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1. INTRODUCTION

Electromagnetic absorbers and frequency selective surfaces (FFS for
short) have recently received an increasing interest. There is a growing
need for electromagnetic absorbers, and in particular for lighter, thin-
ner and more highly absorbing materials. Frequency selective surfaces
are generally made of planar screens with periodic or biperiodic met-
allizations. One generally considers two types of FFS: capacitive FFS
are transparent at low frequencies; inductive FFS are reflecting ones.
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Their behavior at the resonance frequency is complementary. Capac-
itive FFS consist of arrays of metal patches embedded in a dielectric
structure, which may be a stratified one. The dielectric structure pro-
vides the mechanical support of the FFS. Inductive FFS consist of
perforated screens.

Such frequency selective surfaces have been considered by several
authors [3, 6, 13] who have proposed various approaches for the nu-
merical resolution of the corresponding scattering problem. Efficient
numerical methods are now available for the analysis and design of
FFS, as we shall show.

The purpose of this paper is to show that the absorption bands of
such structures may be controlled by combining the performances of
capacitive FFS and electromagnetic absorbers. To vary the frequency
response of a FFS, the standard method consists in varying the geom-
etry of the array elements. We give efficient computational methods
for analyzing this kind of structure. The representation of the trans-
mitted and reflected fields is obtained by applying resistive boundary
conditions to include a general surface impedance in the problem for-
mulation.

We provide examples of such periodic or biperiodic structures, whose
absorption bands can easily be controlled by varying some of the char-
acteristic lengths of the system. More precisely, we consider multilayers
made of dielectric stacks and surface gratings with various shapes and
sizes. We show that such structures yield absorption bands, and that
the location and bandwidth of such bands may be controlled by varying
the characteristic sizes of the structure.

This paper is organized as follows. After this introduction, we de-
scribe in Section 2 the details of the diffracting structures we consider,
and the model we use to solve numerically the corresponding diffrac-
tion problem. Then we develop in section 3 the numerical resolution
method, and discuss a series of examples. Finally, section 4 is devoted
to the conclusions. More technical aspects concerning the mathemati-
cal background and numerical details are discussed in three appendices
at the end of this paper.

2. MODELLING THE BIPERIODIC STRUCTURES

We consider a system made of homogeneous dielectric layers and biperi-
odic gratings of resistive conducting plates, ended by an infinitely
conducting plane (or the vacuum), located at a height z = 0 . The
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Figure 1. Global geometry of the structure: a grating of resistive
plates between stacks of dielectric media, upon a perfectly conducting
plate. The incident field propagates in the direction of negative z .

structure is globally invariant under the discrete translations of pe-
riod (a, b) which define the grating, namely translations of the form
x→ x+ma, y → y + nb,m, n ∈ Z, in the xOy plane. The structure
is illuminated by an incident monochromatic field of the form


EI(x, y, z) = 
EI
0e
−i(ωt−�k.�r).

The geometry of the problem is displayed in Fig. 1. We shall generically
denote by E(j) and H(j) the electric and magnetic fields in the j -th
layer zj < z < zj+1 , with electric permittivity εj ; we shall also use
the superscript + or − , according to whether the field propagates in
the direction of positive or negative z . From now on, the configuration
of Fig. 1 will be referred to as configuration I .

Alternatively, we shall also consider the same structure, but we re-
move the infinitely conducting plane at z = 0 . The latter configuration
will be called configuration II .

