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1. Introduction

Dielectric waveguide junctions such as steps, abrupt bends, bran-
ches, and etc. are building blocks of many optical signal processing de-
vices. In this regard, designing high quality junctions with low trans-
mission and reflection losses, good isolation between branches, and re-
duced power coupling to unwanted guided modes is an important engi-
neering task in guided wave opto-electronics. Analytical and numerical
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techniques for analyzing the behavior of these structures, understand-
ing their deficiencies, and improving their performances are essential
for this task.

Junctions and branches in dielectric waveguides have been stud-
ied extensively [1-27]. Analytical approximations like those presented
in early works [1-3], then in coupled mode theory [6-8], plane wave
spectrum (spectral domain) methods [10-13], and in a volume integra-
tion technique [14] have been used to treat junction problem. The more
rigorous numerical schemes such as “least square boundary residual”
method [15-17], integral equation techniques [18,19], Beam Propaga-
tion Method (BPM) [20,21], finite and boundary element method [22],
iterative procedure {23], and Finite Difference Time Domain (FD/TD)
[24] have also been applied to this problem.

The approximate analytical methods mentioned above usually
have a fairly limited scope of application. For example, it is diffi-
cult to analyze wide angle Y -branches or large step junctions with
non-negligible reflection by coupled mode theory or by simple mode
matching formulas [1-3]. On the other hand, numerical techniques, al-
though accurate and more general, require a considerable amount of
computer resources (CPU time and memory) and often do not provide
the user with sufficient insight in the problem. Therefore they are not
appropriate for design and optimization purposes.

The new physical optics (P.O.) method of this chapter, developed
recently in [25-27] is a simple analytic approximate technique. It is
based on the waveguide modal excitation from the junction interface
P.O. fields.

The physical optics method often leads to closed form expressions
for transmission and reflection coefficients. As a result the present P.O.
method is simpler and more efficient than other numerical schemes and
approximate methods, e.g., volume current integration [14] and plane
wave spectrum approaches [10-13].

Like the purely geometrical ray theory [28] this method gives
much physical insight and is very versatile for arbitrary structures.
However, the method does not suffer from the deficiencies (e.g., sharp
shadows) of pure ray theory.

Modal wave propagation in a uniform section of a waveguide can
be represented by a sum of plane wave (modal) rays exactly. However,
the transmission of lightwaves through arbitrary waveguide junctions
containing finite dielectric interfaces cannot accurately be modeled by
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simple plane wave ray reflection and refraction from an infinite planar
interface.

In the present method, the above modal rays are employed only
to estimate the fields at the interface by P.O. approximation. The lat-
ter are then used in a rigorously derived field integral for the junction
transmission. The method, therefore, does take the finiteness of dielec-
tric interfaces into account and is less susceptible to localized irregu-
larities of the interface field. In this respect, it combines the simplicity
and intuition provided by the ray concept, with the mathematical rigor
of electromagnetic wave theory. In the future, one can still improve the
accuracy systematically by including the known behavior of the field
over the critical parts such as corners of the interface in the P.O. esti-
mates.

To describe the method, in section 2 and 3 we concentrate on
the configuration shown in Fig. 1. Then applications to more general
2-D structures (step, bend, and Y -junction) are described in Sections
4, 5, and 6. A new low loss abrupt bend configuration and its design
criteria are discussed in Section 6. The P.O. analysis of (3-D) structures
is finally discussed in Section 8.

Figure 1. A general junction between two dielectric waveguides.
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2. Physical Optics Estimation of the fields over a
Dielectric Interface

In this section after a brief review of the physical optics, its appli-
cation to dielectric interfaces contained in the junction shown in Fig. 1
is detailed.

2.1 Basic Concepts of Physical Optics

Physical optics is an approximate method for finding the field
scattered by an object from the knowledge of the field on its surface.
In its application to conducting (impenetrable) bodies the surface field
at each point on the geometrically illuminated side is taken to be that
due to the incident wave scattered by an infinite plane tangent to the
surface at that point [29]. On the geometrical shadow side the surface
field is assumed to be zero. Physical optics field is therefore expressed
by a radiation type integral over the illuminated part of the surface.
Extensions to bodies with impedance surface and dielectric bodies have
also been reported [30,31].

For large (in terms of wavelength) smooth convex bodies, the
above physical optics integral can be asymptotically expanded via
steepest descent method. The first term is the geometrical optics field
which is also equal to the leading term of the asymptotic expansion
of the exact solution (Luneburg-Kline expansion [32]). In this sense
physical optics may be viewed as a generalization of the geometrical
optics and as such should provide us with more accurate estimates of
fields.

In this section, we apply physical optics to determine the fields
scattered by and transmitted through the interface plane (P) in the
region (b) of Fig. 1 due to the incident field coming from the region (a).
According to the equivalence principle, the fields in the region (b) may
be viewed as being generated by the equivalent magnetic and electric
currents ( J§7, ME?) placed on (P). Estimates of these currents are
obtained through a simple extension of the conventional physical optics
(P.O.) to dielectric bodies. These estimates (physical optics sources)
are denoted by JF© and MPO . Currently the physical optics (P.O.)
method is widely used to calculate the far scattered or radiated fields
in open space. In the present application, however, we employ physical
optics estimates for the surface fields to determine the amplitudes of the
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transmitted and reflected guided (bound) modes via an inner product
integration (9 and 10) over the junction interface.

Figure 2. Incident and reflected (plane wave) rays at the junction inter-

face (P).

2.2 Physical Optics Approzimation for the Fields on a Dielectric
Waveguide Junction Interface

We apply the above principles to the specific junction of Fig. 1.
The neighborhood of the interface plane (P) is illustrated in Fig. 2.

According to the basic postulate of physical optics [29], the fields
at each point of P are approximately those due to incident wave re-
flected and refracted by an infinite dielectric planar interface tangent
to the surface P at that point.

In contrast to its application to conducting objects, for dielectric
interfaces, physical optics sources are of both electric and magnetic
types. If the incident and reflected fields in region a are denoted by
(Eine, {ine) and ( E7/Y, H™/') respectively, these sources are currents
given by:

JPO =t x (H™ + A", MPO = ~a x (™ + E™TY) (1)

where 7 is the unit vector normal to the interface plane P.
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In Figure 2 one may notice that dielectric waveguides join along a
planar surface (interface) P and the incident wave can be represented
by a finite sum of plane waves in each homogeneous region. In this case
the determination of the above physical optics sources is particularly
simple. The incident fields ( E*™¢, H*™ ) may now represent any plane
wave ray constituent of the incident modal wave(s) coming along the
waveguide a which give rise to reflected plane wave ( E/!, H7/!) upon
reflection at the dielectric interface.

At a point 7p on the interface (P) each plane wave ray constituent
of the incident field, polarized along i with the wave vector E;“C is:

-
nc

Fine — Evéncexp(_jkinc - 7p), Hine — k;nc x

(2)

Na
the corresponding reflected wave is:
- = -, — ~ E”'fl
Erft = Exfteap(—jkitt - #tp), ™' = kLI x - (3)
a
where,
kol = ke — 2k - ) (4)

and 7 is the unit normal of the interface into the region a, and the
reflected field vector, ng !, is related to the incident field E¥ com-
ponents through a reflection coefficient given in the Appendix. Detail
uses of the reflection coefficients are demonstrated in the examples of
the following section.

The unit vectors k:*"/* are defined along the wave vectors kire™/!
in theregion aand 7, = \/(ia/€a) is the wave characteristic impedance.
It is reemphasized that as one moves along the interface, the reflection
coefficients giving ng Lkirerfl and n,, in general, are not constant
and should be defined locally.

The incident and reflected plane wave ray fields of (2), (3) (with
the parameters defined in the Appendix), substituted back in (1), pro-
vide us with the physical optics sources generated by one plane wave
constituent of the incident modal field. To determine the total P.O.
sources, the contributions of all constituents should be summed up.

It is obvious from the expressions (1,2,3) that physical optics
sources have “non-physical” discontinuities at the junction points @,
Q2,Q3, and Q4. In addition, possible physical singularities of the nor-
mal (to the wedge axis) components of the fields [33,34] have not been
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taken into account in the above estimates. Nevertheless, in optical
waveguide structures the relative index change across the interfaces
are usually small and so are these deviations of P.O. fields from the
true behavior of the fields. It is also to be pointed out that such non-
physical behaviors or singularities are weak and localized in nature.
Therefore the resulted errors in the final results remain insignificant.

