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1. Introduction

In view of its possible usefulness in a variety of applications,
wave propagation, radiation and guidance in chiral media have received
considerable attention recently, cf. [1-4]. Electromagnetic chirality ad-
dresses the effects of handedness in electrodynamics. A chiral object is
a three-dimensional object that has a specific handedness, i.e. whose
mirror image cannot be made to coincide with the original object by
means of translations and rotations. A (homogeneous and isotropic)
chiral medium is a macroscopically continuous medium composed of
microscopic chiral objects that are uniformly distributed and randomly
oriented. When a linearly polarized electromagnetic wave is normally
incident on a chiral slab, two propagating modes with different phase
velocities are generated in the medium. After propagation through the
slab the polarization of the transmitted field is rotated with respect to
the polarization of the incident field [5].
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In the present paper, we consider a time-harmonic electromag-
netic plane wave obliquely incident on a stratified chiral slab with
multiple discontinuities in the parameters. Our approach is based on
an identification of down-going and up-going eigenmodes. This idea,
which is often referred to as wave-splitting, has been used to solve di-
rect and inverse scattering problems for inhomogeneous media in the
time-domain (cf. e.g. [6-13] and earlier references given there; obliquely
incident transient plane waves are treated in [14-16]). Recently this
approach has been applied to stratified complex media in the case of
normally incident waves in the frequency-domain (cf. [17-19]). We em-
phasize that the approach is not limited to piecewise constant strat-
ifications and it can be applied effectively to stratified media whose
properties vary in a general way as a function of depth. Up- and down-
going eigenmodes derived in the present paper are used to rewrite
Maxwell’s equations. The solution for the reflection coefficient ma-
trix is given for both a multilayered structure and a general stratified
slab (for the later case the solution is obtained by solving a Riccati
equation). Two Green function matrices are introduced to express the
internal eigenmodes in terms of the down-going incident modes. Ordi-
nary differential equations (ODEs) for the Green functions are given
together with the boundary conditions. The boundary values of the
Green functions are related to the reflection and transmission coef-
ficient matrices, i.e., the Green functions give the scattered fields as
well as the internal fields. Numerical results are presented for a case
in which the parameters vary continuously, except for an interior finite
discontinuity and finite discontinuities at the slab interfaces.

2. Formulation

Consider an electromagnetic plane wave with harmonic time de-
pendence exp(jwt) which is obliquely incident on a stratified chiral
slab. The slab occupies the region 0 < 2 <[ and the media on either
side of this slab are homogeneous. The plane wave impinges on the
slab from the upper side z < 0.

The constitutive relations for the stratified (reciprocal) chiral
medium are taken to be (cf. e.g. [20])

D(z) =¢(2)E(2) — jr(2)y/eopo H(2), (1)
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Figure 1. The scattering configuration.

B(2) =p(2)H(2) + jr(2)v/eopo B(2), (2)

where the permittivity e(z), the permeability u(z), and the chirality
parameter x(z) (dimensionless) vary with the depth z. The constants
€0, fo are the permittivity and permeability in vacuum, respectively.
The parameter k describes the degree of chirality. For practical cases,
k is small and satisfies k? < (eu)/(eopo). Note that the material
parameters €, g and xk may be frequency-dependent (however, the
frequency-dependence of the parameters is suppressed in their argu-
ments for simplicity of notation). For a lossless medium, all three pa-
rameters are real numbers. Assume that the wave vector ko of the
incident wave is parallel to the zz— plane and makes an angle 6, with
the z— axis. The scattering geometry is illustrated in Fig. 1.
Maxwell’ s equations in a Cartesian coordinate system are

v X E= —jwB, v x H = jwD, (3)

where _ _
E:(EI}EQ,E3)} H=(H1,H2,H3).

The z and ¢ dependence of the electromagnetic fields is ei(wt—s2)
where the propagation constant so is given by
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80 = kg sin fy, (4)

and where ko be the wave number of the incident wave. Note that
since the incident plane is assumed to be the zz— plane, the fields are
y— independent. From the third components of Maxwell’s equations
and the constitutive relations (1) and (2), one can express the third
components of E and H in terms of the field components in the zy
plane as follows

2]-+[2)
where g o

and where the 2 x 4 matrix P is given by

P ammm@]e " L ] ©

" ep—K2%po \w/ | 0 € 0 jr feolio
Adopting the constitutive relations (1) and (2}, the first two compo-

nents (in the following referred to as the tangential components) of
Maxwell’ s equations can be rewritten in the following form

