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1. Introduction

Novel material effects are one of today’s interesting fields in the
study of electromagnetic fields and waves, not only for academic rea-
sons but also because of the promise they seem to offer in microwave
technology applications. Chiral media certainly form a class of these
complex materials, since the number of publications about chiral
medium in microwave and millimeter wave theory and techniques of the
latest years are continuously increasing. Chirality is present in handed
— left-right nonsymmetric — materials. As far as constitute equa-
tions are concerned this handedness is visible in the magnetoelectric
coupling

D =€E — jk/1weoc H (1)
B = pH + jk/ e E (2)

where E is the electric and H is the magnetic field, D is the electric
and B is the magnetic flux density. In addition to the permittivity e
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and permeability u of the material, there exists a dimensionless pa-
rameter x which is a measure of the chirality, or handedness [1]. These
relations assume time-harmonic field dependence with the convention
exp(jwt) . The permittivity and permeability of free space are € and
o -

Several of the classical electromagnetic free-space and boundary-
value problems that involve chiral materials have been solved. The
problem of scattering by electrically small chiral objects has also re-
ceived attention [2,3]. The polarizability matrices of homogeneous chi-
ral spheres and ellipsoids have been computed. This article focuses on
a more complicated problem: the inhomogeneous chiral sphere. The
inhomogeneity is, however, simple: the object consists of a spherical
chiral core, coated with a spherical shell of a different chiral material.
The polarizability properties of this object will be solved.

The polarizability matrix is related to the induced electric and
magnetic dipole moments to the incident electric and magnetic fields.
Due to the chirality parameters, the sphere will become magnetically
polarized by an electric field! (without any incident magnetic field),
and vice versa. However, the polarizability coefficients are complicated
functions of the various parameters of the problem.

Following the analysis performed earlier on an homogeneous chiral
sphere [4], where the potential is expanded in spherical harmonics in-
side and outside the sphere, this article adds new unknowns and makes
use of extra boundary conditions that are present in the problem of
the layered sphere. It is worth noting that the sphere is assumed to be
small compared to the wavelength, i.e. Rayleigh scattering is assumed.
This assumption leads to fairly simple potential solutions in each re-
gion. 2 However, for the case of two spherical boundaries, it turns out
that the boundary conditions are a set of eight coupled equations that
is written in matrix form. Solving this set requires — or at least will
be made a lot easier by — symbolic software.

With known symbolic calculation softwares like MACSYMA,
MATHEMATICA, or MAPLE, the solution of the problem can be
found easily. However the analytic expressions are long, complicated,
and dependent on several variables so that computer programs are not
capable of simplifying the expressions without human interaction.

1 This is in addition to the ordinary electric polarization.
2 For electrically large chiral spheres, the generalized Mie scattering
leads to complicated series expansions [5].
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After the matrix has been inverted, the scattered fields can be
studied. Interpreting the latter as arising from electric and magnetic
dipoles, which are directly proportional to the incident electric and
magnetic fields due to the linearity of the problem, the polarizability
matrix can be written. The result can be shown to reduce to the previ-
ously known cases of homogeneous chiral and layered dielectric sphere,
corroborating the result.

2. Theory

2.1 Wave Fields

In the study of electromagnetic fields in homogeneous chiral me-
dia, it is advantageous to use so called “wave fields” [6] instead of
the ordinary electric and magnetic fields. These are defined through
equations

E=E; +E_ (3)

1
H——E(E+‘"E—) (4)

where n = /u/e.

The wave fields E;, E_ decouple as they are substituted in Max-
well equations and behave like in isotropic media; the + and — fields
propagate through the chiral medium with different wave numbers. In
source-free regions, the wave fields satisfy the first-order partial differ-
ential equations

VXEyrFkiEL =0 (5)
with k+ = w./oeo(n £ k), and the refractive index is n = / €/ po€o .

2.2 Quasi-Static Case

Following the procedure used in [4] for solving the quasi-static
potential inside a chiral sphere, the chiral layered sphere is studied in
a similar form. In the static limit ky+ — 0, the wave fields can be
obtained from scalar potentials ¢ :
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Figure 1. Geometry of the problem. Two-layer chiral sphere with outer
and inner radii are a; and ay, respectively in air with ¢j, ;0. The geometry
consists of a spherical core with parameters €3, u2, K3, surrounded by
spherical shell with ¢, 1, K.