2.1 Floquet Modes

Taking into account the global invariance of the problem, it is nat-
ural to introduce the associated Floquet decompositions. Let 
k =
(kx, ky, kz) be the incident wavevector in the vacuum. In a medium of
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permittivity ε , let us set for all integers m,n

{ α0 = kx, αm = α0 + 2πm
a ,

β0 = ky, βn = β0 + 2πn
b ,

tmn =
√
α2
m + β2

n, γ2
mn = k2ε− t2mn,

(1)

where a and b are the grating periods. For m,n integers, we intro-
duce the corresponding Floquet modes

E±mn(x, y, z) =
1√
ab
ei(αmx+βny±γmnz), (2)

and the “planar” modes

φmn(x, y) =
1√
ab
ei(αmx+βny), (3)

which form an orthonormal basis of the space of biperiodic functions
on the plane, with period (a, b) . Then it is well known that such
functions satisfy Helmholtz’s equation, and that both the electric and
the magnetic fields may be decomposed into those Floquet modes (see
e.g., [11]). Therefore, we write in the j -th layer


E(j)(x, y, z) =
∑
m,n

(

e(j)+mn E+mn(x, y, z) +
e(j)−mn E−mn(x, y, z)

)
(4)


H(j)(x, y, z) =
∑
m,n

(

h(j)+
mn E+mn(x, y, z) + 
h(j)−

mn E−mn(x, y, z)
)

(5)

where 
e(j)±mn and 
h
(j)±
mn denote the (complex vector) coefficients of the

expansion. The sum over m,n runs theoretically from −∞ to ∞ . In
practice it has to be truncated to a finite index [−M,M ] × [−N,N ] .
We now restrict ourselves to the tangential electric and magnetic fields.
We directly obtain from Maxwell’s equations that the following matrix
relations hold


h(j)±
mn = ∓K(j)

mnX
e
(j)±
mn . (6)

Here we have introduced the following 2 × 2 matrices:

K(j)
mn =

1
ωµγmn

(
k2 − α2

m −αmβn
−αmβn k2 − β2

n

)
, X =

(
0 1
−1 0

)
. (7)
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In the following we set ξmn = 1
ωµγmn

.
Alternatively, we shall also make use of the expansions with respect

to the planar modes φmn(x, y) in (3), which leads to the coupled waves,
defined by


E(j)±
mn (z) = 
e(j)±mn e

±iγmnz, (8)


H(j)±
mn (z) = 
h(j)±

mn e
±iγmnz. (9)

The propagation of such modes within the corresponding layer is di-
agonal, and we have in particular


E(j)±
mn (zj+1) = exp{±iγmn(zj+1 − zj)}
E(j)±

mn (zj). (10)

Matching boundary conditions at a dielectric-dielectric interface is an
easy task, since Floquet modes with different indices are not coupled.
Given one such interface between two dielectric media labeled by j, j+
1 , at a height z = zj , and equating the tangential components of the
electric and magnetic fields, we obtain:

(

E

(j)+
mn


E
(j)−
mn

)
= C(j)

mn

(

E

(j+1)+
mn


E
(j+1)−
mn

)
=

(
c c′

c′ c

) (

E

(j+1)+
mn


E
(j+1)−
mn

)
, (11)

where for the sake of simplicity we have suppressed the explicit de-
pendence on the height z = zj . The matrix elements (which are
themselves 2 × 2 matrices) c, c′ are given by

c = c(j)
mn =

1
2
(X)−1(1 + (K(j)

mn)
−1K(j+1)

mn )X, (12)

c′ = c′(j)mn =
1
2
(X)−1(1− (K(j)

mn)
−1K(j+1)

mn )X. (13)

Alternatively, we shall make use of the following R -matrices, which
read (see Appendix B)

(

E

(j+1)+
mn


E
(j)−
mn

)
= R(j)

mn

(

E

(j)+
mn


E
(j+1)−
mn

)
=

(
t++ r−+

r+− t−−

) (

E

(j)+
mn


E
(j+1)−
mn

)
. (14)

and the connection between the two formulations is given by [4]

Rjmn =
(

c−1 −c−1c′

c′c−1 c− c′c−1c′

)
. (15)
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Figure 2. The grating of conducting plates, in the particular case of
rectangular plates.