0 —JK+/€olio 0 ]
s E R FLNGIT 0 7 0 E
'z =JW k
H 0 € 0 —jkéopo | | H
—€ 0 - jK+/eoto 0
1 0
0 0 Es
—18 7
780 0 1 [HJ (7
0 0

Substituting Eq. (5) into Eq. (7) yields
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0. E W E (8)
z H - H 3
where
0  —jkfeolio 0 -1
. VINGTT 0 7} 0
W =jw i
0 € 0 —~JK+/Eollo
—€ 0 Jk+/Eolio 0
0 jryeobo O —B
0 0 0 0
-q . (9)
0 € 0 Jrifeotio
0 0 0 0
with

€l — K2egpo \ w?

Eq. (8) expresses Maxwell’s equations for a chiral medium in terms of
the tangential electric and magnetic fields.

3. Up- and Down-Going Modes in a Homogeneous
Chiral Medium

In this section we identify the down-going modes E* (propa-
gating in the positive z direction) and up-going modes E~ (propa-
gating in the negative z direction) in a homogeneous chiral medium
characterized by the parameters ¢, y and s (these parameters are
2—independent in this section) in the xyz coordinate system intro-
duced in the previous section. For a plane wave mode (denoted ¢)
with harmonic time dependence exp(jwt), the down-going condition
is 8,¢ = —jk,¢, and the up-going condition is 8,¢ = jk.¢ (k, is the
z component of the wave vector). Let
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; (11)

Ef Ef
E2 E2

and where the transformation matrix 7' will be determined later. For
a homogeneous medium, the matrix T is independent of z. Therefore,
from Eqgs. (8) and (11) one has

E+

E__ )

E+
3. [ _] =TWT!

where T—! is the inverse of T. In order to allow a physical inter-
pretation of E* and E~ as down-going and up-going eigenmodes,
respectively, TWT~! should be diagonal. From the usual process of
diagonalizing a matrix, it follows that the diagonal elements are the
eigenvalues of the matrix W and the matrix 7-! consists of the
eigenvectors of the matrix W (the eigenvectors should be ordered
appropriately so that Et and E~ have the physical interpretation
as down-going and up-going modes, respectively). Performing the in-
dicated derivation, one obtains the following diagonalized system

where

—jwh 0 0 0

E* 0 —jwAs 0 0 Et
6; = 5 (12)

E- 0 0 jwn 0 ||E-

0 0 0 jwi
where

A = (VR + ry/eomo)? — s3/w?] 2, (13)
A2 = [(Vep — K+/feofio)® — 8§ /w?] 172 , (14)

and where one takes the square roots that give A;, 1 = 1,2, positive
real parts. The matrix T is given by
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[ 1 il —ivele  ule/v ]
ifve 1 —Vulelva i ufe

1 —j/m —ivele —Vule/m |’

—ifva 1 ulen  jVufe

and its inverse is

| -3

(15)

1 —jve 1 jve
" _1— —jn 1 jn 1 (16)
2| ivelp —Velmn  jelu e wa |’
e/ —jVelun —elun —jvelun
where ‘

" :_\_/E—ﬁ%"__._.. vEoHo (17)
1
vy _ (/e — k/feolio) ;Q(\/éﬁ + KyEolko) (18)
2

Note that these eigenmodes are circularly polarized. The total elec-
tromagnetic fields are thus decomposed into the down- and up-going

modes as follows
E] Et
=71 ) (19)
H E-

For normal incidence, i.e. 6y = 0, all the results in this section reduce
to the ones given in [17]. In the following sections these eigenmodes
are used to solve the propagation and scattering problem for a strati-
fied chiral slab between homogeneous chiral half-spaces excited by an
obliquely incident plane wave.



144 He et al.

4.  Multilayered Chiral Slab

We wish to treat the influence of both finite discontinuities and
of a continuous variation of the medium parameters in the slab. The
case of a finite number of piecewise constant layers then serves as a
suitable context in which to introduce the reflection, transmission and
Green matrices, together with the equations which they satisfy. This is
done in the present section. The generalization to continuously varying
parameter case is given in the next section.

Consider the scattering problem for a chiral slab consisting of N
homogeneous layers. Denote the positions of the interfaces by
20(= 0), 21, 22, ..., Z2N-1,2N(= 1) . A reflection coefficient matrix, de-
noted r(z) (note that the frequency-dependence of all the fields and
scattering coefficients will not be given in their arguments of them
for simplicity of notation), associated with the internal eigenmodes at
depth z is introduced as follows (cf. [17])

rulz) “2(z)] E*(z).  (20)

21 (z) 722 (z)

E~(z) =r(2)E*(z) = I:

From the above definition one notices that r(0™) is the physical re-
flection coefficient matrix for the whole slab.