E: =-Vos (6)
satisfying the Laplace equation
V2py = 0. (7

The question is to find the internal and external fields of a two-layer
chiral sphere with outer and inner sphere radii a,, az , respectively. Let
the sphere be surrounded by vacuum as is shown in Figure 1. Let us
denote the incident field by the subscript o, scattered fields by s and
internal fields by i1 and 2. This leads to 8 potentials that satisfy the
Laplace equation.

In the following, the material parameters, permitivity e, per-
meability u, chirality x, refractive index n = /ue/uoeo, and the
impedance n = y/u/e have the subscripts 0 for the air region, 1 for
the layer, and 2 for the core. There are four interface conditions for the
total fields (E,H) and total fluxes (D, B ). These conditions give the
following equations for the unknown potentials, using equations (3),
(4), and (6):
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e Continuity of the total tangential electric fields at the
interfaces:

ity + Gil- = oy +Ps— + b0t + G- [T=a (8)

Gire + Pil— = Giog + di2— | r=a2 (9)

¢ Continuity of the total tangential magnetic field:

L (ias — 6i12) = (os — b + Gor — do-) (10)
™ o

%(dhu - ¢i1-) = %(cﬁm — ¢i2-) (11)

e Continuity of the normal component of the total electric
flux density vector:
Using the relation

D =¢E — jr/ioeo H =¢(1 + —E)E+ +e(1— %)E_ (12)
we have
K
er(1+ ﬂ)ur Virg +e1(l — = )u, - Vi =
K31 F (31
elur - Vs +ur - Vs + ur - Voy + up - Véo—} l r=a (13)

K K
e1(l + “‘1‘)117' Vg +e(l - —1)ur Vi =
ni ™m

K ‘ K
e2(l+ 2)ur - Véioy +a1(1— 2)ur - Vo [r=as  (14)
g o
¢ 4. Continuity of the normal component of the magnetic

flux density vector:
Using the relation

B = pH + jry/hoeo E = j/lioko[(n + K)Ey — (n —K)E_]  (15)

we have
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(n1 +K1)ur - Ve — (n1 — K1)up - V- =
uy - Vogy —ur Voo +u, - v(}504- - Uy - Vo l r=a (16)

(n1+60)ur - Voiry — (N1 — K1)uy - V- =
(n2 + K2)ur - Voizy — (2 — k2)ur - Voo |r=0a2  (17)

Let us write all potentials as spherical functions expansions

¢(r) = i En: (Amn™™ + Bmnr " 1P (cos0)e’™  (18)

n=1m=-n

which satisfy the Laplace equation. When the sphere is located in a
constant field with electric and magnetic components taken from a
“frozen” plane wave,

Eo = u,E, (19)
Ho=u, % (20)

the corresponding potentials are

E E j
box = _70(:1; T jy) = —égrPll(cos 6)eTI¥. (21)

From the orthogonality of the associated Legendre functions [7]
and the exponential functions, it follows that only terms with n =1
remain in the above series. The fields corresponding to exp(—jy) and
exp(jy) must satisfy separate equations. The potential inside the inte-
rior sphere does not include the “scattered” term with the r—2 depen-
dence since it becomes infinite at the origin. Similarly, the scattered
potential does not have a constant term (r dependence) because this
does not vanish in the infinity. Therefore the wave-field potentials can
be written in the following form,

pirx = ([A1xe™? + Cr26™r + [B11e™7¢ + D11e7¥]r~2) P(cos )
(22)
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Giot = [Az;ge—j(‘p + Cgiej‘p]’r‘Pll (cos 6) (23)
$s+ = [Bare 7 + Doxe?®)r2P(cos6) (24)
with Pl{cos@) = —sin.

2.8 Matriz Equation for the Unknown Coefficients

Applying all the boundary conditions (8) --- (17), and writing
separately the exp(jy) and exp(—jy) terms, which correspond to
the left- and right- circularly polarized components of the incoming
field E,, two matrix equations for the 16 coefficients result. The first

one is:
(\/€r1A1+\ ( VEr \
vV 67-1141_. 0
a7’ Bt Vi
-3
[M] == (25)
VeEriAay /=Y
\/ErlAg_ 0
a;ng.{.. VEérl