2.2 Surface Elements and Boundary Conditions on the Con-
ducting Plates

Let us now describe the surface currents on the conducting plates;
see Fig. 2 for the particular case of rectangular plates. We may expand
such currents into Floquet modes


J(x, y) =
∑
m,n


Jmnφmn(x, y), (16)

and impose the boundary conditions.
Several approaches have been proposed for imposing boundary con-

ditions. Among these, the integral formulations (e.g. Galerkin meth-
ods) are generally considered the most stable. To implement the
Galerkin method, we need to introduce a family of functions defined on
the plates. Let 
ψpq(x, y) be such a family. If zG denotes the height of
the interface supporting the grating of the conducting plates, we then
write, at a height z = zG


J(x, y) =
∑
p,q

jpq
ψpq(x, y). (17)
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The boundary conditions rely on three sets of equations. First, the
continuity of the tangential electric fields at all interfaces


E(j+1)(x, y, zj) = 
E(j)(x, y, zj), (18)

allows one to connect the global electric fields on each side of the inter-
face. Second, the discontinuity condition for the tangential magnetic
fields:


H(j+1)(x, y, zj)− 
H(j)(x, y, zj) = X
J(x, y, zj), (19)

explicitly

KjX
(

E(j)+
mn − 
E(j)−

mn

)
−Kj+1X

(

E(j+1)+
mn − 
E(j+1)−

mn

)
= X
Jmn (20)

Finally, the impedance boundary conditions, which read at a height
z = zG :


E(G+1)(x, y, zG) = 
E(G)(x, y, zG) = Z
J(x, y, zG), (21)

(where 
J vanishes outside the conducting plates) require a special
treatment. It has been observed by several authors [3, 13] that such
conditions cannot be imposed pointwise, because this leads to unsta-
ble systems. Several alternatives have been proposed and tested (see
for example [6]). The most stable solutions rely on the use of inte-
gral formulations, obtained by considering either line integrals of the
above equation, or a Galerkin formulation. We limit ourselves to the
latter, which leads to a finite number of integral equations, obtained
by testing Eq. (21) against suitably chosen basis functions ψpq(x, y)
(see Appendix A for some possible choices).

2.3 The Coupled System

Let us start with the case of configuration I . Taking into account
the above remarks, we are led to the following formulation. We denote
by 
EI and 
ER the incident and reflected electric fields respectively,
and we recall that we have denoted by G the index of the interface
containing the plates. In order to avoid as much as possible numerical
problems, we limit ourselves to a formulation involving the so-called
R -matrix propagation formalism [4, 5] (see Appendix B for a short
account of the method).



206 Berginc et al.

Using the R -matrix propagation scheme, we can obtain R matrices
for the stacks below and above z = zG . For example, we obtain a
relation of the form(


ER
mn


E
(G+1)−
mn

)
=

(
T++ R−+

R+− T−−

) (

E

(G+1)+
mn

EI
mn

)
, (22)

where the 2 × 2 matrices T and R are the stack equivalent trans-
mission and reflection matrices respectively. Similarly, the R -matrix
algorithm below the grating of plates yields a matrix relation of the
form (


E
(G)+
mn


E
(0)−
mn

)
=

(
T′++ R′−+

R′+− T′−−

) (
−
E(0)−

mn


E
(G)−
mn

)
, (23)

which implies


E(G)+
mn = (R′−+ −T′++(1−T′−−)−1R′+−)
E(G)−

mn

= N−1
E(G)−
mn

. (24)

The remarkable point with such a formulation is that it only involves
small matrices, since modes with different indices m,n are not cou-
pled. The only place where coupling between Floquet modes occurs is
at a height z = zG .

The case of configuration II requires only minor modifications.
Eq. (22) is still valid. For the stack below the grating of conducting
plates, we have to replace Eq. (23) with(


E
(G)+
mn

ET
mn

)
=

(
T′++ R′−+

R′+− T′−−

) (
0


E
(G)−
mn

)
, (24)

where 
ET
mn are the Floquet coefficients of the transmitted field. There-

fore, Eq. (24) is to be replaced with


E(G)+
mn = R′+−
E(G)−

mn = N−1
E(G)−
mn . (26)

The rest of the formalism is unchanged.