Substituting Eq. (20) into Eq. (12), one obtains the following
equation for the r matrix within each layer

O,r = jw(Ar + r/\), 2 <2 < Ziy1, (21)
where - ,
1
A= . 22
[ 0 /\2] (22)

Integrating Eq. (21) from 2z, to 2z, yields

r(z)
T11(Z;_1)6_2jw/\1(zi+1 —2) 7'12(21_4-1)€_jw()\1 + X2) (i1 — 2i)
7‘21(21-__'_1)6_7:(‘)(/\1 + /\2)(Z,'+1 - Zi) r22(z;1)e—2jw/\2(zi+1 - Zi)

(23)
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Let

(24)

FAT-1() = [A(z,zf) B(z,zf)] ’

C(z,7) D(z,2)
where the 2 x 2 matrices A, B, C and D are

Az, 7)
1 [1 + eez;, ;;i‘:’ ][]‘ + ,:1112 ] ][1 - V e:(;;;;:zl) ][ulizsjuﬂz’il
- Z . ez’ z’ ez’ 4 v {2’ ’
it Vi) L+ S+ 2
(25)
B(z,7)
ez’ Fd / . (2} /(=) 1
1| MYE eI Ve 27 - o8 Prorreal
reI/ED) 1 a0 v
e e LV ene L - we)
(26)
C(z,7)
e(z)/u(z _n@) il e =) 1
1| BV -Rnel -V e el
4 ) 1 LT va(z)
=il - ! LV e 1L - L]
(27)
D(z,2)
1 {1 + Eez:: 7 ‘z'!! ][1 + i:lllzz } ~j[1 - eg(z;gl;ﬁg;)Hul(z}-}ug(z’)]
T4

i (= ’ 2 ¥ '
Y e (e e IR RVE - SN (o)

(28)
From the continuity of the tangential electric fields E(z) and

magnetic fields H(z), the relations between the reflection coefficient
matrices across an interface z;, i =0,1,2,..., N are obtained as (17)
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r(z7) =[C(27, ) + D(z;, 2 )r(2)]
[A(z], 2) + Bz, z)r(z5)) 7L
(29)

Since there is no up-going wave at z = I*(= 23) , one has the following
boundary condition

r(It) =0. (30)

Therefore, one obtains a solution for the reflection coefficient matrix
r(07)
through Egs. (23)—(30), i.e., starting from z =z}, (cf. Eq. (30), using
Eq. (29) at each interface and using Eq. (23) within each layer.

To calculate the internal fields, we introduce two matrices g*(z)
and g~ (z) of Green functions ([17,11]) to express the internal eigen-
modes E* in terms of the down-going incident modes E*+(0~),

E*]  [gH@E*(0")
[E} )= [g-<z>E+(o->] ’ ey
where
v [9002) 95(2)} _ :[gﬁ(Z) 91‘2(2)]
g"(2) [gmz) 0 %m0 me) @

Substituting Eq. (31) into Eq. (12), one obtains the following
equations for the matrices g* within each layer

0.g7 = —jwig™, % < 2 < Zi4, (33)

0.8~ =jwlig™, 2i < 2 < Zit1, (34)

which gives
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) < | BT e ‘ @)
g (zh) 95,2 ) e ralzi =)
- [ 971 (2] )it (zia=2) g (2
g (zip) = 6s.(zh) g2‘2(zf)ej“"\2(26+1—zi)] (36)

with 1 =0,1,2,..., N —1. ;From the definitions of the Green function
and reflection coefficient matrices, one obtains the boundary values for
Green function matrices

g*(07) =1, (37)

g~ (07) =r(07), (38)

where I is the 2 x 2 unit matrix. From the continuity of the tan-
gential electric fields E(z) and magnetic fields H(z), one obtains
the relation between the Green function matrices across an interface
2,1=0,1,2,...,N (cf. [17])

gt (zh) =A(zt, 27)et (7)) + B3, 20)e 7 (), (39)
g (z) =C(zf, 27 )g™(z7) + D(z, 27)g™ (2))- (40)

Therefore, if the reflection coefficient matrix r(0™) is known, one ob-
tains the solution for the Green functions gf;(z), 1,7 = 1,2, using Eqgs.
(35)—(40).