It is to be mentioned that the plane wave ray model employed
throughout this chapter is a an approximate but accurate mean to
estimate the interface fields. These are then used in the field integral
expressions for the amplitudes of the excited propagating modes in
various regions.

To represent wave packet processes and flow of energy in dielec-
tric waveguides, ray should be defined in a more precise manner. In
such cases, the ray does not coincide with the propagation vectors of
the modal plane waves given in (2) and (3). This difference in direc-
tions causes the lateral shift (Goos-Hanchen shift) [38] of the reflected
ray relative to the incident ray. Nevertheless, as will be shown in later
Sections, for monochromatic field (especially the phase) estimations
required in this chapter, the simple plane wave ray model of this sec-
tion, provides us with an adequate field representation with a great
practical appeal.

In the later Sections the physical optics estimates for the interface
fields will be derived for specific structures of practical interest such as
steps, abrupt bends, and Y -junctions.

3. Formulation of Dielectric Waveguide Junction Prob-
lem in terms of the Junction Interface Fields

In this Section we formulate the power transmission analysis of a
general dielectric waveguide junction shown in Fig. 1 in terms of the
tangential fields over the junction interface plane. The method, how-
ever, can be applied to more general type of discontinuities in guiding
structures, as shown in the later sections.

The abrupt junction in Fig. 1 is formed by two different dielectric
waveguide meeting along the planar interface (P). The core (guiding
region) refractive indices are n; and ny and those of the claddings are
ng and ny for the waveguides a and the waveguide b respectively. The
interface plane (P) has the angle ¢ with the axis z of the waveguide
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a. The bending angle between the two waveguides is denoted by A.
Various types of abrupt bends and steps explained in the Sections 4
and 5 are special cases of this general structure.

The specific problem addressed in this section is:the determina-
tion of the power coupled to various modes in the waveguide b, power
reflected by guided modes in waveguide a, and the radiation loss, when
a guided mode of unit power in the waveguide a is propagating towards
the junction.

The approach is based upon i) using the tangential interface (P)
fields as the equivalent sources for the transmitted and reflected fields
in the waveguides b and a respectively and ii) invoking electromagnetic
reciprocity to find the amplitudes of the guided modes there.

3.1 Equivalence Theorem

According to electromagnetic equivalence principle (i.e., a theo-
rem) [35], the fields outside some closed surface can be determined
uniquely from the knowledge of the tangential electric and magnetic
fields on that surface.

To apply this theorem to the specific geometry of Fig. 1 ( original
problem), the interface (P) may be considered to be a portion of a
very large surface enclosing the waveguide medium a. The fields in
the medium b of the original problem (Figure 1) can be proven [35]
to be the same as those generated by the equivalent electric (3,63")
and magnetic (Mf;q) sources located on (P) in the equivalent problem
illustrated in Fig. 3. According to equivalence theorem these sources
are given as:

j;q =ﬁxﬁp (5)

M;q=—'f&><Ep

where E’p and H p are the total (incident plus scattered) fields on
the interface plane (P) and 7 is the unit normal to this plane pointing
towards the medium b. After the application of (5) the region on the
left of the plane P in the equivalent problem (Figure 3) may now be
filled with any medium. A simple choice made in Fig. 3 is to replace
the waveguide medium a by a continuation of the waveguide b to the
left. The resulted configuration for the equivalent problem in Fig. 3
is much simpler than the original structure (Figure 1). The original
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problem (Figure 1) has thus been converted to one of dielectric waveg-
uide excitation by a planar source distribution (Figure 3).

Figure 3. Equivalent problem for the transmitted waves to the wave-
guide b.
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Figure 4. Equivalent problem for the reflected (modal) waves in the
waveguide a.
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The same procedure can be used for the determination of the
power reflected by the guided mode(s) in waveguide a (Figure 4). In
this case, according to equivalence theorem, the reflected modal waves
in waveguide a of the original structure are the same as those generated
by the sources ( —J5, —Mp' ) and propagating to the left of the source
plane P.

With the above equivalent sources we shall use the following elec-
tromagnetic reciprocity to find the modal amplitudes of the fields.

8.2 Reciprocity Expressions For the Power Transmission and
Reflection Coefficients

The electric field E, and magnetic field H, in the dielectric
waveguide b generated by the equivalent sources on the right of (P)
in Fig. 3, can be represented in terms of a finite number of guided
(bound) modes {E*,ﬁ;} and an infinite number of radiation (un-

bound) modes { E’b,,, I?b,,} as below [36]:

Eb= BiEi+/ BVE}, dv
P;\:'fb P RadiationSpectrum ( ) g
(6)
Hy=Y BEAE + / B(v) iy dv
pGZIWb PP RadiationSpectrum g

where (+) and (—) signs denote respectively propagation to the right
and left of the plane P. For 3-D guides (channel, ribs, etc.), the modal
index p is an ordered pair of integers, M, is a finite set of the guided
mode indices, and the radiation part is a 2-D integral over a 2-D con-
tinuous spectrum of v. In the case of slab waveguides (2-D structure),
the above expansion involves only 1-D summations and integrals of v.

The propagation in waveguide b is taken to be along its axis z’.
The translational invariance along the same direction allows us to ex-
press propagating modes as:

Eyf =[8up(P) + erpz(P)¥ lexn(FiBrp?') -
HE =[£Rup(P) + hups(P) 2 lexp(FiBip?)

where p is a position vector in the transverse (perpendicular to %)
plane, By, is the propagation constant of the mode p, and {€pp, htp}
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are transverse field vectors of the waveguide b. The temporal variation
of the fields is exp(—jwt).

Determination of modal expansion coefficients B;,“, B(v) requires
orthogonality relation between modes. A general form of this relation
is given below [37]:

é'bpxﬁbq-z’dzﬁ=/ g X hiop - ¥ doB=0; p#q  (8)
Sb Sb

where S, is the transverse cross section plane of the waveguide b. The
relation holds between any two forward propagating (+) modes, any
two backward propagating (—) modes, and between one guided and
one radiation mode. In the latter case, one of the modal transverse
vectors in (8) can be replaced by one radiation mode. Two radiation
modes with different propagation constants are also orthogonal.

The unknown amplitudes {B;} and the continuous spectrum
B(v) can be found in terms of the equivalent sources given in (1)
through electromagnetic reciprocity.

Following [37], we use the reciprocity relation between the field
generated by the above sources and the source-free modal fields of the
waveguide b combined with the orthogonality relation (8), to derive
the amplitudes of the guided modes in the waveguide b:

1 Y M¢
(9)

Nop = / (@p X ii,,,,) P
S

where 7p is a position vector on the interface plane (P).

If the modes of waveguide b{ebp,hbp} are normalized to unit
power, then the B+ s(p € M) give the coupling coefficients between
the input unit power mode coming along the waveguide a and the p-th
excited guided mode in waveguide b. In this case the power transmis-
sion ratios are |Bj|?.

A similar procedure can be followed for determining the ampli-
tude of the reflected guided modes in the waveguide a. The equivalent
problem illustrated in Figure 4 should be employed this time. The
equivalent sources are now radiating in waveguide a environment to
the left of the plane (P). The amplitude A, of the reflected mode
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{E ap? c;’1,,}(1) € M,; M, is the finite set of the guided mode indices) in
waveguide a may now be written as:

AT =
P 2N,,,,

where Ngp is similar to Nbp in (9). Here again if the reflected modes
are normalized to unit power, the power reflection ratios are given by

|A; 2.
Having determined the powers transmitted and reflected by guided
modes, the power lost in radiation (radiation loss) Lpeq can be found

as:
Laa=1- Y |BFf - > |47 (11)

PEM 9EM,

( I — 0 - MZ)dotp (10)

To determine various coupling coefficients and power ratios by
(10) and (9) the fields on the interface surface P, due to the incident
guided mode in the waveguide a need to be known. The exact knowl-
edge of these fields requires rigorous solution of the wave equation
which can be complicated. An accurate estimate of the interface fields
(equivalent sources), however, can be obtained by the physical optics
procedure explained in the previous Section.

