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1. Introduction

Electromagnetostatics in bianisotropic media was probably first
studied in 1971 [1], and for this kind of media, the electric and magnetic
static fields do not appear independently. The bi-isotropie medium is
a special case of such a general medium. And the reciprocal chiral
medium is a special case of the bi-isotropic medium. Recently, there
have been an increasing interest in the bi-isotropic medium [2-6].

In this paper, the theory of polarizabilities of a chiral sphere and
a layered dielectric ellipsoid introduced in [7,8] will be extended to
cover a layered bi-isotropic ellipsoid. The Maxwell-Garnett formula
and the effective medium theory of heterogeneous dielectric media will
be generalized to derive the four parameters of layered bi-isotropic
mixtures. The successive steps are not very novel, but it was considered
worthwhile to spell them out for reference purposes.
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2. Polarizabilities of Bi-iostropic Layered Ellipsoids

2.1 The Quasi-Static Fields in a Bi-isotropic Medium.

The static problem can be formulated in terms of scalar potentials,
because the curl of the electric and magnetic fields vanishes in a bi-
isotropic medium and the electric and magnetic fields can be expressed
as [6]

-V¢ (1)
H=-V¢™ (@)

D = ¢,60F + &rv/lioo Heo = — [6r60V 0 + &n/li0Ga V™ (3)

B = /i€ G- E + prpio H = — [(r/i0E0 Vb + prpto V™ (4)

The four parameters ¢, ur,& and (., are assumed to be con-
stants in a rectangular coordinate system and no attempt to interpret
the medium physically will be made in this paper. Because there are no
sources within the bi-isotropic medium,from V- D =0and V-B =0

we have V-E = 0 and V- H = 0, hence both potential ¢ and ¢™
satisfy the Laplace equation [6]

| =l
I

Vip=0 (5)
V2™ =0 (6)

In Section 2.3, we shall show that this formulation is more suitable
for using the boundary conditions than that of [7].

2.2 General Solution of the Laplace Equation.

Consider a confocal ellipsoid consisting of N layers of different
medium parameters, lying in a background medium of parameters
(€0, 110, %0, Co) according to the geometry shown in Fig. 1. The sur-
face layer of the scatterer has parameters (€1, ir1,&r1,Gr1), the next
outermost ellipsoidal shell has parameters (€2, pir2, &, (r2), the next
is (€3, lr3, &, (r3), ete. Finally, the core is of parameters (e, firn,
&rn, Grv). The incident static electric and magnetic fields are assumed
along the z axis of the ellipsoid without loss of generality [8]. The N
ellipsoid boundaries are assumed to be confocal,i.e.,
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a?—a?=bf—b§-=c?—c§ (M

for all pairs 4,7. Where a;,b;,¢; are the semiaxes of the ith ellip-
soid boundary. This means that the ellipsoidal boundaries between the
layers are the constant-coordinate surface £ = &; in the ellipsoidal co-
ordinate system (for ellipsoidal coordinates and the general solution of
Laplace equation in it see [8] and references therein), and the general
solution of Laplace equation are only dependent on one coordinate £.
The ellipsoidal coordinates (£,n,({) are defined by the three real roots
of the following cubic equation of wu.

2

2 2
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=1 b 8
Ctu Bru Evu 0 4707 ®

The coordinates &,7,( are the root that lies in the range —c? < ¢ <
00, —b < n < —c?, —a? < ¢ < —b? respectively. Constant— ¢ surfaces
are ellipsoids all confocal to the ellipsoid

Y z

-5+ +"c"2~==1 9)

a? " b
Therefore, & = 0 is the equation of the surface of the outermost
ellipsoid and

§=G=ci—ci=b -t =a;—af (10)

is that of the surface of the kth ellipsoidal boundary, where a; =
a,by = b, and ¢; = c. The incident z-directed static electric and
magnetic fields of amplitudes F; and Hj respectively, polarizated
along the a-axis of the layered ellipsoid, have the potentials ¢o, ¢7" :

(€ +a)nt )¢+ a7)
F =@ - @) (1)

¢o(F) = —E,z=~E,

() = —Hyz = —Hyy | & ?;21(2;;(:22 ),(,Ca—%az) (12)
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Figure 1 Multilayer ellipsoid of the problems.

