d)dkρ

Hv
1y(x, y, z) =

−mz

4π
sinφ

·
∞∫
0

k2
ρ

k1z

k2z
J1

(
kρ

√
(x− xo)2 + (y − yo)2

)
F TE

+ (z,−d)dkρ

Hv
1z(x, y, z) =

−imz

4π

·
∞∫
0

k3
ρ

k2z
Jo

(
kρ

√
(x− xo)2 + (y − yo)2

)
F TE

+ (z,−d)dkρ
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tanφ =
y

x
(51)

where the z -variation in (51) accounts for upgoing and downgoing
waves, and is basically the modification of the point source variation
radiating in an unbounded medium exemplified in equation (16) as

F (z, z′) = eikz|z−z
′| (52)

where in (51) the source is in medium 2 in figure 1, and the observer
is in region 1. Implementing the boundary conditions at z = −d1, z =
−d2 Chew (1995, page 77, equation 2.4.6) obtains

F TE
+ (z,−d) = eik1zzeik1zd1 T̃ TE

21 e
−ik2zd1

·
[
eik2zd + R̃TE

23 e
ik2z(−d+2d2)

]
M̃TE

2 M̃TE
1

(53)

where, Chew gives

M̃TE
1 = 1

M̃TE
2 =

[
1− R̃TE

23 R̃
TE
21 e

2ik2z(d2−d1)
]−1

R̃TE
23 = RTE

23

R̃TE
21 = −R̃TE

12

T̃ TE
21 =

k2z

k1z
T̃ TE

12

T̃ TE
12 = eik1zd1S12 =

T TE
12 e

ik1zd1

1−RTE
12 R̃

TE
23 e

2ik1z(d2−d1)
∼= 2k1ze

ik1zd1

k1z + k2z

(54)

Using equation (22) we approximate the reflection and transmission
coefficients in (54) as follows:

RTE
12 =

k1z − k2z

k1z + k2z

∼=
ikρ − ikρ + ik2

2
2kρ

2ikρ
=
k2

2

4k2
ρ

RTE
23 =

k2z − k3z

k2z + k3z

∼=
ikρ − ik2

2
2kρ − ikρ + ik2

3
2kρ

2ikρ
= −(k2

2 − k2
3)

4k2
ρ
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T TE
12 =

2k1z

k1z + k2z

∼= 2ikρ

2ikρ − k2
2

2kρ

=
1

1− k2
2

4k2
ρ

∼= 1 +
k2

2

4k2
ρ

T TE
21 =

k2z

k1z
T TE

12
∼=


 ikρ − ik2

2
2kρ

ikρ


 (

1 +
k2

2

4k2
ρ

)
∼= 1− k2

2

4k2
ρ

T TE
12 R

TE
23 T

TE
21
∼= −

(
1 +

k2
2

4k2
ρ

)(k2
2 − k2

3

4k2
ρ

)(
1− k2

2

4k2
ρ

)
∼= −(k2

2 − k2
3)

4k2
ρ

e2ik2z(d2−d1) ∼= e−kρ(d2−d1)

ATE
2
∼= T TE

12

R̃TE
12
∼= k2

2

4k2
ρ

− (k2
2 − k2

3)
4k2

ρ

e−2kρ(d2−d1) (55)

Substituting the approximations (54) and (55) in to (53) gives the
approximate result

F TE
+ (z,−d) ∼= 2k1z

k1z + k2z
eik1z(z+d1)e−ik2zd

·
[
eik2zd − (k2

2 − k2
3)

4k2
ρ

eik2z(−d+2d2)

]

∼= e−kρ(z+d) − (k2
2 − k2

3)
4k2

ρ

eik2z(z−d+2d2)

(56)

where the two exponentials in (56) can be interpreted as a secondary
sources located as shown in figure 2.

We now consider the reradiated fields from the HMD. Again, from
equations (1), (2) and (3) with the dipole pointing in the ρ′ -direction,
and given by

πmx =
imx

4π

∞∫
0

kρ
kz
Jo

(
kρ|ρ− ρ′|

)
eikz|z−z

′|dkρ

πmx → −iωµomxπ
m
x

(57)

Substituting (57) into the third equation in (1) gives
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Figure 2. Geometrical interpretation of the Green’s Function, F+(z,−d)
for a source in the layered medium.

Hh
1z(ρ, z) =

ez
iωµ

∂2πmx
∂x∂z

=
(−mx

4π

)
cosφ′

∞∫
0

k2
ρJ1

(
kρ|ρ− ρ′|

)
eikz|z−z

′|dkρ

cosφ′ =
x′√

x′2 + y′2
(58)

As in (51) we are considering the case where the target is reradiat-
ing, and the exponential factor eik1z|z−z′| needs to be replaced by
F TE

+ (z,−d) for a “secondary source” in region 2 radiating to an ob-
server in region 1.