3. RESOLUTION AND NUMERICAL RESULTS

3.1 Resolution of the Coupled System

We now consider the practical resolution of the system we have ob-
tained above. We consider approximations of the fields with
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(2N +1)(2M +1) Floquet modes 
Emn,m = −M, ...M, n = −N, ...N,
and approximations of the currents with PQ surface elements 
ψpq .
The boundary conditions lead to three systems of equations involving
the three sets of unknowns: 
E

(G)+
mn , 
E

(G+1)+
mn and 
Jmn . Eliminating


E
(G)+
mn , we first obtain


E(G)+
mn = (1 +N)−1

(
(1 + R+−

mn)
E(G+1)+
mn + T−−mn 
E

I
mn

)
. (27)

Inserting this result into (19), we get


E(G+1)+
mn = A−1

mn

(
X
Jmn + Bmn


EI
mn

)
, (28)

where we have set

Amn = K(G+1)
mn X(R+−

mn − 1)

−K(G)
mnX(N− 1)(N+ 1)−1(R+−

mn + 1)

Bmn = (K(G)
mnX(N− 1)(N+ 1)−1 −K(G+1)

mn X)T−−mn .

(30)

Eventually, we are led to a system of the form

Umn

EI
mn = Vmn


Jmn, (31)

where the 2 × 2 matrices Umn and Vmn are defined by:

Umn = T−−mn + (1 + R+−
mn)A−1

mnBmn,

Vmn = Z − (1 + R+−
mn)A−1

mnX.
(33)

The system (31) is to be solved numerically, using a Galerkin proce-
dure. Let 
ψpq(x, y) be a basis of functions defined on the plate, with
appropriate boundary conditions. Using the expansion (17), we get


Jmn =
∑
p,q

jpq
ψpq;mn, (34)

where


ψpq;mn = 〈
ψpq, φmn〉 =
∫

ψpq(x, y)φ∗mn(x, y)dxdy, (35)
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and where the star “ ∗ ” denotes complex conjugation. Taking the
scalar products of equations (31) with the basis functions 
ψpq(x, y)
we obtain a system of the form

Upq =
∑
p′,q′

Vpq;p′q′jp′q′ , (36)

where U is a vector of length PQ and V is a PQ×PQ matrix given
by

Upq =
∑
m,n

(
Umn


EI
mn

)
· 
ψ∗pq;mn, (37)

Vpq;p′q′ =
∑
m,n

(Vmn

ψp′q′;mn) · 
ψ∗pq;mn. (38)

Eq. (36) is solved numerically (more details are given in Appendix C).
Once the current 
J is known, one recovers directly the fields 
E(G+1)+

mn

using Eq. (28) and then the reflected field 
ER , from Eq. (22).

3.2 Numerical Results

Our main goal is to exhibit absorption bands, and to analyze the
influence of some specific parameters on the location of the maximal
absorption. More precisely, we focus on the influence of the resistive
impedance Z and the ratio size of resistive plates/period. In addition,
we show that the location of the absorption band essentially does not
depend on the incidence angle. We work with a TM polarization for
the incident field (in fact our numerical tests suggest that the results
are weakly dependent on the polarization).

We consider a series of configurations, in which we vary individually
these parameters, in the frequency domain 1GHz – 10GHz . In all
the figures, we plot the reflectivity (i.e., the ratio of reflected flux by
incident flux) as a function of the incident frequency, and in the case
of configuration II we also plot the transmittivity (i.e., the ratio of
transmitted flux by incident flux). We assume a normal incidence
unless otherwise stated.