Then the potentials in the k th region can be expressed as [8]

¢o(F) = —E.z [Ck - / ” ——ds—-————} (13)

2 Je (s+ad)Ru(s)
e _ m_ DP [©_ ds
G Ca WA ol
Ry(s) = /(s + ad)(s + B)(s + &) (15)

where ai, b1, c1, are the semiaxes of the outermost ellipsoid seperat-
ing parameters (€r1, ptr1,£&r1,¢r1) and (€ro, fro, €0, Gro). The boundary
separating medium parameters (€rk, trk, rks Crk) 80 (€r(kt1)> hr(kt1)s
& (k+1), Gr(k+1)) 18 the ellipsoid with semiaxes axi1,bk41, and cryg
where the coordinate ¢ has the value &xy1. The author intend to
use Ej in (14) for the purpose of easy formulation.
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2.3 The Boundary Condition

Connections between the amplitudes in adjacent regions is ob-
tained through four interface conditions

Ok = Pr41 (16)
Pk = bk (17)

€kt - Vor + &kl 8% = €r(ee1)T* VO(ht1) + Erhn)? - Vdiyr  (18)

CriTe - Vo + prk - O = Gty VOktr) + tr(k41)7 - Vdiyy (19)
Substituting (13), (14) into (16)—(19), we have [8]

Cx — DMy = Ciyy — Diy1 My (20)

C* — DI*Mi = C{y, — DRt Mi (21)

erk [Ck + DeM}] + & [CP + DM}
= €p(kt1) |Chel + Dt Ma] + &y [Chhr + D Mi]

(22)
Gk [Ck + DeME] + ik [CF + DM}
= Grkn) [Crtr + Dipa Mig] + oriierny [DEy + Dy M|
(23)
where [8]
NE 1 [ ds?
Mk - akbkck - 5/0‘ (24)

(s +a2)y/(s1 + a2)(s! +B)(s + )
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1
Ml=—w - M 25
T RiE&) " (25)
From the boundary conditions (20)—(23), the field amplitudes in
the k th region can be calculated from the amplitudes in the (k+1)th
region. In a matrix form

Ck Ck+l

De | = | D, | = Bean Dewt | = kk+1 " D (26)
m m

k k1 |

b1 bki2 bkiz bkia
ﬁk,k-}-l _ 1 'bk21 broz  bros  bros @7)
A [kaI bka2  br3s  bkas

bra1 braz bikaz  bras

Crk41 Ck
.| = |op
=F 28
Dy B Dy (28)
| D | | DY |

fenn friz friz frua

i 1 | fear fro2 fr2z  froa (29)
k+1k = T
Ap | fisr fraz frss frsa

Jear fraz fraz  fraa

where By k41, Fr+1,4 are the backward (outward) and the forward
(inward) propagation matrices introduced in [8] respectively. All the
elements of TS’-k,kH, and ka,k are given in Appendix A.

The propagation matrices can be used to calculate the field am-
plitudes in the core region as functions of those outside the scatterer
and vice versa "
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60 = — = ﬁN
— | =Boy-Bi2--*BN_1N | —<
Dg Dy
= Cn z11 312 Cn|
= Do,N [_ } = l:z = — (30)
Dn bar bao) [ DN ]
_N = — = _0 ]
— =FnyNn-1-FN-1.N= F —
I:DN] N,N-1 N-1,N=-2 1,0 [Do_
— C T T C
NN
Do for fal LDo

where ﬁo, ~ and ?N,o are the total backward and forward propagation
matrices respectively, Eij,?ij (1,7 = 1,2) are all 2 x 2 matrices.

In the region outside the ellipsoid the incoming electric and mag-
netic fields are of amplitudes Er, and Hj, respectively and hence (see
Egs. (13), (14))

60=< . ) Dy =0 (32)

because there are no outgoing fields in the bi-isotropic medium core
region. Therefore, the scattering-field coefficients Do and the coeffi-
cients of homogeneous field in the core region C'n can be solved

Cn = 31_11 <H L;EL > 39

where Eo, N and T‘.N,o are the total backward and forward propagation
matrices respectively.