The transverse components of the magnetic field for a HMD are
obtained by substituting (58) into (15) yielding

Hh
1t(ρ, z) =

1
k2
ρ

eρ
∂2Hunpert

1z

∂ρ∂z

∂J1

∂ρ
= kρ


Jo(kρ|ρ− ρ′|)− J1

(
kρ|ρ− ρ′|

)
kρ|ρ− ρ′|



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Hh
{1x,1y} =

(−imx cosφ′

4π

)(cosφ
sinφ

)
·
∞∫
0

k1zk
2
ρ


Jo(kρ|ρ− ρ′|)− J1

(
kρ|ρ− ρ′|

)
kρ|ρ− ρ′|


 eik1z|z−z′|dkρ (59)

The next case of reradiation (scatter) by the target comes from the
induced HED (horizontal electric dipole). This dipole is also pointing
in the ρ′ -direction, and the Hertz potential is given by

πex =
( i

4π

)
(−iωpx)

∞∫
0

kp
kz
Jo

(
kρ|ρ− ρ′|

)
eikz|z−z

′|dkρ (60)

Substituting (59) into the second equation in (1) gives

Hh
1z(ρ, z) = −ez

∂πex
∂y

= ez
(−ipx

4π

) ∞∫
0

kρ
k1z
J0

(
kρ|ρ− ρ′|

)
eik1z|z′−z|dkρ

= ez
( ipx sinφ′

4π

) ∞∫
0

k2
ρ

k1z
J1

(
kρ|ρ− ρ′|

)
eik1z|z−z′|dkρ (61)

The transverse components of th magnetic field for a HED are ob-
tained by substituting (61) into (15) giving

He
{1x,1y}(ρ, z) =

px sinφ′

4π

(cosφ
sinφ

)

·
∞∫
0

kρ


Jo(kρ|ρ− ρ′|)− J1

(
kρ|ρ− ρ′|

)
kρ|ρ− ρ′|


eik1z|z−z′|dkρ

(62)
The total scattered magnetic field in region 1 from the scatter from a
buried object in region 2, in equation (25) is from equations (51), (59)
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and (62), for the x -, y - components:

HS
{1x,1y}(ρ, z) =

(−mz

4π

)(
cosφ
sinφ

)

·
∞∫
0

k1zk
2
ρ

k2z
J1

(
kρ|ρ− ρ′|

)
F TE

+ (z,−d)dkρ

+
(−mx cosφ′

4π

)(
cosφ
sinφ

)

·
∞∫
0

k1zkρ


Jo(kρ|ρ− ρ′|)−J1

(
kρ|ρ− ρ′|

)
kρ|ρ− ρ′|


F TE

+ (z,−d)dkρ

+
(px sinφ′

4π

)(
cosφ
sinφ

)

·
∞∫
0

kρ


Jo(kρ|ρ− ρ′|)− J1

(
kρ|ρ− ρ′|

)
kρ|ρ− ρ′|


F TE

+ (z,−d)dkρ

(63)
For the z -component:

HS
1z(ρ, z) =

(−imz

4π

) ∞∫
0

k3
ρ

k1z
J1

(
kρ|ρ− ρ′|

)
F TE

+ (z,−d)dkρ

+
(−mx cosφ′

4π

) ∞∫
0

k2
ρJ1

(
kρ|ρ− ρ′|

)
F TE

+ (z,−d)dkρ

+
( ipx sinφ′

4π

) ∞∫
0

k2
ρ

k2z
J1

(
kρ|ρ− ρ′|

)
F TE

+ (z,−d)dkρ

(64)

The total magnetic field in region 1 for the case of a VMD source is

Htotal
{1x,1y,1z} = H incident

1z +HS
{1x,1y,1z} (65)
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where, from equations (14) and (55) the incident fields is

H incident
1z (ρ, z) =

(−im
4π

) ∞∫
0

k3
ρ

k1z
J0(kρρ)

·
{
e−kρ|z| + R̃TE

12 e
ik1zz+2ik1zd1

}
dkρ

(66)

We complete this section by examining in detail the z -component of
the total field. The remaining terms are the magnetic polarizability,
mx,y,z . From equation (50) we see this involves the unperturbed field
Hunpert

2z (xo, yo,−d) incident on the object. From equation (20) and
the approximations in (55) this is given by

mz = αmzH
unpert
2z (ρo,−d) = αmz

(−im
4π

) ∞∫
0

k3
ρ

k1z
Jo(kρ

√
x2
o + y2

o)

·ATE
2

[
eik2zd +RTE

23 e
2ik2zd2−ik2zd

]
dkρ

(67)
and,

m{x,y} =
( im

4π

)(
αmx cosφ
αmy sinφ

) ∞∫
0

k2
ρJ1(kρ

√
x2
o + y2

o)

·ATE
2 [eik2zd +RTE

23 e
2ik2zd2−ik2zd]dkρ

(68)

From equation (50), we also need to compute the electric dipole mo-
ments for the VMD source. These involve the unperturbed electric
fields at the target. From equation (24) we have

p{x,y} =
(ωµom

4π

)(−αex sinφ′

αey cosφ′
) ∞∫

0

k2
ρ

k1z
J1(kρ

√
x2
o + y2

o)