\a;sBz—) \ 0 )

where [M] is 8 x 8 matrix,

! 1 VErl VErl
1 1 ) 5\/67-1 5~ /€ri
1 -1 VEér: —+/€r1

1 -1 N —6Em
n+K1 M—kKy =2(n1+K1)/E1  —2(ni—K1) Ve
mt+kr m—k1 —26(nitk)En —26(na—k1) /e
nm+kr —(ni—k1)  =2(mitk)vET 2(ni—k1) e
| nitKky —(ni—kK1)  —26(ni+m) e 26(n1 — k1)y/Err
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0
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—Tr (n?"‘ K‘Q)

0
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0
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—4/€r1
0

Vil
0

N
0

—2./61
0

(26)

and where § = ala;® and 7, = mn; ! . Note the relative permittivities
€ri = €;/€p and relative permeabilities pp; = s/ pio .
The second one is

( VEr1Crt \
J&TC1
a73Dyy
a73D;-
Ver1Cay
JEiCo

a;3D2+

\ ay®Dy )

[ Ve
0

E, 0
2 \/“rl
0

\ 0

’*\/ﬂrl

=4y/€r1

\

/

(27)

The 8 x 8 matrix M is the same for both equations and has the
determinant which is solved using MATHEMATICA.

where

2
det[M] = 5™ A

T2

(28)
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A = ([(r1 +2)(er1 +2) = 8] 6 + 2 [(1r1 = (e = 1) = 1))
- ([(ur2 + 2pr1) (62 + 26r1) — (K2 + 21@1)2] 6
+ 2 [(kr2 = pr1)(€r2 = €r1) — (K2 — K1)?])

— 186 [(frlllrl - K/% - 61'2)(51'1”1'1 - K,% - /17'2) - ﬂg] (29)

Since the aim of this paper is to show the polarization moments,
only the coefficients necessary for the derivation of these will be calcu-
lated.

2.4 Polarization Moments

The scattered fields can be regarded as radiated by a combination
of electric and magnetic dipole sources. Since

¢s2(r) = (Boxe ™% + Dyye??) r=2 Pl (cos ), (30)

the wave-field dipole moments can be written as

P+ = —4meo [(Bat + Doy )us — j(Bat — Doy )uy] (31)
and
p- = —4meg [(Ba- + Da_)uy — j(Ba — Da_)uy]. (32)
Because [4]
Pe = P+ + P, (33)
Pm = jNo(P+ — P-), (34)

the electric and magnetic dipole moments are

pe aee aem EO
= (35)
Pm Ame Amm Ho

where
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Qee =

TE 3
: L ([(urr + 2)(ern = 1) = 2] 6.4 [(ir1 — 1)(26m + 1) — 267])

- ([(r2 + 2pr1)(€r2 + 2€71) — (K2 + 2k1)%] 6
+ 2 [(,Ur2 - /llrl)(fr2 - Erl) - (’{'2 - K,1)2])
— 96 [2(er1pr1 — K3)? + (er1r1 — K3) (e — 2€r2) + K3 — €r201r2) }

(36)

—Qem —Qme =

1274 /Tio€oa’

* ([(ure + 2pr1) (er2 + 2€r1) — (K2 + 261)2] 6
— [(ur2 = pr1)(er2 — €r1) = (k2 — K1)?])
+ 96 [k} (K1 + K2) + er1fir1 (K2 — K1) — Ky(€r1pira + €ratir1)] }

(37)

Omm =

T 3
TR ([l = Vlert +2) = K318+ [(Gars + )(era — 1) = 26

- ([(mr2 + 26r1) (er2 + 2€r1) — (K2 + 21)%] 6

+ 2 [(ptr2 — pir1)(€r2 — €1) ~ (k2 — 51)?])

— 96 [2(er1ptr1 — K3)? + (€r1tar1 — K3)(Er2 — 2ir2) + K3 — €rapira] }
(38)

and A is defined in equation (29).
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3. Discussion of the Result

First of all, the results must be checked with previously known spe-
cial cases. The polarizability matrix of an homogeneous chiral sphere
is known [4,8]. There are several ways to reduce the present two-layer
case to an homogeneous chiral sphere:

e k1 —0,¢,7 — 1, 4,1 — 1: only the core is chiral.

6 — 1: the layer thickness vanishes.

§ — oo: the inner sphere radius vanishes, only one sphere con-

sisting of medium 1 remains.

® Ky — K2,6r] — €r2, ir1 — [r2: the shell and the core are of the
same chiral material.