The physical optics apprommatlon _proposed in this work essen-
tially consists of estimating the {J ,M{'} in rigorous expressions
(10) and (9) by the physical optics sources:

jf;q ~JjFPO
12
J\}f," ~MPO (12

The application of the method to specific guiding structures is
detailed in the next few Sections.

4. Step Junction of Dielectric Waveguides (2-D)

As the first example we study the power reflection and trans-
mission ratios of the step junction between two symmelric dielectric
slab waveguides shown in Fig. 5. This is a special 2-D version of the
configuration shown in Fig. 1
where A = 0°,¢ = 90°. There is no variation along the y-axis whxch
is taken to be perpendicular to the plane of Fig. 5.
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Figure 5. A step junction between two parallel (2-D) slab waveguides.

The incident field and its (plane wave) ray representation are
discussed first. These rays are then used to find physical optics sources
and thereby determine the amplitudes of the transmitted and reflected
modes.

4.1 Incident Field

The incident field is a modal wave (fundamental mode in this
example) in the waveguide a propagating towards the junction at z =
0. The coordinate z is defined along the axis of the waveguide a. The
latter has a parallel displacement of s with respect to the axis of the
waveguide b. The coordinate z is along the interface plane (P). With

these defined, the main components of the TE and TM fields are given
below.

The components of a unit power TE wave (fundamental mode)

(EX,HY) are:
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E;’-ly = ealye“jﬁaz
[ Crcos(ra) exp(~3Ba2) 2] < da
C1cos(7ads) expl—aa(|z] — da) — jBa2] 2| > da
(13)
_ B
Hal:x: =ha1z€ Baz = w; aly
. BE
H}, =ha1,e77Pe* = wj,u 6.7;

where C) is the (unit power) normalization constant for the fundamen-
tal mode. The modal propagation constant along 2 has been denoted
by B. and the other parameters are shown in Fig. 5. The wave param-
eters (7,4, Ba, 0o ) are found from the TE modal dispersion relations
(38, 39):

Bs =nikg — 12 = n3k§ + o

14
Qp =T, tan(r,d,) 14

Similar expressxons exist for a unit power TM incident wave after
substitutions of {E}, oy — H ly,H;*' — —E}, H}, - -E}. . n— €}
and using the TM dispersion relations:

B2 =n2k2 — R2 = n3ki — r2 = n2k? + o2,
(15)

nda, =n7, tan(r.d,)

4.2 P.0O. Estimates of the Tangential Fields over the Junction
Interface

The following gives the P.O. fields over the junction interface for
TE polarization. The corresponding fields for TM waves are similar.
Determination of physical optics sources requires the representation of
guided modes in terms of a number of homogeneous or inhomogeneous
plane wave rays. For the 2-D dielectric slab waveguides below, this
representation is exact.
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The Core region

Inside the core region (|z| < d,) the incident field (Eq. 13) can
be written as the sum of two homogeneous plane waves propagating
along directions which make angles +8, = f£tan~!(7,/f,) with the
z-axis. The incident and reflected (from the junction interface) plane
wave rays are:

nc = yﬂe%uz—jﬂaz (16)
These rays after reﬁecting back from the junction interface (P) at z
give rise to reflected plane wave rays:

E;:{sl = §RTE(z, £6, ) =L eFiTaz+jBaz (17)

where RTE(z,+8,) is the local TE pla.ne wave reflection coefficient
at z on the interface when the incidence direction makes angle +6§,
with the z-axis. The general expression (55) for RTF given in the
Appendix can be rewritten as a function of z as below:

Na(z) cos(£6,) — [ny(z)? — na(z)? sin?(+6,)]2
Na(z) cos(£6,) + [ny(z)2 — na(z)? sin?(£6,)]3

The above expression is the reflection coefficient at the planar inter-
face between two semi-infinite media of refractive indices ng(z) and
np(z) illuminated from the n,(z) side. Depending upon z, n, and np
may assume values (n;,n3) and (ng,n4) respectively. For the exam-
ple shown in Fig. 5, when z2 < £ < 23,nq(z) = n1 and np(z) = n2.
It is noted that for step junction, since ¢ = 90°, RTE(z,6,) =
RTE(z,-6,).

To find the P.O. estimate of the total field E‘go(w) at a typical
point = on the interface surface P, following the procedure of the
Section 2.2, the reflected waves at x are added to the incident plane
waves:

RTE(x, +6,) =

(18)

EPO(:D) — _&c +Emc +E7’ﬂ +E"ﬂ
—y— {[1 + R"E(z,6,)] e7i™=
+ [1 + RTE(z,-6,)] e77=} (19)

Having found the incident and reflected electric fields, the magnetic
field counterparts are obtained from (2) and (3). The P.O. estimate for
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the total z-component (tangential) magnetic field at the point = on
the interface, HE9(z), inside the core (z2 < z < z3) is:

HEO () =& - (A + Hng + A7 + A7)

A O —iox
=Bass—5 {[1 — R, 82)] e
+[1 — RTE(z, -6,)] e7™%} (20)

The cladding region

In the cladding (|z| > d,) the interface field at each point is
again found by summing up the incident and reflected fields as de-
tailed before. The only difference is that in this case the fields are
inhomogeneous plane waves defined as:

E’i",fa = §jC1 co8(Tydy)e*ede gFaz1Paz (21)

B = JRTE (2, £7)C1 cos(rada) e eFaem=3%  (29)

where v, = —sin~[jaa/(nako)] is the complez incident angle (with
respect to z-axis) of the inhomogeneous plane waves in the cladding.
The signs (+)and (-) refer to the regions = > d, and z < —d, respec-
tively. In fact, the fields in the cladding may be viewed as plane wave
rays with complex phases. These can be derived from general plane
wave expressions (2) and (3) using properly defined complex wave vec-
tors:

Eg?;;l =F ]aaﬁ -+ 18(12 ( )
23
Kl =F jout + Bat
for the incident rays having complex angles +7, relative to Z in the
cladding cover (z > d,) and cladding substrate (z < —d,) regions
respectively and their corresponding reflected waves. Unlike the guid-
ing region (|z| < d,) where we had {wo modal rays, in each cladding
region (cover or substrate) there is only one inhomogeneous plane wave
ray for each mode.
It is noted that calculation of RTE(z, +v,) in (21) and (22) by the
expression (18) requires the “analytical continuation” of this expression
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for complex values of 8, . The proper branch of RTZ should be chosen
using the knowledge of the physically correct behavior of the fields
far from the junction. It can easily be shown that with this proper
analytical continuation, the expression in (18) is identical to the general
formula (51) given in the Appendix. It is also to be mentioned that
unlike the core region, here, n; varies with z . For the geometry shown
in Fig. 5, we have:

na(Z) = n3 (24)
Ng, T >Ty

np(z) = N2y Ga =23 <L <Z4,T1 <T<T2=—dg (25)
ng, T<I

From (21) and (22), we can write the physical optics estimates for the
tangential fields (E,’:yO,H O) on the interface (P) in the cover (+)
and substrate (—) regions as:

EP 0% —(C) cos(Tads)[1 + RT (z, 7a)] % (daF2)
(26)
H}I::cozt ﬂa240 5C1 cos(Tads)[1 — RT(:E +7, )]eaa(d“q:z)

4.8 Transmission and Reflection Coefficients in terms of the
Tangential Fields

The amplitudes of the normalized (unit power) TE guided modes
Bgt (waveguide b) and the reflected (fundamental) mode A~ (waveg-
uide a) derived from (10) and (9) and physical optics sources (1) ob-
tained from (19),(20), and (26) are given below:

BEF =£§§'—6:—2ﬂ]-3%/_ [1 = RTE(z, 0)T°eary () ebmy (z)d2

A =gty [ T et
re = ,Ba. Bb

A 27)
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where {€smy} and {ewmy} are transverse modal distributions for the
electric fields in the waveguides a and b respectively (see Eq. 7).
The superscript e denotes the TE polarization and the normalization
constants (Num, Na1) are defined in connection with (9) and (10). The
incident angle Q is defined as:

Q={6"’ T < T <Z3
Yoy T < T2, >3

(28)

The corresponding coupling (BR+) and the reflection (A%~) co-
efficients for the TM polarization are derived in a similar manner. The
results are:

gh — _30% “(ﬁa ﬂb)

™ =" Nom n2(@)  m2o)

[t = B™ (2, Q)" (@)]haty (2) homy (2) de

TM
e 60)\oﬁa / R nzgz)n) o (@)
h _ﬂa/ni(w) — By/né(z)
B = G/ (@) + B/t (@) (29)

where hqyy and hpypy are the magnetic fields of the fundamental TM
mode in the waveguide a and the m -th mode in waveguide b respec-
tively. In analogy with RTE(z,Q) for TE case discussed above, the
local reflection coefficient RTM(z,Q) is given here for TM polariza-
tion:

COS(Q)/na(w) — [1 — nga(z)?sin®() /nf] 3 /ns(z)
T c08()/na(z) + [1 ~ na(x)2 sin2(2)/n2]3 /ny(z)

where the incident angle Q2 with respect to the normal to the interface
plane P is defined in (28) and, as it has been discussed earlier in
connection with relation (27), may take real or complex values. The
expression (30) is derived from (51,55) in the Appendix.