In particular, the boundary values of g* at z = It give the
transmission coefficient matrix, i.e.

g+(l+) =t, (41)
where the transmission coefficient matrix t is defined by
NP gy _ | Ttz
ET(IT)=tET(07) = E™(07). (42)
to1 l22

Hence, according to Egs. (41), (42) and (19) the transmitted fields E
and H in the homogeneous region z > [ can be obtained from a
knowledge of gt (It).
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5. General Stratification

In this section we derive the equations which give the solution
for the general case in which the parameters €(z), pu(z) and x(z) are
piecewise continuous and piecewise continuously differentiable (they
may have multiple discontinuities).

From Egs. (8) and (11), one obtains the equations for the eigen-
modes E¥ in a continuously stratified chiral medium

E+ + E+
o | __|=Twrt|_ | +(@DT! .
—jwA + « E*
_ |7 1 | 65} , (43)
"M JwA+ & E-
where the 2 x 2 matrices a1, /1, 71 and é; are obtained from
o
I B (44)
M &

Note that E* and E~ only have physical meaning as down- and
up-going eigenmodes, respectively, in a homogeneous chiral medium
but not in an inhomogeneous region (TWT™! is not diagonal in an
inhomogeneous region, cf. (43)). Inside the stratified slab Eq. (11) is

_nevertheless a useful change of basis for Maxwell’ s equations from the
‘variables E, H to E*.

Substituting Eq. (20) into Eq. (43), one obtains the following ODE

for the r matrix (cf. [17])

O.r = jw(Ar +rA) + v + (6 ir — ray) — rfir. (45)

Eq. (45) is a matrix differential equation of Riccati type (the Riccati
equation for the stratified reciprocal chiral medium, has also been de-
rived through some other approaches, cf. [21]; it is a consequence of the
properties of the Redheffer star product for the scattering operator for
a plane-stratified medium, cf. [22]). Thus, one obtains a solution for
r(0~) by integrating Eq. (45) along the —z direction starting from
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z =1% (cf. Eq. (30)). In particular, one needs to use Eq. (29) to treat
any parameter mismatch at a plane.
The ODEs for the Green function matrices are

8,g" =(—jwr +a1)gt + Gig", (46)
38" =mgt + (jur + 61)g”. (47)

The solution for the Green functions g;*;(z), i,7 = 1,2, is obtained
by integrating Eqs. (46) and (47) along the z direction starting from
z = 0~ (cf. Egs. (37), (38)). In particular, Egs. (39) and (40) are
used to treat any parameter mismatch at a plane. We refer to [18] and
[19] for comments on the numerical solution of the Riccati equation
(45) and the ODEs (46), (47), as well as for some numerical results
(which refer to a normal incidence case; however, the structure of the

equations is the same).

6. Discussion and Numerical Results

A wave-splitting approach to the propagation and scattering prob-
lem for a stratified chiral slab excited by an obliquely incident plane
wave has been presented, which applies to the general case of multiple
discontinuities, contained with continuous variation of the parameters
between the discontinuities. Multilayered models with very many thin
layers may conceivably also be used to approximate such situations,
but a method which directly addresses the problem of non-constant
medium parameters should be attractive both in terms of the insight
it provides and the resulting numerical effectiveness. Up- and down-
going eigenmodes were identified together with their dispersion equa-
tions. Above the inhomogeneous slab (2 < 0), the down-going and
up-going eigenmodes are_related to the incident and reflected fields,
respectively, as

—E+(0“)' . ”Einc.(o—)'
0 - (0 ) inc. _ 3 (48)
L i | HYE(07) |
[ 0 i _ _ 'Ereﬁ.(o—)'
| E7(07) | oD |mrefl- (o) | #9)
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In particular, one has

[Ereﬂ.(o—)] B [0 ]
=T~(07)
Hl'eﬂ.(o—) _E—(O_)
=T"1(0" - 0
= )_r<o->E+(o-)
_-1(07) 0 0 [E+(o-)]
| r(07) O] 0
] 0 T(O-)[Emc'(o_)} (50)
- [r(07) 0] Hinc.(o-y |’
Similarly,
Etr.(l+) i t 0 _ Einc.(o—)
H“-(l+>]_T ‘ )[0 0} e Him-(o->]' e

Therefore, once the scattering coefficient matrices r(0~) and t are
calculated, the scattered fields are known from Egs. (50) and (51).