·ATE
2 [eik2zd +RTE

23 e
2ik2zd2−ik2zd]dkρ

pz = 0 (TE to z)

(69)

where, ωµom comes from the φ -component of the unperturbed elec-
tric field. The total z -component of the magnetic field at the observer
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is

Htotal
1z (x, y, z) =

(−imz

4π

)

·
∞∫
0

k3
ρ

k1z
Jo

(
kρ

√
(x− xo)2 + (y − yo)2

)
F TE

+ (z,−d)dkρ

+
(−mx cosφ′

4π

)

·
∞∫
0

k2
ρJ1

(
kρ

√
(x− xo)2 + (y − yo)2

)
F TE

+ (z,−d)dkρ

+
( ipx sinφ′

4π

)

·
∞∫
0

k2
ρ

k2z
J1

(
kρ

√
(x− xo)2 + (y − yo)2

)
F TE

+ (z,−d)dkρ

+
(−im

4π

) ∞∫
0

k3
ρ

k1z
Jo(kρ

√
x2 + y2)

·
[
eik1z|z| + R̃TE

12 e
ik1zz+2ik1zd1

]
dkρ (70)

and we write (70) by defining the following integrals,

Htotal
1z (x, y, z) =

(−im
4π

)
I1

+
(−mx cosφ′

4π

)
I2

+
( ipx sinφ′

4π

)
I3

+
(−im

4π

)
I4

(71)
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together with the integrals for the magnetic and electric polarizability

mx
y

=
( im

4π

)(
αmx cosφ
αmy sinφ

)
I5

mz =
( im

4π

)
αmzI6

px
y

=
(ωµom

4π

)(−αex cosφ′

αey sinφ′
)
I7

pz = 0

(72)

These integrals are defined by

I1 =

∞∫
0

k3
ρ

k2z
Jo

(
kρ

√
(x− xo)2 + (y − yo)2

)
F TE

+ (z,−d)dkρ

I2 =

∞∫
0

k2
ρJ1

(
kρ

√
(x− xo)2 + (y − yo)2

)
F TE

+ (z,−d)dkρ

I3 =

∞∫
0

k2
ρ

k2z
J1

(
kρ

√
(x− xo)2 + (y − yo)2

)
F TE

+ (z,−d)dkρ

I4 =

∞∫
0

k3
ρ

k1z
Jo(kρ

√
x2 + y2)

[
eik1z|z| + R̃TE

12 e
ik1zz+2ik1zd1

]
dkρ

I5 =

∞∫
0

k2
ρJ1(kρ

√
x2 + y2)ATE

2

[
eik1zd +RTE

23 e
2ik2zd2−ik2zd

]
dkρ

I6 =

∞∫
0

k3
ρ

k1z
Jo(kρ

√
x2 + y2)ATE

2

[
eik1zd +RTE

23 e
2ik2zd2−ik2zd

]
dkρ

I7 =

∞∫
0

k2
ρ

k1z
J1(kρ

√
x2 + y2)ATE

2

[
eik1zd +RTE

23 e
2ik2zd2−ik2zd

]
dkρ(73)

In the quasi-static regime, the integrals in (73) can be approximated
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as (Gröbner and Hofreiter, 1965)

I1 ∼= −i
∞∫
0

k2
ρJo

(
kρ

√
(x− xo)2 + (y − yo)2

)

·
[
e−kρ(z+d) − (k2

2 − k2
3)

4k2
ρ

e−kρ(z−d+2d2)
]
dkρ

= −i




[
2(z+d)2−(x−xo)2−(y−yo)2

]
[
(x−xo)2+(y−yo)2+(z+d)2

] 5
2

− (k2
2−k2

3)

4
√

(x−xo)2+(y−yo)2+(z−d+2d2)2




(74)

I2 ∼=
∞∫
0

k2
ρJ1

(
kρ

√
(x− xo)2 + (y − yo)2

)

·
[
e−kρ(z+d) − (k2

2 − k2
3)

4k2
ρ

e−kρ(z−d+2d1)
]
dkρ

=




3(z+d)
√

(x−xo)2+(y−yo)2[
(x−xo)2+(y−yo)2+(z+d)2

] 5
2

−
(k2

2−k2
3)

[√
(x−xo)2+(y−yo)2+(z−d+2d1)2−(z−d+2d1)

]
√

(x−xo)2+(y−yo)2
√

(x−xo)2+(y−yo)2+(z−d+2d1)2




(75)

I3 ∼= −i
∞∫
0

kρJ1

(
kρ

√
(x− xo)2 + (y − yo)2

)

·
[
e−kρ(z+d) − (k2

2 − k2
3)

4k2
ρ

e−kρ(z−d+2d1)
]
dkρ

= −i




√
(x−xo)2+(y−yo)2[

[(x−xo)2+(y−yo)2+(z+d)2
] 3

2

−
(k2

2−k2
3)

[√
(x−xo)2+(y−yo)2+(z−d+2d1)2−(z−d+2d1)

]
4
√

(x−xo)2+(y−yo)2




(76)
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I4 ∼= −i
∞∫
0

k2
ρJo(kρ

√
x2 + y2)