It is worth mentioning that the integrals in (27) and (29) can
be calculated analytically with closed form results [40]. This indicates
very high computational efficiency of the method.

R™ (2. Q) = (30)
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4.4 Sample Applications and Comparison with other Methods

In Figures 6 to 9, transmission and reflection coefficients as pre-
dicted by (27) and (29), are compared with those obtained by other
methods for some typical step junctions in dielectric slab waveguides.
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Figure 6. The fundamental mode reflection coefficient (|A7"|) of the
waveguide a and the transmission coefficients (|B{"| ,(|B5T|)) for the
first two modes of the waveguide b for the junction of Figure 5 when:
dy/dp = 0.2, ny = ny, ng = nq4 = 1, s = 0, and nykod, = 1, obtained by
the P.O. method (dotted line) and the integral equation approach (solid
line). The normalized frequency of waveguide b, V}, = kodb(n2 - n2) /2,

A symmetrical step between two dielectric slabs with largely dif-
ferent widths are studied in Figs. 6 and 7. The fundamental TE mode
is coming along the waveguide a. The reflection coefficient A$~ (plot
“TE$”) of the waveguide a and the transmission coeﬁ’iclents Bt
(plot “TE$”) and B¢ (plot “TE%”) for the first and second modes
in the wavegulde b as a function of normahzed frequency are shown in
Fig. 6. The Figure 7 illustrates variation with d, of the reflection coef-
ficient, transmission coefficient (fundamental mode), and the radiation
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loss given in (11) for the same junction when ngkod, =1 and V, =2.
As it is obvious from the Figs. 6 and 7, the numerical results of the
present (physical optics) method agrees very well with those generated
by a more rigorous integral equation approach [18]. Although the phys-
ical optics estimate for the interface field (see Section 2) is essentially a
short wavelength approximation, they have produced accurate results
even when the wavelength is considerably larger than the slab width
in Figure 7 (nikod; < 0.2).

0.1 o eftection Coet AT o RN
o b T
0.01 0.1

da/ dy

Figure 7. The fundamental mode reflection coefficient (|A; |) of the
waveguide a, the transmission coefficient (|Bf*|) of the waveguide b, and
the radiation loss (Eq. 11) for the junction of Figure 6 when Vidy, = 2.
obtained by two methods: P.O. (dotted line) and the integral equation
approach (solid line).
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Figure 8. The reflected power (|A;”|?), the power transmission (|B*|?),
and the radiation loss (eq. . 11) of an axially misaligned step junction
(Figure 3) between two similar slab waveguides (single-moded) (d, =
dy = d,kod = 1.,n1 = ny = 1.6,n3 = ng = 1) by three different methods:
P.O. (0), plane wave spectrum (¢), and boundary residual method (+).

Power transmission/reflection and the radiation loss of a junction
between two axially misaligned dielectric slab (single-mode) waveguides
of Fig. 5 are shown in Fig. 8. The dependence on normalized axial
displacement (s/2d) as is predicted by the present method is compared
with those obtained by a plane wave spectrum technique [41] and the
“Boundary Residual Method” [17]. The slab waveguides have small
widths (< A/3), but the physical optics (present method) results have
very good agreement with those of the other two approaches.
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Figure 9. The TE and TM power transmission ratios (|B{"**|2), (|BS"*[?),
(fB;’M'}z) of a general junction of the type shown in Figure 5 (n; =ny =
2.3,n3 = ng = 2.15,d, = 0.25um, dp = lum, Ao = 1.3um) computed by
FD/TD (TM:¢, TEmn) and P.O.(TM:+, TE:x).

Fundamental mode power transmission and coupling to higher or-
der modes in a general type of asymmetric step junction between two
dielectric slab waveguides as a function of the axial displacement s
are examined in Fig. 9. Both TE and TM cases have been studied. In
both cases, the fundamental mode (TEo or TMy ) is coming along the
waveguide a . The plots illustrate the variation of the amplitudes of the
fundamental mode (TE ¢ and TM ), the first (odd) mode (TE; and
TM ), and the second (even) mode (TE2 and TM,) in the waveg-
uide &, with the axial displacement. The physical optics results are
compared with Finite Difference Time Domain (FD/TD) simulation
[42], which is considered to be rigorous, in the Figure 9. Excellent
agreement is obtained in all the cases.
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5. Abrupt Bends in Dielectric Waveguides (2-D)

A conventional (L-R) symmetrical abrupt bend in a dielectric
slab waveguide is a special 2-D version of the general configuration of
Figure 1 when n; = ng,ng = n4,¢ = 90°— A/2, and there are no step
discontinuities on the interface plane which means that Q; and Q3
coincide with Q2 and Q4 respectively.

In this section we study a more general structure where the slab
waveguides forming the bends, are not similar. The abrupt bend under
consideration is now shown in Fig. 10.

The application of the method to conventional abrupt bends in
dielectric slab waveguides and a new design including a step change
in dielectric index across the interface (SRI) have been described in
[25]. In this section we present the essential steps along with some new
results on comparison with other techniques.

Figure 10. Abrupt bend with two different slab waveguides.
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5.1 Transmission and Reflection Coefficients

Consider TE polarization first. A unit power TE (Ein¢) funda-
mental mode propagates along the waveguide a towards the junc-
tion. We determine the coefficients of coupling to various modes in
the waveguide b and the amplitude of the reflected mode(s) in the
waveguide a .

The incident field is the same as that in Section 4 and so is given
by (13). For convenience we define a coordinate X along the inclined
interface in Fig. 10.

Inside the core region (]| < d; or Xo < X < X3 along the
interface) the incident field can be represented by a sum of two plane
waves. Following the procedure described in Section 4 and [25], to find
the total P.O. field EBEC at a typical point X on the interface surface
P, the reflected waves at X are added to the incident plane waves
this yields:

EEO(X) =Eirg + B¢ + ETJ} + ETJ]
_»_C__'_l_ TE(yv T —jks1zX
=% {[HR (X, ¢+5a)] e
+ [+ BTE(X, 2 - ¢ = 8,)e k=X |}
k+1x =B cos(¢) + sin(¢)

(31)

where the incident and reflected +6, plane waves are given by the
expressions (16). RTE(X,Q) is the local TE plane wave reflection co-
efficient at the interface point X when the incidence direction makes
angle ) with the normal to the interface plane (P) and is again given
by (18). However, in contrast to step geometry (Figure 5), here, as
is clear from Fig. 10, the interface plane makes an angle ¢ with the
z-axis and therefore Q =7/2 — (¢ F 8a) for +6, -rays in (16).

Depending upon the value of X, (n,,n) may assume values
(n1,n3) and (ng,nyq ) respectively. For the example shown in Figure
10, n,(X) =n; and np(X) =ne.

In the cladding (Jz|] > do or X < X2,X > X3), the interface
field at each point X is again found by summing up the incident and
reflected inhomogeneous fields as follows:
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EII)’Oi(X) — Evinc + E.rﬂ
= §JC1 cos(Tads)[1 + RTE(X, g — & F Ya)]ede g Tkr1=X

ki3x = Bacos(¢) F jaa sin(¢)

(32)
where (+) and (—) signs denote cover (X > X3) and substrate (X <
X1) respectively, Eerfl are given by expressions similar to (21),
and 74, = —sin~![ja./(n3ko)] . The reflection coefficient RTF above
is given by standard formula (18) but after analytical continuation to
complex range of values for +8, in the cladding and the substitutions:
ne(X) = n3 and np(X) = ng . The arguments related to complex wave
vector in (22) and (23) in previous section apply equally well to this
case.