We start with the case of square resistive plates of sidelength a′ ,
with variable impedance. The period of the grating is set to a = 10mm
in both the x and y directions. The grating is supported by a ho-
mogeneous dielectric stack of height z = 4mm and complex refractive
index ε = 10 + 2i , itself supported by an infinitely conducting plane
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Figure 3. Square plates in configuration I. Reflectivity as a function
of the incident frequency, for various values of the plate’s size: a′ =
1, 2, 4, 7, 9mm. The period a is kept fixed to a = 10mm. θ = 0 and
Z = 0 .

(a simple case of configuration I ). Since the resistive plates are in that
case square plates, we use Fourier-type decompositions as described in
Appendix A1 for the decomposition of the surface current. The numer-
ical results displayed below have been obtained using 17× 17 Floquet
modes and the same number of Galerkin modes.

We show in Figure 3 the reflectivity as a function of the incident
frequency, for several values of a′ . The computed values are indicated
with symbols, and intermediate values have been obtained using cubic
spline interpolation. In all cases, a significant absorption band is ob-
served. In addition, the critical frequency (i.e., the frequency at which
reflectivity attains its minimum) decreases as the ratio a′/a increases,
and the width of the absorption band narrows.

In the considered case, the plates are perfectly conducting. We
nevertheless observe a strong absorption in a specific frequency range.
Such a phenomenon is generally coupled with the excitation of a leaky
surface wave. The surface wave may be given an interpretation in
terms of complex poles or zeroes of a scattering matrix (see [8] for
details on the scattering matrix, and [9] for an analysis of the role of
zeroes and poles). The poles of the scattering matrix give the propa-
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gation constant of the leaky waves, which propagate along the surface
of the biperiodic grating. The leaky wave is evanescent, as its energy
decreases in the direction normal to the surface of the structure. The
imaginary part of the pole gives the damping of the wave. The ex-
citation of a leaky wave is a resonance phenomenon at a particular
frequency. Figure 3 shows a spectacular phenomenon. A highly re-
flecting capacitive grating (with an important ratio a′/a ) can absorb
an incident plane wave in totality. Thanks to this absorption by a
leaky surface wave propagating along the grating, we can control the
absorption band of a classical Dahlenbach absorber layer which con-
sists of a thick homogeneous lossy layer backed by a metallic plate.
When the ratio a′/a tends to zero we have checked that the minimum
of reflectivity is obtained for the same frequency 6GHz as in Figure 3.
To adjust the absorption band of the absorber, we can deposit a biperi-
odic capacitive reflecting grating on the Dahlenbach layer. By doing
so, we combine the properties of the biperiodic grating with those of
the lossy layer. Notice in particular that it is possible to decrease the
thickness of the layer by adding such a biperiodic structure, to obtain
the critical absorption frequency of the initial Dahlenbach structure.

We show in Figure 4 the reflectivity as a function of the frequency
of the incident beam, for several values of the impedance Z . The
configuration corresponds to the case of Fig. 3 with a′ = 7mm , and a
significant minimum in the reflectivity is observed for a certain value
of the frequency. This critical value is seen to be an increasing function
of the impedance of the conducting plates.

In Figure 4, the patches of the grating are not perfectly conducting
any more. In that case, the absorption frequency and the bandwidth
increase with the resistivity of the patches. To obtain a required ab-
sorption band, it is therefore possible to combine the effects of the ge-
ometry (here the ratio a′/a ) and the effect of the conductivity. This
provides extra flexibility to the filter design.

We show in Figure 5 the reflectivity as a function of the frequency
of the incident beam, for several values of the incidence angle θ , for
the same configuration as before, i.e., a configuration exhibiting a well
defined absorption band. These results (and other tests of intermediate
incidence angles, are not reproduced here to simplify the plot) show
that the critical frequency value depends very weakly on the incidence
angle (at least for angles smaller than 45 deg).
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Figure 4. Square plates in configuration I. Reflectivity as a function
of the incident frequency, for various values of the plate’s impedance:
Z = 10, 30, 100Ω/ . The period a and the plate’s size a′ are kept
fixed a = 10mm and a′ = 7mm. θ = 0.
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Figure 5. Square plates in configuration I. Reflectivity as a function
of the incident frequency, for various values of incident angle: θ =
10, 30, 60 deg. The period a and the plate’s size a′ are kept fixed
a = 10mm and a′ = 7mm. Z = 0.
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Figure 6. Cross-shaped plates in configuration I. Reflectivity as a
function of the incident frequency, for various values of the plate’s size:
a′ = 1, 2, 4, 7, 9mm. The period a is kept fixed to a = 10mm. θ = 0
and Z = 0 .