·
[
e−kρ|z| +

( k2
2

4k2
ρ

− (k2
2 − k2

3)
4k2

ρ

e−2kρ(d2−d1)
)
e−kρz−2kρd1

]
dkρ

= −i




[
2z2−x2−y2

]
[
x2+y2+z2

] 5
2

+ k2
2

4
√

x2+y2+(z+2d1)2

− (k2
2−k2

3)

4
√

x2+y2+(z+2d2)2




(77)

I5 ∼=
∞∫
0

k2
ρJ1(kρ

√
x2 + y2)

·
[
e−kρ|z| − (k2

2 − k2
3)

4k2
ρ

e−2kρd2+kρd
]
dkρ

= −i




3d
√

x2
o+y2

o[
x2
o+y2

o+d2

] 5
2

−
(k2

2−k2
3)

[√
x2
o+y2

o+(2d2−d)2−(2d2−d)
]

√
x2
o+y2

o

√
x2
o+y2

o+(2d2−d)2




(78)

I6 ∼= −i
∞∫
0

k2
ρJo(kρ

√
x2 + y2)

·
[
e−kρ|z| − (k2

2 − k2
3)

4k2
ρ

e−kρ(2d2−d)
]
dkρ

= −i




2d2−x2
o−y2

o[
x2
o+y2

o+d2

] 5
2

− (k2
2−k2

3)

4
√

x2
o+y2

o+(2d2−d)2


 (79)
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I7 ∼= −i
∞∫
0

kρJ1(kρ
√
x2 + y2)

·
[
e−kρd − (k2

2 − k2
3)

4k2
ρ

e−2kρd2+kρd
]
dkρ

= −i




√
x2
o+y2

o[
x2
o+y2

o+d2

] 3
2

−
(k2

2−k2
3)

[√
x2
o+y2

o+d2−2d2

]
4
√

x2
o+y2

o




(80)

5.2 Example 1:

For the first example, we show the field scattered by an oblate
spheroid. This example was chosen because published data exits for
this example and therefore serves as a comparison for the results pre-
sented in this work (Hill and Cavcey, 1987). The parameter values
for this example are given in Table I Since the incident field is much
larger than the scattered field, in all examples only the scattered field
is shown.

The magnetic polarizability for this example is

αmz =
−2V
1 + L

V =
4π
3
ab2

L =
b2

2a2e3

(
ln

1 + e
1− e − 2e

)

e =

√
1−

( b
a

)2
(81)

Figure 3 shows a plot of the field scattered by the buried oblate spheroid
versus lateral distance. Both the results using equation (64) and results
from Hill and Cavcey (1987) are show for comparison.



50 Ott

Parameter Value
frequency 3 KHz
λo 100 Km
ε1 = εo
σ1 0

k2
1 = ω2µoεo

(
2π
λo

)2 ∼= 3.9478x10−9

ε2 = ε0
σ2 (sea floor) 0
λ = λo
k2

2 = k2
1

k2
3 = k2

1

σs (scatterer) Perfect conductor
µs = µo 4πx10−7 H/m
Spheroid semi-major axis 0.15 m
Spheroid semi-minor axis 0.05 m
d1 transmitter height above sea 0.25 m
d2 sea floor depth below transmitter 1. m
d scatterer depth 0.25m

Table I. Parameter Values for an Oblate spheroid in Free Space

Figure 3. Contour plot of |HS
1z(x)| for the parameter values in Table

I. Open circles are Hill and Cavcey (1987) and solid line used equation
(64).
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Parameter Value
frequency 3 KHz
λo 100 Km
ε1 81
σ1 4 Mho/m

k2
1 = ω2µoεo

(
2π
λo

)2 ∼= 3.9478x10−9

ε2 (sea floor) 20
σ2 (sea floor) 0.4 Mho/m
λ = λo

4899 20.4 m

k2
2 = k2

1

(
εr1 + i σ1

ωεo

)
∼= i 0.09478

k2
3 = k2

1

(
εr2 + i σ2

ωεo

)
∼= i 0.009478

σs (scatterer) Perfect conductor
µs = µo 4πx10−7 H/m
d1 transmitter height above sea 1 m
a (sphere radius) 4 m
d2 (sea floor depth) 11 m
d (scatterer depth) 6 m

Table II. Parameter Values for an Sphere Sea Water

Example 2:

This example is a conducting sphere in sea water. The parameter
values for this example are given in Table II.