P.O. estimate for the magnetic field is obtained by following ex-
actly the same procedure as we used in the Section 4.

The expressions (31) and (32) contain only the contributions of
singly reflected waves. It is possible to include the effects of higher
order reflected waves [25]. In many practical cases, however, since the
reflection coefficients are small, these multiply reflected waves do not
have a significant contribution to the total interface fields.

Using the physical optics sources (1) after substituting the fields
by the estimates (31) and (32), back in the integral expressions (9) and
(10) we can obtain various transmission/reflection coefficients and the
radiation loss of the junction. It is interesting to note that, like previous
case, all the integrations in (9) and (10) can be carried analytically with
the final results casted into closed form formulas.

The closed form formulas for the transmission coefficients for both
TE and TM cases along with the contributions of multiply reflected
rays are detailed in [25]. The latter contributions, as mentioned earlier,
are not significant in many practical applications.

5.2 Accuracy of the Method and Numerical Results

In this section, we present numerical results for some examples
and study the accuracy by comparing them with those obtained by
other techniques.

In [25]) a symmetrical conventional abrupt bend in dielectric slab
waveguide was chosen for evaluating the accuracy of the method. This



224 Safavi-Naeini and Chow

structure is a special case of the geometry depicted in Figure 10, where
the waveguides at both sides of the junction are the same (d, =
dp,n1 = n2,n3 = N4, ¢ = 90° — A/2) and located symmetrical with
respect to the junction. For this type of bend our physical optics ex-
pression for the power transmission ratio |Bj|? given by (9), turns
out to be identical with the first iteration solution in a more rigorous
iterative numerical procedure described in [23]. The latter was shown
[23] to be very accurate. That conclusion also validates our method for
treating such problems.

'P.O.
'FD-TD! o

Power Transmission Ratio
(=]
-
S

4 6 8 10 12 14 16 18 20

AO

Figure 11. TE power transmission ratio (|B{*|?) of a SRI bend (n, =
1.502,n2 = 1.790,n3 = 1.5,n4 = 1.789,d; = 3Xo, ¢ = 40.0°) optimally
designed to have minimum loss at A = 10° obtained by two methods:
P.O. (solid line) and FD/TD (o).
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To assess the accuracy of the method on a more reliable basis, we
compare in Fig. 11 the fundamental amplitude transmission ratio |B; |
predicted by (9) for a Stepped Refractive Index (SRI) unconventional
bend (see Figure 11), with that obtained by the Finite Difference Time
Domain (FD/TD) described in [42]. In SRI bends, to redirect the inci-
dent wave towards the bent waveguide with minimal loss, the refractive
indices are chosen to have step changes across the junction interface
plane P . The (SRI) bend under study has been designed according to
the criteria (33,34,35), which shall be discussed later, for minimum loss
at A = 10°. The disagreement between the two methods (normalized
to maximum transmission) is less than 5%.

6. Minimum Loss Criteria for Bends Containing SRI
Interface

P.O. method provides us with a good insight in not only the cause
of the radiation loss of an abrupt bend but also possible approaches
to minimize it. From such insight in [25] we proposed a new low loss
junction design based on an appropriate change in the refractive index
across the junction interface plane P in Figure 10. Such interface, as it
was mentioned earlier, is called the Stepped Refractive I ndex (SRI)
interface. In this section, we shall discuss the minimum loss criteria of
such surface.

6.1 Basic Criteria for Radiation Loss Reduction by a SRI Inter-
face

The radiation loss can be greatly reduced by improving the match-
ing between the field distributions of the incident (plus scattered) wave
in the waveguide a and the guiding mode in the waveguide b [25] (see
Figure 10). This is particularly obvious from the integral expressions
(9) and (10).

To improve field matching and reduce the (bending) radiation
losses, following criteria have been proposed [25]:

nycos(@) = nacos(¢p + A)  “Snell's Law” (33)
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¢ = 90° — tan™! (%) “Brewster Angle (TM)” (34)
Va =W, %;' ~ %j— (35)

where V, = koda[n? — n2]"Y/2 and V4 = kods[nZ — n2]~'/? are the
normalized frequencies of the waveguides a and b respectively. The
equality of the normalized frequencies (35) is a more precise version
of the condition (iii) in [25]. A similar condition was stated (without
proof) in [43] as a basic guideline for designing low loss curved bends
and tapers.

The Snell’s law implies that paraxial modal rays in the waveg-
uide a refract by the interface P into those of the waveguide b and
therefore matches the phase along the interface.

For TM polarization, if the modal rays in the waveguide a have
Brewster angle of incidence (see the eq. . 57 in the Appendix), no P.O.
reflected field will be generated at the interface and the transfer of
power to the waveguide b will be improved.

While the Snell’s law results in phase matching, the criterion (35)
improves the amplitude matching between the interface field and the
modal field of the waveguide b significantly. To prove this, it may be
noted from (14) and (15) that the criteria (V, = V4, n1/ns = na/ny)
lead to:

Qady =0pdy, Tala = Tpdp(TE)
(36)
Aol ~apdp, Tala = Tpdp(TM)

for each mode. From the above relationships and the geometric con-
sistency condition: d,/sin(¢) = dp/ sin(¢ + A) ,the following equalities
can easily be derived:

cos(Ta X sing) = cos(%féX sin ¢)
= cos[pX sin(¢ + A)] (37)

cos(T.d,) explaa(ds F X sin ¢)]
= cos(Tpdp) exp{aa[dp F X sin(¢ + A)]}
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for all X . These equalities which are exact for TE modes and nearly ex-
act for TM modes, indicate that the modal distributions of the waveg-
uides a and b are identical or nearly so over the junction interface
plane. Since the reflection coefficients RTETM  are often very small
and therefore the physical optics estimates for the interface fields are
close to the incident modal field, the equalities (37) also imply the
amplitude matching mentioned earlier. The effectiveness of the design
criteria (33,34,35) in minimizing radiation loss is now verified numeri-
cally.

\ T Y T {
P ) i
o ’ .
W Coaonventional
E * ymmetric Bend
R TE,TM
T
R
A
N 0.6
»
I 0.5
s
5
I 0.4 : -
o
K \ SRI — Bend \

0.3 :
R \\ : :
A
T 0.2 .
I
5 i
0.1 F
]
) 2 4 6 8 10 12

A° BENDING ANGLE [degree]

Figure 12. TE power transmission ration (|B{*|?) of the SRI bend of
Figure 11 optimally designed to have minimum loss at A = 10° compared
with that of a conventional symmetric bend (n; = ny = 1.502,n3 =ng =

1.5,¢ = 90° — A/2).

6.2 Numerical Verification

Having established the accuracy of the P.0. method in previous
Section, in the following we use this method to examine interesting
characteristics of properly designed (SRI) abrupt bends.
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The power transmission ratios |Bj|? of the improved (SRI) bend
of Figure 11, as a function of the bending angle (A) has been plotted in
Fig. 12. The same ratios for a conventional symmetrical bend has been
included. The plots of the Fig. 12 indicate that the large angle bending
loss is minimized by following the design guidelines expressed by the
criteria (33,34,35). The significance of the condition (35) is particularly
clear from the Figure 13 where the variation of the power transmission
ratio of the improved bend has been plotted versus V;/V; . In both TE
and TM cases, the minimum loss appears around V;, =V, .
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Figure 13. Power transmission rations (|[B"|2) of a SRI bend of the
type shown in Figure 10 (n; = 1.502,n, = 1.790,n3 = 1.5,dy = d, =
3Xo0, ¢ = 40.0°, A = 10°) as a function of V,/V, (n4 varies from 1.79 to
1.77) for TM (solid line) and TE (dotted line) cases.
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Figure 14. TE mode coupling coefficients (|B{T[,|B5*[,|BST|) and the
total power transmission

(IB$*|2 + |BST|? + | B$T|?) of the SRI bend of Figure 10 (n; = 1.55,n, =
1.833,n3 = 1.545, ng = 1.828, d, = 3um, Ag = 0.7um, ¢ = 60.0°).