The same computations have been performed with resistive plates of
various shapes. We display here the results obtained when the square
resistive plates in Fig. 3 are replaced with cross-shaped ones, of the
same size. By this we mean that the crosses lie within a square of the
sidelength a′ , and are made of five identical squares of sidelength a′/3 .
For this case, we used the surface elements described in Appendix A2,
and as before we take 17 × 17 Floquet modes, and the same number
of Galerkin modes.

The numerical results, displayed in Figures 6 and 7 show a similar
behavior to the previous case: a well defined absorption band is clearly
seen, and the critical frequency again depends on the ratio a′/a and
on the impedance Z . Again, the location of the absorption band
depends only weakly on the incidence angle (the numerical results,
not given here, are very similar to those displayed in Fig. 5). The
only significant difference which may be observed is a broadening of
the absorption band in the case of cross-shaped plates, and a second
minimum occurs for large a′ .

Similar computations have been made with configuration II . We
display in Fig. 8 (reflexion) and Fig. 9 (transmission) the results ob-
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Figure 7. Cross-shaped plates in configuration I. Reflectivity as a
function of the incident frequency, for various values of the plate’s
impedance: Z = 10, 30, 100Ω/ . The period a and the plate’s size a′

are kept fixed a = 10mm and a′ = 7mm. θ = 0.

tained with systems identical to those considered in Figures 3-5. We
observe that in such a configuration, the reflexion is small and almost
constant above 5Ghz , it increases slightly with a′ . The transmittiv-
ity shows maximums at frequencies corresponding to the minimums in
configuration I .

These two figures show the importance of the conducting plane at
z = 0 . The well-defined absorption band appears only in that case.
The excitation of the leaky wave and the corresponding absorption
occurs only for structures ended by a conducting plane.

Next, we consider a second system (in configuration I ), in which the
resistive plates are located upon a double layer of dielectrics. The first
dielectric (upon which the plates are located) has electric permittivity
ε = 5 , and the second layer has electric permittivity ε = 15 + i18σ/ν
with a frequency dependent imaginary part. Here the constant σ is
set to σ = 10s/m , and the frequency ν is expressed in GHz .

The results are displayed in Figures 10 and 11. As before, an ab-
sorption band is clearly seen on Figure 10, when a′ is above 4mm ,
whose critical frequency and bandwidth decrease as the sidelength of
the plates increases. In addition, for small plates, the reflectivity has
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Figure 8. Reflexion for square plates in configuration II. Reflectivity
as a function of the incident frequency, for various values of the plate’s
size: a′ = 1, 2, 4, 7, 9mm. The period a is kept fixed to a = 10mm.
θ = 0 and Z = 0 .
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Figure 9. Transmission for square plates in configuration II. Reflec-
tivity as a function of the incident frequency, for various values of
the plate’s size: a′ = 1, 2, 4, 7, 9mm. The period a is kept fixed to
a = 10mm. θ = 0 and Z = 0 .
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size: a′ = 1, 2, 4, 7, 9mm. The period a is kept fixed to a = 10mm.
θ = 0 and Z = 0 .
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Figure 11. Reflexion for square plates in configuration I. Reflectivity
as a function of the incident frequency, for various values of the resistive
impedance Z : Z = 10, 25, 50, 75, 100Ω/ . The period a is kept fixed
to a = 10mm. a′ = 7mm and θ = 0 .