The parameter values and geometry yield the following results for
the induced electric and magnetic dipole moments in equation (50).

mx = αmxH
unpert
2ρ (0, 0,−d)

my = 0

mz = αmzH
unpert
2ρ (0, 0,−d)

px = 0

py = αeyE
unpert
2φ (0, 0,−d)

pz = 0 (82)
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From equation (64) the z -component of the scattered field is

HS
1z(x, y, z) =

(−imz

4π

) ∞∫
0

k3
ρ

k1z
Jo(kρ

√
x2 + y2)F TE

+ (z,−d)dkρ

+
(−mx

4π

) ∞∫
0

k2
ρJ1(kρ

√
x2 + y2)F TE

+ (z,−d)dkρ

(83)

The second integral in (83) is zero because

mx =
( imαmx

4π

) ∞∫
0

k2
ρJ1(kρ · 0)ATE

2

[
eik2zd +RTE

23 e
2ik2zd2−ik2zd

]
dkρ

= 0

mz =
( imαmz

4π

) ∞∫
0

k3
ρ

k2z
ATE

2

[
eik2zd +RTE

23 e
2ik2zd2−ik2zd

]
dkρ (84)

The third integral of (83) is zero for the same reason in (84); i.e.,
the argument of the Bessel function of order one of the first kind is
zero. However, in general the contribution to the scattered magnetic
field from the induced electric dipole moment is of order k times the
scattered electric field as shown below.

p{x,y} =
(ωµom

4π

)(−αex
αey

) ∞∫
0

· · · dkρ

HS
1z =

(ωpy
4π

)
cosφ′

∞∫
0

· · · dkρ

=
(ω2µom

(4π)2
)

cosφ′
(−αex
αey

) ∞∫
0

. . . dkρ

∞∫
0

. . . dkρ

=
(ω2µoεom

16π2

)
cosφ′

(−gx
gy

) ∞∫
0

. . . dkρ

∞∫
0

. . . dkρ (85)
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One k comes from the unperturbed induced electric field at the target,
and the other k from the scattered magnetic field of a Hertzian dipole
as shown in section 3.

The incident field is given in (66) and the total magnetic field is

Htotal
1z (ρ, z) =

(−im
4π

)
I4 +

(−i
4π

)
I6

(−imαmz

4π

)
I1

αmz = −2πa3

(86)

Figure 4 shows a contour plot of the magnitude of the following ratio
for the parameter values in Table II,

ratio(ρ, z) =
Hpert

1z (ρ, z)
Hunpert

1z (ρ, z) +Hpert
1z (ρ, z)

=

(
i

4π

)
αmzI1I6

I4 +
(

i
4π

)
αmzI1I6

(87)

where from equations (29), (30) and (33) the magnetic polarizability
is given by

αmz = −2πa3
(
iωµoσ1

a2

15

)
(88)

From figure 4 the good agreement between the results corresponding to
the exact integration of the Sommerefeld integrals (solid line in figure
4)and the quasi-static approximations (dashed line in figure 4) pro-
vides the following observations: 1) The correctness of the mathemat-
ical derivations for the quasi-static results. 2) The adequate validity
of using the quasi-static results for detecting buried objects. 3) The
correctness of the algorithm used to evaluate the Sommerfeld integrals.
The infinite upper limit was replaced by a finite limit, and the con-
vergence of the integrals was investigated versus the upper limit. A
Gaussian quadrature algorithm was used to evaluate the integrals. 4)
Both results have a relative minimum along the line

z = ± |ρ|√
2

(89)
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Figure 4. Contour plot of equation (87) for the parameter values given
in Table II. (a = 0.15λ)

Parameter Value
frequency 3 KHz
ε1 10
σ1 0.01 Mho/m
ε2 20
σ2 0.02 Mho/m
σsphere >> σ1

Sphere radius 25 m
d1 1 m
d2 100 m
d 50 m

Table III. Parameter values for a conducting sphere in good ground
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Figure 5. Contour plot of the magnitude of the ratio in equation (87)
for the parameter values in Table III.

Example 3:

This example is for a conducting sphere located in a layer of “good
ground” (with magnetic polarizability given in equation (33)).

Figure 5 shows a contour plot of the magnitude of the ratio in equa-
tion (87) versus ρ, z for the parameter values in table III.

Example 4:

This example is a dielectric sphere of low contrast with the dielectric
constant of region 2 with parameter values given in Table IV. The total
magnetic field for this case is

Htotal
1z (x, z) =

(−im
4π

)[
I4 +

k2(αey/εo)
4π

I3I7

]
αey
εo

= a3 (ε̂− 1)
(ε̂+ 2)

(90)
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Parameter Value
frequency 10 KHz
ε1 10
σ1 0.001 Mho/m
ε2 20
σ2 0.02 Mho/m
εsphere 5
Sphere radius 40 m
d1 1 m
d2 100 m
d 50 m

Table IV. Parameter values for a dielectric sphere in sandy soil

Figure 6 shows a contour plot of the magnitude of the z -component
of the total magnetic field versus x, z for the parameter values in Table
IV.

Figure 6. Contour plot of |Htotal
1z (x, z)| for the parameter values in

Table IV.
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Note in figure 6 a relative maxima along the line

z = ± |ρ|√
2

(91)

6. SCATTERED FIELDS IN REGION (1) FOR A HORI-
ZONTAL MAGNETIC DIPOLE (HMD) IN REGION (1)

6.1 Theory

For the HMD case, by superposition, the scattered magnetic fields
can be written in terms of rectangular components in a form similar
to equation(25) as

HS
x = Hmx

x +Hmy
x +Hmz

x +Hpx
x +Hpy

x +Hpz
x

HS
y = Hmx

y +Hmy
y +Hmz

y +Hpx
y +Hpy

y +Hpz
y

HS
z = Hmx

z +Hmy
z +Hmz

z +Hpx
z +Hpy

z +Hpz
z

(92)

where Hmx,y,z is the radiated field from the induced magnetic dipole
moments and Hpx,y,z is the radiated field from the induced electric
dipole moments.