SRI bend can also be designed to excite higher order modes very
efficiently. In multi-mode structures, the coupling between the guiding
modes in the waveguides a and b is a function of the bending angle
A . The amplitudes of the first three TE modes in the waveguide b
when the TE fundamental mode incidents along the waveguide a, are
shown in Fig. 14. It is interesting to note that the coupling maximum
occur when the incident modal rays (waveguide a ), upon refraction
at the interface, approximately align with those of the guided modes
in the waveguide b. The maxima of the couplings to the TE; and
TE > modes are located at £2.5° and +3.7° with respect to A = 5°
(maximum transmission bending angle), respectively. These are very
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close to the angles of the modal rays of the latter two modes with
respect to the axis of the waveguide b, which are 2.7° (TE; ) and 3.9°
(TE ) respectively. This coupling mechanism is very similar to that
for excitation of various modes in a large open-ended waveguide when
a plane wave illuminates (from outside) its open end [44]. The total
power transmitted to the waveguide b is also plotted in the Fig. 14.

A more detailed study of the performance of the SRI bend is given
in [25].

7. Y -Junctions in Dielectric Waveguides (2-D)

An extension of the present physical optics method has been used
in [26] to analyze and design Y -branches in dielectric slab waveguides.
The general Y-branch structure investigated by the authors is shown
in Fig. 15. It is actually composed of two bend of the type shown in
Fig. 10. A conventional Y -branch is an special case of this structure
when n; =ns and n3z = ny.

In what follows, we describe the physical optics analysis of the
general configuration of Fig. 15. The incident field is assumed to be
fundamental mode of the waveguide a coming from the left towards
the junction. The waveguide a joins two tilted waveguides b and c
along two inclined planar interfaces. The amplitudes of the propagating
modes in the latter are to be determined.

(P,) n,
ng el
2d ¢ 1
- “:
'
n

z=L

Figure 15. A general symmetric Y-branch with two SRI interfaces.
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7.1 Extension of the P.O. Method to Y -branches

To apply physical optics and equivalent principle to Y-branches,
the interface surface is taken to be composed of the junction planes
(Py) and (F).

The derivation of the P.O. surface fields is similar to that for
bends [25] and is detailed in [26]. It is to be mentioned that in the case
of Y -junction, the multiple reflections between the interface planes P,
and P. should be taken into account.

The major difference, however, is that the reciprocity relation (9)
cannot be applied directly to a Y -junction. As a matter of fact, the
latter expression is only applicable to the cases such as bends or step
junctions where the field distribution on the right hand side of the
interface (in the absence of the interface and the medium a) has a
well-defined modal structure. For other structures like Y -junctions,
{E;, Hz} must be modified. This point needs some clarification.

The medium on the right hand side of the interface surface (P,)+
(P:) is not a simple waveguide as was the case in step junctions or
abrupt bends. Therefore the expansion (6) may not be a valid repre-
sentation of the field in this region, especially close to the branching
point. However if the branches are sufficiently long and the branching
angle (24) is not very small, the interaction between the branches
at the output plane is very weak and so the guided wave part of the
expansion in (6) may still be used to express the modal field of each
branch waveguides in that region. Under these circumstances, over the
output plane (z = L; L is sufficiently large in Fig. 15), the fields Eb,c
in branches & and ¢ can be represented in terms of a finite sum of
the guided modes E;}  of these waveguides in isolation:

M,

Ey(z,L) =) _ BLE} (2, L) (38)
m=1

-+ Mc -

Ee(a,L) =)  ChEL.(z,L) (39)
m=1

where M, . are the number of the guided modes in the waveguides b
and ¢ respectively and the unguided (radiation) modes are assumed to
be negligibly weak at 2 = L. It should be reemphasized that the modal
expansions (38, 39) are only valid at distances far from the junction.
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To apply reciprocity relation (9) for the Y -junction depicted in
Fig. 15, the modal fields {E; ,H, } should be replaced by the in-
terface field for the “reciprocal problem” with wave incidence as illus-
trated in Fig. 16. In this problem, the incident fields are modal waves of
the branch waveguides b and ¢ propagating from the far right (output
plane z = L) towards the junction, in the absence of the SRI interface.
Despite this, the field on the junction planes P, and P, is evidently
not a simple sum of these modal waves. The interactions due to the
proximity of the walls of waveguides b and ¢ at the branching region
must be taken into account.

Figure 16. The equivalent problem for determination of the modal am-
plitudes of the transmitted fields in the branches (reciprocal problem).

The interaction between the adjacent walls of the waveguides b
and ¢ can be modeled by evanescent rays [45,46] from one wall, say
at b, generating P.O. sources on the other wall, say at c¢. These P.O.
sources in turn radiate (with cylindrical Green’s function) onto the
(SRI) interface. This extra field due to the proximity effect is then
added to the modal fields to give the total P.O. fields (Eyy, Hpx) on
the SRI interface. Thus for the especial case of a symmetrical junction
under TE (E,) excitation, the reciprocity relation (9) for the pth
mode in guides b and ¢ has the form:
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1

Bf=Ct=-—-
2Ny

oc

o p /0 (EayHyx — EwyHox)dX (40)
where (E,y, Hyx) are the tangential field distributions over the inter-
face due to the unilt power incident modal wave from the waveguide
a at the left and (Eyy, Hpx) are the above mentioned P.O. estimates
for the interface fields (i.e., equivalent currents) due to pth modes of
the waveguides b and ¢ propagating from the far right in the recipro-
cal problem discussed above. The derivations are detailed in [26]. The
modal amplitude transmission coefficients B (from the waveguide a
to b) and Cy (from the waveguide a to c¢) can be used to find the
total power transmission ratio T' (single mode operation) as follows:

Mb Me
T=Y |BfP+ > ICHP (41)
p=1 p=1

7.2 Accuracy of the Method

The accuracy of the method is now examined by comparing its
numerical results for a conventional Y-junction (without SRI) with
those of the normal mode theory (step approximation) {7] and Volume
Current Method (VCM) [14]. We assume only the fundamental mode
propagates along the waveguide.

The variations with the core refractive index n; and the width of
the waveguide a of an ordinary symmetrical Y-junction (n; = ng,ng =
n4) have been plotted in Figs. 17 and 18. The junction does not have a
tapered transition region and d, ~ 2d, = 2d.(¢ = 90°) . The refractive
index of the cladding is taken to be n3 = n4 = 1. The plots of Fig. 17
show that in the case of a moderately wide angle branch (A = 3°),
the total power transmission improves when the core refractive index
increases (stronger confinement of the field). The Y -junction in Fig. 18
is a narrow angle weakly guiding structure. In both cases the numerical
results of the present method has very good agreement with those
produced by VCM [14].
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Figure 17. The TEg total power transmission of a conventional (n1 =
ng,nz =ng = 1,kdy, = 5,d, = 2dp, = 2d.) symmetric Y-junction with the
branching angle 2 A = 6° as a function of n; by two methods: P.O. (o)

and VCM (+).
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Figure 18. Variation with kd of the TEy total power transmission of a
conventional (n; = ny = 1.003,n3 = ng = 1,d, = 2dp = 2d. = 2d) sym-
metric Y-junction with the branching angle 2A = 2° by two methods:
P.O. (¢) and VCM (+).
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Figure 19. Variation with half branching angle A of the TE; total power
transmission of a conventional symmetric Y-junctionn; = ny = 1.521,n3 =
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The Figure 19 illustrates the total power transmission ratio of
a symmetrical Y -junction including a relatively long tapered section
to achieve a smooth transition between an input waveguide a and
two similar waveguides b and c¢ of the same widths (d, = dp = d¢)
The transmission ratio is plotted versus junction half angle A. The
inclusion of a long tapered section between the input waveguide and the
branches was not provisioned in the original version of our method and
so its application to this structure required some slight modifications.
However, as it is obvious from the Fig. 19, our results agree well with
those of the normal mode theory with step approximation (7).

7.8 A Novel Design for Low Loss Applications

In [26], we used the present physical optics analysis method to
design and investigate a normal Y -junction structure of the type il-
lustrated in Fig. 15 with n; # ng and ng # n4 . Based upon the SRI
concept for the abrupt bend, discussed in the Section 6, two interface
planes P, and P with step changes in the refractive indices (SRI
interfaces) were added at the junction. Then it was shown that if the
parameters {ng,n4, ¢, A} are chosen according to the criteria (33),
(34), and n;1/ng2 = n3/n,, the radiation loss will greatly be reduced.