If the homogeneous regions outside the stratified slab is vacuum,
i.e. k=0, when 2 <0 or z > [, then the two pairs of eigenmodes
in these regions have the same eigenvalues, i.e. A1 = d2(= Ao), and
any combination of the eigenmodes E;if and Ef (or Ej and Ej )
is a down-going (or up-going) eigenmode. In particular, one can then
choose the transformation matrix for the eigenmodes in such a way that
the associated split eigenmodes correspond to up- and down-going TM
and TE modes, respectively. Namely, in stead of putting € = €, 4 =
to, ¥ = 0 in the transformation matrix T given by Eq. (15), one
considers
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"1 0 0 ;;15 po/eo 7

. 110 1 —w/uo/eo 0

T== . , 2<0, (52)
10 0 ~s-V ko/€o
[0 1 v uo/eo 0 i

where 1y = /lweo/ Mo = 1/ cosbp, and define the propagating eigen-
modes in the region 2 <0 or z>1 as

Ft . | E
=T , 2<0,0r z>1. (53)
F~ H

Then linearly polarized F* and F~ also have physical meaning as
down- and up-going eigenmodes, respectively, in the vacuum. As can
easily be checked, the Fj, F; modes are down- and up-going TM
modes, respectively, and the F,t, F; modes are down- and up-going
TE modes, respectively (Ff‘, i = 1,2, give the amplitudes of the
tangential components of the electric field for these modes). As is usual,
the reflection coefficients for TM and TE modes are defined as

r

E
rxy = —%  X,Y=F or M, (54)

7

TY

where E}p ( Eip) is the amplitude of the reflected (incident) electric
field for TE mode, etc.. rapar, TEm are the co- and cross-polarized
reflection coefficients for TM mode incidence, respectively, and rgg,
rmE are the co- and cross-polarized reflection coefficients for TE mode
incidence, respectively. It is easy to see that

- P12 . .
TMM =P, TME = - rEM = To1¢086y, TEE =T, (55)

osfo’
where 7, 4,7 = 1,2, are defined by
i1 Ti2

Fo1 T2

F7(07) = [ } F*(07), (56)

and are related to the reflection coefficient matrix defined in the pre-
vious sections through the formula
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Figure 2. The permittivity and chirality parameter for a stratified chiral
slab.

[f” f“} = [+ dr(07)] [a + br(07)] %, (57)
21 T2

where the 2 x 2 matrices a, b, ¢ and d are obtained from

c

a b .
{ d}ETT"l(O‘). (58)

Similarly, the co- and cross-polarized transmission coefficients for TE
and TM mode incidences can be obtained from
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Figure 3. The co- and cross-polarized reflection and transmission coef-
ficients for TE and TM modes as functions of the incident angle 8, for
the stratified chiral slab given in Fig. 2 (the permeability is a constant

#0). The thickness of the slab [ is equal to 0.2 wavele

(1 wavelength = 27/(,/&fow)).

ngth in free space
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tMMm tmEcosfg
& tee

where the 2 x 2 matrix & is obtained from

} = dt [a + br(07)] 77, (59)

{a b] = TT-1(+). (60)
¢ d

These relations provide the connection between the formalism devel-
oped in Sections 2 — 5 and what constitutes a natural choice of modes
in a non-chiral exterior medium. The co- and cross-polarized reflec-
tion and transmission coefficients for TE and TM modes as functions
of the incident angle 6y are plotted in Figs. 3(a) and 3(b) for the
stratified chiral slab given in Fig. 2 (the relative permittivity ¢ =
2 + sin(10m2/Ao) | H(2) H(0.12)0 — 2) + [4 — 12.52/ Ao} H(z — 0.12)0) ,
the chirality s = 0.8sin|[(7/6)(402/ o + 1)]|H(2)H(0.12)g — z) + 0.9

exp[—20(z/Ag — 0.12)| H(2 — 0.12X9) , where X = 27/(,/€oliow) is the
wavelength in free space and H(z) is the Heaviside step function van-
ishing for z < 0; the permeability is a constant g ). The thickness of
the slab [ is equal to 0.2)¢. Numerical results show that

TEM = TME, tem = —tME, (61)

which is due to the reciprocity of the medium.

Several aspects of the formalism presented here are under fur-
ther development. One application of the case of a non-chiral exterior
medium is to the computation of the Brewster angle for complex me-
dia [24] (the Brewster angle is the incident angle at which there is no
reflected power for a certain polarized mode, cf. [23]). The approach
can also be used to solve the scattering problem for a dipole radiating
above a stratified chiral slab, which will result in a similar problem as
the one for the obliquely incident plane wave after making a spatial
Fourier transform. The present approach is also useful to the study of
propagation in parallel-plate wave-guiding structures involving chiral
media.
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