Starting with the Hertz potential for a HMD in the ρ -direction as

πmx =
imx

4π

∞∫
0

kρ
kz
Jo

(
kρ|ρ− ρ′|

)
eikz|z−z

′|dkρ (93)

the rectangular components of the magnetic field are computed using
the third of equations (1) as

∇×∇× πx = ez
∂2πmx
∂x∂z

=
−mx cosφ′

4π

∞∫
0

k2
ρJ1

(
kρ|ρ− ρ′|

)
eikz|z−z

′|dkρ

(94)

From the third of equations (1) and (94), the free-space magnetic field
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for this case becomes(
1
iωµ

)
∇×∇× (−iωµπm) = −ez

(
mx cosφ′

4π

)

·
∞∫
0

k2
ρJ1

(
kρ|ρ− ρ′|

)
eikz|z−z

′|dkρ

(95)
and from the fourth equation in (1) and (93), the electric free-space
field for this case becomes

∇× (−iωµπm) = ez

(
ωµmx sinφ′

4π

)

·
∞∫
0

k2
ρ

kz
J1

(
kρ|ρ− ρ′|

)
eikz|z−z

′|dkρ

(96)

The induced electric and magnetic dipole moments are


mx

my

mz


 =



αmxH

unpert
x

αmyH
unpert
y

αmzH
unpert
z






px
py
pz


 =



αexE

unpert
x

αeyE
unpert
y

αezE
unpert
z




(97)

and VMD, HMD, VED and HED are all induced.
The z -component of the scattered field in (92) becomes

HS
1z =

{
mx cosφ′

px sinφ′

} (
1
4π

)

·
∞∫
0

k2
ρJ1

(
kρ|ρ− ρ′|

)
F TE

+ (z,−d)dkρ
(98)

and from equations (15) and (98), the transverse components of the
scattered field for the HMD case are given in equation (59).

The total magnetic field in region (1) for this case becomes

Htotal
{1x,1y,1z} = H incident

{1x,1y,1z} +HS
{1x,1y,1z}. (99)
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The z -component of the incident field above the first interface is
(Kong, 1972, page 993, equation (38d))

H incident
1z =

(−mx cosφ
4π

) ∞∫
0

k2
ρJ1

(
kρ|ρ− ρ′|

)

·
{
eik1z|z| − R̃TE

12 e
ik1z(z+2d1)

−eik1z|z| − R̃TE
12 e

ik1z(z+2d1)

}
dkρ,

{
z ≥ 0
z < 0

(100)

and the z -component of the electric field above the first interface is
from (96)

Eincident
1z =

ωµmx sinφ
4π

∞∫
0

k2
ρ

k1z
J1

(
kρ|ρ− ρ′|

)

·
[
eik1z|z| + R̃TM

12 eik1z(z+2d1)
]
dkρ

(101)

From equations (15), (100) and (101), the ρ -component of the incident
magnetic field is

H incident
1ρ =

−imx cosφ′

4π

∞∫
0

k1zkρ

[
J0(kρρ)−

J1(kρρ)
kρρ

]

·
[
eik1z|z| − R̃TE

12 e
ik1z(z+2d1)

]
dkρ

−iω2µε1mx cosφ′

4π

∞∫
0

1
k1z
J1(kρρ)

·
[
eik1z|z| + R̃TM

12 eik1z(z+2d1)
]
dkρ

(102)

The unperturbed fields in region 2, from equations (15) and (98)
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are

Hunpert
2x
2y

=
imx cosφ

4π

(
cosφ
sinφ

) ∞∫
0

k2zkρ

[
J0(kρρ)−

J1(kρρ)
kρρ

]

·ATE
2

[
−eik2zz + R̃TE

23 e
ik2z(z+2d2)

]
dkρ

−iω2µε1mx cosφ
4π

(
cosφ
sinφ

) ∞∫
0

1
k1z
J1(kρρ)

·ATM
2

[
e−ik2zz +RTM

23 eik2z(z+2d2)
]
dkρ

Hunpert
2z =

(−mx cosφ
4π

) ∞∫
0

k2
ρJ1

(
kρ

√
x2
o + y2

o

)

·ATE
2

[
eik2zz −RTE

23 e
2ik2zd2−ik2zd

]
dkρ

Eunpert
2x
2y

=
(−iωµmx sinφ

4π

) (
cosφ
sinφ

) ∞∫
0

J1(kρρ)

·
[
e−ik2zz +RTE

23 e
ik2z(z+2d2)

]
dkρ

(
iωµmx sinφ

4π

) (
ε1
ε2

) ∞∫
0

k2zkρ
k1z

[
J0(kρρ)−

J1(kρρ)
kρρ

]