In Figure 20, the TE total power transmission 7" of a symmetrical
conventional Y -junction is compared with that of a (SRI) Y -junction
as the branching angle (2A) increases from 1° to 10°. The significant
transmission improvement is mainly due to better (especially phase 3
matching between the incident (plus scattered at the junction) field
and the reciprocal interface field, caused by SRI’s.

It is evident from the criteria (33) and (34) that for Y -branches
with wider branching angle, larger changes are required in refractive
index across the SRI interfaces. For the current state of the art, how-
ever, small index changes of the order of 1% are feasible. It was shown
[26] that when the relative index changes are of the order of a few
thousandths, the Brewster angle criterion (34) is not necessary. By
eliminating the latter criterion, SRI wide angle (2A = 6°t010°) Y-
junction designs with very small index changes of the order of 0.003
with very low loss became realizable. Some examples of such type were
reported in [26].
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8. 3-D Structures: Abrupt Bend in 3-D Channel Wave-
guides, Comparison with Experiment

Many 2-D examples have been discussed thus far. However, the
general formulation presented in the Sections 2 and 3 can be applied to
3-D geometries as well. As long as the relevant features of the structure
under the study do not have characteristic dimensions much smaller
than wavelength, physical optics approximation should produce reli-
able results. }

In this Section after a brief introduction of the main approaches,
a P.O. analysis of an abrupt bend in 3-D diffused channel waveguide is
outlined. The theoretical results produced by P.O. method applied to
a special S-bend, are then compared with available experimental data.

8.1 P.O. Analysis of 8-D Structures

Two basic schema may be followed for treating 3-D structures.

The first and perhaps the simplest scheme, which is particularly
appropriate for the 3-D structures supporting paraxial guided waves, is
to construct an equivalent 2-D structure with similar propagation char-
acteristics. The methods based on “Effective Dielectric Index” (EDI)
concept [47] are possible approaches for this purpose. An example will
be discussed later.

A second scheme which is under investigation and is not yet com-
plete, is a two step procedure. First we find the modal field profile of
the 3-D structure by some efficient numerical technique and represent
it approximately in terms of a finite sum of plane wave rays. In the next
step, we use physical optics estimates of the equivalent surface sources
for each plane wave constituent in a reciprocity expression similar to
(9). The evaluation of the latter expression now involves a 2-D inte-
gration over the interface. Although it may be more involved than the
1-D integral for 2-D cases, the procedure is still computationally much
faster than the other existing numerical methods.

8.2 Abrupt Bend in 3-D Diffused Channel Waveguide

In [27] we employed an EDI approach to construct a 2-D slab
waveguide with the same propagation constant as that of a 3-D dif-
fused channel waveguide. In the following, the essential steps will be
discussed.
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Figure 21. The top view of a general 3-D junction between two different
diffused channel waveguides.

The abrupt bend under study is shown in Fig. 21. Two differ-
ent diffused channel waveguides (Ti:LiNbO3) form a junction with
the interface plane (P). The cross section of a 3-D diffused channel
waveguide is illustrated in Fig. 22. To model the 3-D bend of Figure
21 by the 2-D junction of Fig. 10, we present a two-step procedure for
constructing a 2-D slab waveguide (Figure 23) having the same propa-
gation characteristics as those of the original 3-D guiding structure of
Fig. 22.

In the first step we find the propagation constant B and the
modal size parameters of the channel waveguides forming the junction
(Figures 21 and 22). At this point some preliminary remarks are in
order.
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Figure 22. The cross section (z — y plane) of the 8-D diffused channel
waveguide.

Ly

Figure 23. The cross section (z — y plane) of the 2-D equivalent slab.
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Diffused channel waveguides are nonhomogeneous guiding media.
For the case of diffusion times longer than the time required for com-
plete diffusion of the (Ti) metal strip into the substrate, the refractive
index distribution (profile), n(z,y) (see Figure 22), is predominantly
Gaussian in depth ( —y direction in Figure 22) and complementary
error function in width (z direction) [48]:

n*(z,y) = ng + (n? —n}) f(y/D)g(2x/Wy) (42)

where
1(y/D) fexp—(y/d)?7 y<O0

o2/ We) = {ert [F1+ 22| +ers [0 - 2]}

ny is the bulk index, ng, is the surface index, and Wy, is the width of
the metal (Ti) strip before diffusion. The diffusion depth, D, as a func-
tion of time ¢ and temperature T isgivenby D = 2v/Dot exp( To/2T)
where Do and Ty are some constants. o

The corresponding modal field distribution of diffused channel
waveguides have been studied both theoretically [49] and experimen-
tally. In the simple case of the isotropic diffusion, it was experimen-
tally shown [50] that the electric field of the fundamental propagating
mode in the diffused channel waveguide is approximately a product of
a Hermite-Gaussian function along the depth and a regular Gaussian
function along the width namely (for TE polarization),

B} (2,4,2) = Aou(z)ol(y) exp(j62) (43)

-] et o

y 1y,
u(y) = [hﬂm [flew =3 (45)
where w and h (to be determined below) are the modal size parame-
ters of the field along the width (2 direction in Figure 22) and depth
(—~y dlrectxon) respectxvely and Ag is a normalization constant for
unit power. - . - . - S
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We compute the above modal parameters using the following vari-
ational equation, derived-in [51], for propagation constant -(or the ef-
fective index N = B/ko.):

)

- L | N |
AN = {2(D/Wst)2(h/b)2 - 2(w/W )2 + (2"chkoCstht) (

212 1 /h
«[2] [1 +3(5) ]
r- 1/2

x erf (1/,r [(w/W,t)z +8(D/W3't)_2] ) / [2 (koWiz)? n,,]}
(46)
where AN = N —ny, D is the diffusion depth, n, is the bulk refractive
index, and (s is the thickness of the (Ti) metal strip before diffusion.
The parameter x. is the change in the refractive index per unit change
in metal concentration which has been estimated according to the rec-
ommendations of [51]. Using the variational properties of (46), we can
now determine the modal size parameters h and w by ‘maximizing

AN for a given diffusion process. - ~

In the second step, we are to construct an eqmvalent 2-D slab
waveguide (Figure 23) which has- (¢) the same propagation constant
(B) and (i) the same field profile along z -direction as those in the 3-
D diffused channel structure of Figure 22. The parameters (n;,ns,d,)

of 2-D slab waveguide are found by minimizing the following mean
squared difference, .

-3/2

+00 - -
/ |ustab(T; 1,13, da) — u(z)|*dz (47)
—o0 ; ,
while keeping 3 constant. e

This modeling scheme is used to convert the original 3-D bend of
Fig. 22 into an equivalent 2-D (SRI) abrupt bend of the type shown in
Fig. 10. The P.O. analysis detalled in Section 5 can now be applied to
this equivalent structure.

From our experience the 2-D model usually produces accurate re-
sults when the discontinuity (e.g., junction interface plane P in Figure
21) modifies the incident modal field (or rays) primarily in one plane
(z — z in our problem). :
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Performance Analysis of Low Loss S-Bend in 3-D Diffused Chan-
nel Waveguide and Comparison with Erperiment

In the following, we apply our modeling scheme to the analysis of
an especial low loss S-bend in diffused channel waveguide loaded with
micro-prisms designed and fabricated by Korotky et al. [52] and shown
in Fig. 24. In this S-bend, to minimize radiation loss, the optical path
lengths of the inside and outside edges of the bending waveguide is
equalized by introducing a series of micro-prisms.

Figure 24. Reduced loss S-bend channel waveguide (3-D) containing mi-
croprisms (Korotky et al., [52]).

a) Moicro-Prisms’ Losses

The micro-prisms of the S-bend of Fig. 24 may be considered
to be a succession of the junctions of the type shown in Fig. 21. In
more detail, the small segments of the curved waveguides inside each
prism and between two successive ones can be approximated by short
straight sections. The slight abrupt bend formed by two short straight
sections meeting at one face of a prism (one outside and the other one
inside the prism or CROWN region) may be identified with that in
Fig. 21. These 3-D junctions are then modeled by 2-D ones of the type
shown in Fig. 10, via the conversion procedure of the Section 8.2.
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The total loss incurred for traversing the S -bend is thus deter-
mined by summing up the contributions of all these 2-D partial bends.