It is straightforward, albeit tedious, to show that indeed in all these
four cases the polarizability matrix reduces to

p (pr +2)(er = 1) = K2 ~3jK+/Boco
1 O(ﬂr +2)(er +2) — K2 (pr + 2)(er +2) — 2
4ma (39)
3jr/Hoco (e — 1)(er +2) — K2

i+ +2) -2 Ml 12)(e +2) - <2

which is the same result as in [4]. Note that «,e€r, 4y can be the pa-
rameters of core or shell according to the case.

Another special case is the layered dielectric (or magnetic) sphere:
k1 — 0,k2 — 0. In this case the polarizability matrix becomes di-
agonal: the magnetoelectric terms vanish. The coupling disappears:
the electric polarizability depends only on the permittivities, while the
magnetic polarizability depends only on the permeabilities:

eé (1 + 2601)(€r2 — €11) + 6(er1 — 1)(26r1 + €r2)
47ra‘;’ 2(61"1 - 1)(51'2 - 61‘1) + 5(2 + 61'-1)(251'1 + 67'2)
0

0

. (1 4 2pr1) (ptr2 — por1) + 8Qir1 — 1)(2pr1 + pir2) (40)
2(pr1 — 1)(pr2 — tir1) 4 62 + pir1)(20r1 + pir2)
which is the same result in [9].
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A third special case, although not studied earlier, is the situation
where the determinant A in equation (20) reduces to a product of
two terms. This happens if k2 — €r144r1, K3 — €rofira . This is a rather
extreme case of strong chirality, where the chirality parameter equals
the refractive index in both media. In this case, the polarizabilities
reduce to the following form:

—1 —2€p1 + pir1 + 6(—2 + 2¢,1 — pir1)
1—€r1 — pr1 + 6(2 + €01 + pir1)

—3jK1(1 — 6)\/Io€o
1—€r1— e +6(2 + €r1 + ptr1)

€0
3
271’@1

3jk1(1 — 8)/Iio€o
1— €1 — pr1 +6(2 + €1 + phr1)

~1+ €r1 — 241 + 6(=2 — €71 + 244r1)
1—€r1—pr1 +6(2+ €1 + pr1)

It is also worth noting the reciprocity of the polarizability matrix:
the crosspolarizability terms are complex conjugates of each other for
lossless case. Chiral media are reciprocal [10]. Also the effect of the
handedness (the sign of the chirality parameter) on the polarizability
components is logical: changing the sign of k; and ko changes the sign
of the crosspolarizabilities e, and e , and it will also change the
sign of the macroscopic chirality of a medium containing this type of
layered chiral spheres. Furthermore, it is in accordance with intuition
that the sign change in k; and ko does not affect the magnitude of
the polarizabilities ae. and omm -

As a numerical example, finally the shielding effect of a dielectric
layer is calculated. Given a chiral sphere with known polarizability
matrix, the expressions derived in this article are used to examine
how the polarizability components change as the layer permittivity
changes. The results are illustrated in Figs. 2a, 2b, and 2c¢. To see the
main effects, the permeabilities of both media are assumed to be those
of free space (41 = p2 = o). The chirality parameter of the core is
rather small: ko =0.1. '

Figure 2a shows the magnitude of the electric polarizability aee,
and it is clear that with increasing permittivity — be it in the layer or

(41)
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Figure 2a. Shielding effect of a dielectric layer on the electric polarizabil-
ity ciee Of a chiral sphere. The value shown is @,/ ena?. The permeabilities
of the core and the shell are assumed to be those of free space and the
cube of the ratio of the radii is § = a?/ag == 2. The chirality parameter
of the core is ky = 0.1.

in the core — the polarizability increases. Figure 2b shows an interest-
ing effect: the appearance of magnetic polarization in a chiral sphere
without magnetic susceptibility. It is true that the magnetic polariz-
ability is small but it is finite. This counterintuitive fact has also been
noted earlier and underlined recently in the study of homogeneous chi-
ral spheres [11]. Note the sign of omm : it is negative, in other words
this coated chiral sphere displays a diamagnetic character.

Finally, Fig. 2c shows the effect of layer permittivity on the crosspo-
larizability aem . The message is a rather strong shielding effect: qem
decreases strongly as €; increases from the vacuum-permittivity value
(no layer). On the other hand, the figure also witnesses that aem, is
decreased with increasing core permittivity, a fact that has been earlier
discussed in [12].
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Figure 2b. The same as Figure 2a, for the magnetic polarizability. The
value shown is Qm/oas.
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Figure 2c. The same as Figure 2a, for the crosspolarizability. The value
shown i8S Qem/j+/Ho€0as-
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