·ATM
2

[
−eik2zz +RTM

23 eik2z(z+2d2)
]
dkρ

Eunpert
2z =

ωµmx sinφ
4π

(
ε1
ε2

) ∞∫
0

k2
ρ

k1z
J1

(
kρ|ρ− ρ′|

)

·ATM
2

[
eik2zd +RTM

23 e2ik2zd2−ik2zd
]
dkρ

(103)

The scattered magnetic field due to the induced electric moments for
this case is

H
px,y,z
1x
1y

∝
{
pxE

unpert
2x

pyE
unpert
2y

}
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=
ωµom

4π

{
−αex sinφ′

αey cosφ′

}
ωµom

4π

{
sinφ
cosφ

}
I8 (104)

I8 =

∞∫
0

J1(kρρ)e−ik1zzdkρ

=

[√
x2 + y2 + z2 − z

]
√
x2 + y2

√
x2 + y2 + z2

(105)

which is negligible, because the magnetic field for this case is propor-
tional to ω2 .

6.2 An example

Assume the following

xo = yo = 0

z′ = −d
αmx = αm = αmρ

(106)

and it is easy to show

HS
1ρ = eρ

( imρ

4π

)
Ii

H incident
1ρ = eρ

( im
4π

)
I4

mρ =
( im

4π

)
I6

(107)

so that the total field is given by

Htotal
1ρ =

( im
4π

)[
I4+

( iαmρ

4π

)
I1I6

]
(108)

which is in agreement with(85) with αmρ replacing αmz which of
course it must since the loop axis in now parallel to the x-y plane.
This example provides a check on the mathematical derivations for
both the VMD and HMD cases.
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7. SCATTERED FIELDS IN REGION (1) FOR A VED IN
REGION (1)

For the VED case, by superposition, the scattered electric fields
can be written in terms of its rectangular components as the sum of
three contributions, as in equation (25) as,

ES
x = Ev

x + Eh
x + Em

x

ES
y = Ev

y + Eh
y + Em

y

ES
z = Ev

z + Eh
z + Em

z

(109)

where (Ev
x, E

v
y , E

v
z ) are the reradiated fields for the induced vertical

electric dipole moment, (Eh
x , E

h
y , E

h
z ) are the reradiated fields for the

induced horizontal electric dipole moment, and (Em
x , E

m
y , E

m
z ) are the

reradiated fields for the induced magnetic dipole moment.
Starting from the Hertz potential for a VED as

πez =
ipe
4π

∞∫
0

kρ
kz
Jo

(
kρ|ρ− ρ′|

)
e−kρ|z−z

′|dkρ (110)

the z -component of the unperturbed electric field is given by

Ez =
1
−iωε

( ∂2

∂z2
+ k2

o

)
(peπez), pe = Il

=
( i

4π

)( pe
−iωε

) ∞∫
0

(k2
o − k2

ρ)
kρ
kz
Jo

(
kρ|ρ− ρ′|

)
e−kz|z−z

′|dkρ

=
(−ipe

4πωε

) ∞∫
0

k3
ρ

kz
Jo

(
kρ|ρ− ρ′|

)
e−kz|z−z

′|dkρ

(111)

The unperturbed transverse components are from equation (15)

Et =
eρ
k2
ρ

∂2Ez

∂ρ∂z

=
(±ipe

4πωε

)
(ex cosφ+ ey sinφ)

·
∞∫
0

k2
ρJ1

(
kρ|ρ− ρ′|

)
e−kz|z−z

′|dkρ,

{
z > z′

z < z′

(112)
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The unperturbed fields from a HED are generated by a Hertzian
dipole given by

πex =
(
ipx
4π

) ∞∫
0

kρ
kz
J0

(
kρ|ρ− ρ′|

)
eikz|z−z

′|dkρ (113)

and from equation (1), the z -component of the electric field is

E =
1
−iωε(∇×∇× π

e
x)

=
( +ipx

4πωε

) ∞∫
0

k2
ρJ1

(
kρ|ρ− ρ′|

)
eikz|z−z

′|dkρ,

{
z > z′

z < z′

(114)

the z -component and transverse components for a HED are (Kong,
1972, p.993, equation (37a))

Ez =
−ipx cosφ′

4πωε

∞∫
0

k2
ρJ1

(
kρ|ρ− ρ′|

)
eikz|z−z

′|dkρ (115)

and

Eρ =
−px cosφ′

4πωε

∞∫
0

kzkρ


Jo(kρ|ρ− ρ′|)− J1

(
kρ|ρ− ρ′|

)
kρ|ρ− ρ′|


eikρ|z−z′|dkρ

(116)
The unperturbed electric fields from an induced HMD are generated
by a horizontal Hertz potential

πmx =
( imx

4π

) ∞∫
0

kρ
kz
Jo

(
kρ|ρ− ρ′|

)
eikz|z−z

′|dkρ (117)

and from equation (1) the z -component of the electric field is (Kong,
1972, p.993, equation (38a))