216 Berginc et al.

a constant behavior close to zero above 8GHz . Figure 11 shows that
in such a configuration, the critical frequency depends weakly on the
value of the impedance, but the bandwidth is an increasing function
of the impedance.

In the previous calculations one can address the question of the limit
a′ approaching a . We have checked that taking the value a′ = 9.9mm
there is a continuous behavior of reflectivity, nevertheless, in the limit
a′ = a the grating becomes an infinite plane metallic surface, so the
boundary conditions imposed here are no more valid. Physically, when
the plates are very closed new phenomena on their mutual influence
should occur and in that case a different model has to be implemented.

4. CONCLUSIONS AND PERSPECTIVES

We have studied and described a series of configurations involving di-
electric stacks and arrays or resistive plates which produce well-defined
absorption bands, with controllable absorption frequency. The criti-
cal frequency has been shown to be strongly influenced by the ratio
period/plate-size, which therefore provides a good control parameter.
The impedance of the resistive plates has been shown to allow the
control of the critical frequency.

Our approach is based on a Floquet (or Rayleigh) development of
the electromagnetic fields within the different layers of the structure,
and a Galerkin approximation of the surface currents. Multilayers
more complex than the ones we considered here may be described by
the formalism of this paper as well.

In light of the numerical experiments we have performed, it is pos-
sible to combine the different parameters (namely the ratio a′/a , the
geometry of the patches and the conductivity of the patch material) to
obtain optimized absorbing structures from a quite standard biperiodic
grating. The use of absorption by a leaky surface wave can improve a
classical Dahlenbach structure.
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APPENDIX A: THE SURFACE ELEMENTS

Depending on the geometry of the conducting plates, several different
bases of surface elements may be used. In all cases, the finite number
of basis functions we are forced to consider limits the precision of the
approximation of the current.

1. Rectangular Plates

To start with, we consider the case of rectangular plates, as shown
in Fig. 2. In such cases, the best choice for surface elements is provided
by a Fourier basis: we set


ψTEpq (x, y) =
pπ

a′
sin

pπ

a′
[x+

1
2
a′] cos

qπ

b′
[y +

1
2
b′]
ex
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qπ

b′
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1
2
a′] sin

qπ
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1
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(A2)

Therefore, the Floquet modes of the surface current may be written as


Jmn =
P−1∑
p=0

Q−1∑
q=0

(
jTMpq


ψTMpq,mn + jTEpq

ψTEpq,mn

)
, (A3)

and the scalar products


ψTEpq,mn = 〈
ψTEpq , φmn〉, (A4)


ψTMpq,mn = 〈
ψTMpq , φmn〉, (A5)

may be computed analytically.
For other special geometries, such as disks or elongated disks, it is

possible to design appropriate basis functions to describe the current
density on the resistive plates (in the case of disks, such basis func-
tions are linear combinations of Bessel functions). However, it is also
desirable to have basis functions which can describe arbitrary geome-
tries. This is the purpose of the surface elements described in the next
subsection.
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2. Arbitrary Plates

For conducting plates with arbitrary geometry, we are forced to
use “all purpose” basis functions, which we shall call surface elements.
Such basis functions have been considered by several authors under
the name of rooftop functions. It follows from the analysis in [6] that
rooftop functions often provide faster and better conditioned numeri-
cal schemes than classical alternatives (the so-called surface-patch and
triangular patch functions). The first step for the construction of such
surface elements is a discretization of the plate. For the sake of sim-
plicity, we restrict to a uniform square discretization, with period τ .
Consider the characteristic function

χ(x) =
{

1 if 0 ≤ x ≤ τ
0 elsewhere

(A6)

and the Schauder function

Λ(x) =

{
1 + x

r if −τ ≤ x ≤ 0
1− x

r if 0 ≤ x ≤ τ
0 elsewhere

(A7)

Then set
ψxpq(x, y) = χ(x− pτ)Λ(y − qτ), (A8)

ψypq(x, y) = Λ(x− pτ)χ(y − qτ), (A8)

and finally

ψpq(x, y) = ψxpq
ex + ψypq
ey. (A10)

The surface elements we consider will be those functions ψxpq(x, y)
and ψypq(x, y) such that their support is completely included in the
support of the plate. Clearly, the smaller τ the better is the approxi-
mation of the current, but the higher the complexity of the numerical
problem.