The 2-D modeling scheme described above is particularly suitable
when the radius of curvature is large and the radiation loss of the small
curved segments inside and outside the micro-prisms can be neglected.
For small radius of curvature, as it will be shown shortly, the accu-
racy can be improved by adding the bending losses of the intermediate
curved sections.

The waveguide and the CROWN region have been designed [52] to
result in complete path length equalization (minimum radiation loss)
at the bend radius R =~ 4.0 mm. The refractive index of the bulk
material is around 2.2 and the other parameters of diffusion process
for the regions inside and outside the micro-prisms are given in [52].
The index change of the crown region is approximately An ~ 0.01
and the other parameters are shown in Fig. 24.

The exact number of micro-prisms in the fabricated S -bend is not
given in [52]. As an estimate for our computation here, the number of
micro-prisms is determined by dividing the total length of the S-bend,
Ls by the length of the base of each triangle (micro-prism) which is
12 pm for the structure illustrated in Fig. 24. The total length Lg
as a function of radius of curvature R is given by Lg = 2Rcos™}[1 —
h/(2R)] where h(= 100um) in Figure 24) is the displacement between
the input and the output channel waveguides.

The angle of deflection caused by each micro-prism can be ob-
tained approximately by dividing the total arc angle of the S-bend,
namely Lg/R, by the number of micro-prisms. One half of this angle
gives the bending angle A of the 2-D junction of Fig. 10; the latter is
the 2-D model for each face of a micro-prism. The inclination angle ¢
in the latter model, for the geometry shown in Fig. 24, is about 71.5°.

For the specific experimental structure of Fig. 24, at A = 1.56um ,
our theoretical results and the experimental data [52] are plotted in
Fig. 25, against the radius of curvature R. From the formulas of the
last paragraph it turns out that the refractive indices of the equivalent
slab waveguides closely satisfy the criterion (35). It may be noted that
in Fig. 25 the model parameter n4 has slightly been adjusted from
the value given by (35), to make our theoretical prediction for largest
radius R = 40 mm to match the experimental value.
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Figure 25. The bending loss of the S-bend illustrated in Figure 24 as a
function of the bend radius R: measured (solid lme) [52] and theoretical
results (plots A: and B)

"The curve A in Fig. 25 is the result of our simple.theory which
assumes straight waveguide segments between the interfaces of micro-
prisms and thus neglects the small radiation losses of the actual curved
segments. The agreement between this theory and the -experiment is
very good up to the point of experimental minimum loss (R = 5.5
mm). Beyond this point to achieve good agreement we need the mod-
eling scheme of subsection b) below.

Before closing this subsection it is of interest to pomt out that the
theoretical (plot A) minimum loss occurs at the radius ( R ~ 3.8 mm)
where the optical path length equalization condition of the micro-prism
holds. For smaller radii, the reappearing of the phase-mismatch over
the micro-prism faces gives a sharp rise in radiation loss which is clearly
shown in plot A of Fig. 25.
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b) Additional Loss of Intermediate Curved Sectzons Without SRI
Interface o

The experimental minimum bending loss (“excess loss” in [52]) is
observed at a larger radius ( R =~ 5.5 mm instead of 3.8 mm). This dis-
crepancy is mainly due to radiation losses of the intermediate curved
sections neglected in the above theory (plot A in Figure 25). To demon-
strated this effect we modeled these sections by another series of partial
bends of the type shown in Figure 10 but this time with a symmetric
structure and with no prism (i.e., ny = ng,ng = n4,¢ 90° — A/2).
The total loss (plot B of Figure 5) is then calculated as the sum of
the losses (in dB) of these partial bends and that of the plot A. It
is observed that the enhanced model has a good agreement with the
experimental data even at small bending radius. ~

The good agreement with the experimental minimum bendlng
loss gives us a physical insight in the designing of bends, channel or
slab, with micro-prisms. The straight intermediate sections of waveg-
uides between the micro-prisms, as assumed in subsection a) above,
would lead to lower loss compared to the configuration of Figure 24
where these sections are curved. The reason is that a prism designed
according to the Snell’s law (33) and the equality of the “normalized
frequency” V expressed in (35), corrects the phase mismatch across a
bend completely whereas in a curved dielectric waveguide the modal
phase-front is always distorted. This dxstortxon always causes radiative
k)ss

9. Conclusions

A physical optics method for analyzing the radiation loss. power
transmission; and mode coupling characteristics of the junctions in di-
electric waveguides has been presented. The method was based upon
using the physical optics estimates of surface fields as equivalent sources
in a reciprocity formulation of dielectric waveguide excitation problem.
The method has been shown to the insightful, accurate and (compu-
tationally) very fast.

Typical applications to 2-D step discontinuities, abrupt bends,
and Y -junctions were discussed. The accuracy of the methods in these
cases was established by comparing its theoretical predictions with
those of more rigorous numerical techniques.
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The extension to 3-D structure was also described. Its success-
ful application to a special S-bend structure in 3-D diffused channel
waveguide via constructing an equivalent 2-D model, was included. The
agreement with experimental measurements has been excellent. The
application of the method to several dielectric waveguide junctions,
provides us with a clear understanding of their various loss mecha-
nisms.

Appendix: Reflection and Refraction of a Plane Wave
from a Planar Interface Between two Dielectric Media

A planar interface between two isotropic, homogeneous dielectric
media (with or or without loss) of refractive indices n; and ng, with
the unit normal # is shown in Fig. 26.

Consider a homogeneous or inhomogeneous plane wave of the
form:

- .
Eine

Eine = E(z)nc exp(_jk’inc -7), Hime = ic‘inc x "

(48)

Eir = (Eonft + Eoutt) + Fou?

minc  painc _ ,.21.2
k . k = nlko

with the wave vector k"¢ incident upon the interface (F =z + yj +
2%) . The unit vectors % (along the interface) and ¥ =7 x4 lie on the
incidence plane which is formed by the unit normal 7 and the wave
vector k™.

The plane wave is partially reflected and refracted by the inter-
face. The reflected wave is:

Evrfl

Bt = Bt e, A =R X

(49)

E-Sn — RTM(Eon’f& — Eo, 1) + RTEEqb
k= kime - 2(k™e . ayn, (K- BT =nik)) (50)
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Figure 268. The reflection and the refraction of an electromagnetic plane
wave by a planar interface between two homogeneous dielectric media.

The reflection coefficients (RTM, RTE) are given below:

A Linc . ntr

prE - (BT RT) (51)
fi- (ktnc + ktr)

g _ e (B/nd — K /nd) (52)
7 - (kine/n? 4 k7 /n2)

where k', the wave vector of the transmitted (refracted) wave in
medium ng, is defined by following relations:
BT kT =n3k2, kT — (K7 -a)a=E" — (B .a)n (53)

The important special case of lossless media and an incident wave
with a real wave vector is discussed next.
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Homogeneous plane wave in lossless media

When the incident wave vector k™ is real (homogeneous plane
wave), it is possible to define an angle of incidence 6, = cos“(,“c"'nc .
fi/n1ko) between the incident wave vector and the normal to the in-
terface. The relation (50) now expresses the equality of the angle of
incidence with the angle of reflection (Snell’s law of reflection).

If the media are lossless and nz < n; a “critical angle” may be

defined as: .
8. = sin™! (-"—2) (54)
n
When 6; < . the reflection coefficients given in (51) and (52)
are real numbers and may be rewritten as:

TE _n1cosbh —nacosby
ny cos 0 + no cos G

(55)

RTM __ngcos ) —njcosb
ng cos B + nycosty

where 0, is the angle of refraction and is given by the Snell’s law as
below:
nysinf; = nosinfy S - (56)

The expressions (55) are the well-known Fresnel formulas. The
expression (18) and (30) have been derived from these formulas.

If 6; exceeds 6., we have |[RTETM| =1 and the total reflection
of the plane wave occurs.

Another interesting phenomenon is Brewster effect. When the an-
gle of incidence becomes:

6; = tan~! (%) =0y, - “Brewster’'sAngle” (57)
1
The RT™ vanishes (see eq. . 56). This means that TM polarized
fields (electric vector in the plane of incidence) propagatmg along this
direction is not reflected at the dielectric interface.
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