Ez = ∇× πmx

=
(
ωµomx sinφ′

4π

) ∞∫
0

k2
ρ

kz
J1

(
kρ|ρ− ρ′|

)
eikz|z−z

′|dkρ
(118)
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and the transverse components for the HMD are given by (Kong,
1972, p.993, equation (38a))

Eρ =
eρ
k2
ρ

∂2Ez

∂ρ∂z

Ex
y

=
(
iωµomx sinφ′

4π

) (
cosφ
sinφ

)

·
∞∫
0

kρ


Jo(kρ|ρ− ρ′|)− J1

(
kρ|ρ− ρ′|

)
kρ|ρ− ρ′|


eikρ|z−z′|dkρ

(119)

The z -component of the total electric field for a VED in region 1, is
given by

Etotal
1z (ρ, z) =

( −IA
4πωε1

) 
I9 +


 i

(
αez
ε0

)
4π


 I10I11


 (120)

which is the dual result of equation (85), with the exception that the
TE coefficients are replaced by the TM coefficients in the following
integrals

I9 =

∞∫
0

k3
ρ

k1z
J0

(
kρ

√
x2 + y2

)

·
[
eik1z|z| +RTM

12 eik1z(z+2k1)dkρ

]
(121)

I10 =

∞∫
0

k3
ρ

k2z
J0

(
kρ

√
(x− xo)2 + (y − yo)2

)
F TM

+ (z,−d)dkρ

F TM
+ (z,−d) = T TM

21 BTM
2 eik1z(z+d1)e−ik2zd1

BTM
2 =

eik2zd −RTM
23 eik2z(2d2−d)

1 +RTM
12 RTM

23 e2ik2z(d2−d1)
(122)
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I11 =

∞∫
0

k3
ρ

k1z
J0

(
kρ

√
x2
o + y2

o

)
ATM

2

·
[
e−ik2zz +RTM

23 eik2z(z+2d2)
]
dkρ (123)

ATM
2 =

T TM
12 ei(k1z−k2z)d1

1 +RTM
12 RTM

23 e2ik2z(d2−d1)

8. SCATTERED FIELDS IN REGION (1) FOR A HED IN
REGION (1).

For the HED case, by superposition, the scattered electric fields
can be written in terms of rectangular in a form similar to equation
(89) as

ES
x = Emx

x + Emy
x + Emz

x + Epx
x + Epy

x + Epz
x

ES
y = Emx

y + Emy
y + Emz

y + Epx
y + Epy

y + Epz
y

ES
z = Emx

z + Emy
z + Emz

z + Epx
z + Epy

z + Epz
z

(124)

where Emx,y,z is the radiated field from the induced magnetic dipole
moments and Epx,y,z is the radiated field from the induced electric
dipole moments.

Starting with the Hertz potential for a HED in the ρ -direction as

πex =
ipx
4π

∞∫
0

kρ
kz
Jo

(
kρ|ρ− ρ′|

)
eikz|z−z

′|dkρ (125)

the rectangular components of the electric and magnetic field are, using
the first and second of equations (1), given by

E =
( 1
iωε

)
∇×∇× (peπex)

H = ∇× (peπex)
(125)

The unperturbed fields are

pe = Il (126)
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Eunpert
2z =

(
ipx cosφ′

4πωε2

) ∞∫
0

k2
ρJ1

(
kρ

√
x2
o + y2

o

)

·BTM
2

[
eik2zz +RTM

21 e−ik2z(z+2d2)
]

Hunpert
2z =

(
ipx sinφ′

4π

) ∞∫
0

k2
ρ

k2z
J1

(
kρ

√
x2
o + y2

o

)

·BTE
2

[
eik2zd +RTE

23 e
−ik2z(z+2d1)

]

(127)

The scattered field are obtained from equation (100) by duality; i.e.,

Hs → Es

Es → Hs
(128)

9. METAL DETECTOR ANALYSIS

One type of metal detector uses a single transmitting loop and four
receiving loops as shown in figure 7 (Hill and Cavcey, 1987). The
detector sums the output of the four loops, but two of the polarities
are reversed. Because of the detector symmetry, the direct of the
transmitting loop produces a zero output. Hence the desired nulling
of the strong direct field is achieved.

Figure 7. Geometry for a metal detector with a central transmitting
loop and four receiving loops.
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Figure 8. Contour plot of |Vr(x, y)| for a metal detector response
from a perfectly conducting sphere.

The total received voltage can be written

vr = (iωµNA)(HS
z1 −HS

z2 +HS
z3 −HS

z4) (129)

where N is the number of turns.
Figure 8 shows a contour plot of the magnitude of the received

voltage in equation (127) versus x and y for a perfectly conducting
sphere buried 50 cm below the interface in “sandy soil”.

The parameters for the plot in figure 8 are given in Table V.
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Parameter Value
Frequency 3KHz
D 0.5m
Sphere Radius 0.0005m
σ1 0.01 Mho/m
ε1 10.
σ2 0.05 Mho/m
ε2 20.
d2 1 m

Table V. Parameter values for metal detector example
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