APPENDIX B: R -MATRIX PROPAGATION

We describe briefly the R -matrix propagation scheme as we used it in
our simulations. Clearly, the simplest approach amounts to consider
the direct product of the C matrices given in Eq. (11), which yields
directly a C matrix for the whole structure. As stressed by various
authors, such a scheme turns out to become rapidly unstable as the
depth of the structure grows.
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Let us consider a multilayered medium with interfaces at heights
z1, · · · , zF , and assume that we are given an interface R -matrix of the
form given in Eq. (14). Then, one easily verifies that

(

E(j+1)+(zj)

E(j)−(zj−1)

)
=

(
t̃++ r̃−+

r̃+− t̃−−

) (

E(j)+(zj−1)

E(j+1)−(zj)

)
(B1)

where we have set

{ t̃++ = t++Lj ; t̃−− = t−−Lj ;

r̃+− = r+−L2
j ; r̃−+ = r−+,

Lj = exp{iγmn(zj+1 − zj)}.
(B2)

Suppose now that we are given a stack R -matrix for the stack [j +
1, F ] : (


ER


E(j)−

)
=

(
T++ R−+

R+− T−−

) (

E(j)+


EI

)
, (B3)

where we set by default 
E(j)± = 
E(j)±(zj−1) for the sake of simplicity.
From Eqs. (B1) and (B3), little algebra gives the expression of the
coefficients of the stack matrix for the stack [j + 1, F ] :


ER(zF ) = T++(1− r̃−+R+−)−1t̃++
E(j)+(zj−1)

+ (R−+ + T++(1−R+−r̃−+)−1r̃−+T−−)
EI(zF ),

E(j)−(zj−1) = (r̃+− + t̃−−(1−R+−r̃−+)−1R+−t̃++)
E(j)+(zj−1)

+ t̃−−(1−R+−r̃−+)−1T−−
EI(zF ).

The above equations provide a simple iterative algorithm for com-
puting the global R -matrix for the stacks [zG, zF ] and [z0, zG] . This
algorithm is known as the R-matrix propagation algorithm, and has
been analyzed by various authors. We refer to [4, 5, 7, 10] for more
details.

APPENDIX C: NUMERICAL ASPECTS

We give here more details on the numerical methods used to solve the
complete problem. As stressed before, most of the matrices used in the
scheme are 2× 2 matrices, which are easy to handle. In addition, the
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= R

E(j)+(zj)E(j)-(zj)

E(j+1)+(zj) E(j+1)-(zj)

Figure 12. Illustration of R -matrix propagation algorithm,: the role
of an interface R -matrix.

z

zF

zj

zj-1

EREI

E(j)+E(j)-

E(j+1)- E(j+1)+

Figure 13. Illustration of the R -matrix propagation algorithm: the
stack R -matrix.

use of R -matrix propagation algorithm prevents us from developing
numerical instabilities when computing products of such matrices.

The main part of CPU is used for solving Eq. (36). The method
has been implemented in a Fortran 77 code on a SUN-UltraSparc 1;
typical running times for 17 Floquet and Galerkin modes is around
10mn for a square grating. Several methods have been tested for that
problem (which has also been studied by various authors). We have
controlled the validity of our code in the case of resistive patches by
making a comparison with the results obtained in [16]. The numerical
results presented here have been obtained by using an inversion method
based on LU -decomposition, with left and right equilibrations of the
matrix. A fortran implementation of such a method is available in
the LAPACK library (see [1]). Alternative methods may be found
in the literature, such as (complex) biconjugate gradient methods or
FFT-based methods.
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