The boundary conditions of the perfectly conducting core at & =
f N yield
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Ny

Cy = Dy P = CnDy (35)
anbne
O = —=——= =CnDy 36
N RI({N) 22 N ( )
In other words,
Cn=C- Dy, C= 37
N Y [ 0 022} 87)

Thus the scattering—field coefficients Dy and Dy can be written as

Do = [b21 - C +bga] - [br1 -C + bia] - T (38a)
Dy = b -5+312]‘1 -Co (38b)
Co = ( ! ) (38¢)
° " \Hp/EL
or — = = = = —_ = —
Do=[C-foo—Fral ™' [f11=C Fau)-Co (39a)
Dy = ?21 -Co+ 722 - Do (39b)

We would like to emphasize that Eqs. (35)—(39) are for the case with
perfectly conducting core, while Eqs. (32)-(34) are for the case with a
bi-isotropic medium core.

2.4 Polarizability Dyadics

As shown by Sihvola and Lindell, the equivalent dipole moments
De, Pm can be expressed in terms of Dy, DF* as follows:

4
Pe = ?ﬂfo Do E, (40a)
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A7
Pm = 5 #oDg" By (40b)

In a matrix notation

pe| 4 [¢0 0] [ DoE.
[pm} ) 0 ,;J [D(]"ELJ
_dnfe 0] DoE.||[Bu B E.
“ 310 Mo] [D{,”EL] [521 522] ’ [HL]
Ey
H,

Qee  Oem
= [ (41)

ame amm

where we have unified the notation in (33) and (34) as well as (38)
and (39). Notice that in the above, @ means o, and the above

analysis can easily adapted to a¥ and o2 If we designate a,s =
}:f=1 ot 2% (r,s = e,m), where Z; is the unit vector along the
ith orthogonal semiaxes of the ellipsoid, we can generalize (41) as

A EE] e
]_jm Qe Cmm HL

3.  Macroscopic Parameters of Ordered Layered-
Ellipsoid Mixtures

The purpose of this section is to derive the mixing formula of a bi-
isotropic mixture containing multilayer ellipsoids. Let the background
medium be of parameters (eo, po, &0, {o) as before, and let there be n
ellipsoids inclusions per unit volume. Consider first the case that all
the ellipsoids are aligned equally in the mixture.

Define the effective parameters of the mixture €ef, feg, feﬁ, and

Ceﬁ by the coefficients in the macroscopic constitutive relations be-
tween the average flux densities and the average fields Ep, Ho

Bl Rl G e
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The flux densities are calculated from the electric and magnetic
polarizations (P.), (Pm) due to the dipole moments of the scatterers

in the mixture:
B[z SIELE] e

The average polarization is the dipole moment density:
(ﬁe) =n ?e -n fee fem Et, (45)
Pm Ome Omm

(Prm) H,

It is observed that the exciting fields E; and Hj are not the
same as the average fields FEo and H, but rather than the Lorentian
fields [9] larger than the incident fields that include contributions from
the surrounding polarization, whose effect comes through the depolar-
ization dyadic [9], (see ref. [3] Eq. (12))

EL . E-o 6=' mw —€o @e)

[E _[ﬁo T [—Co €0 } [@m)] (462)
_ 4mabe
3

6= {[i(fo — o) + v/ (4(eopo — &0o) — (Co — 50)2)]
' [i(Co — &) + V/4(eopo — &olo) — (&0 — 40)2] }_l x4 (46b)

where the depolarization dyadic Tis given by

f = L1 ZT1Z1 + LoZoZo + L3Z3T3 (460)

o0 1 1
L= %abc/ ds (s +a%)"3(s +b?) 7T (s +¢*)7 (46d)
0
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Ly, = %abc/ ds(s+ az)‘%(s + bz)‘%(s + c2)_% (46¢)
0

Ls=1—Ly— L, (46f)

The average polarization can be solved from (45) and (46)

_ Tee  Oem N 7.—6—_— po  —&o - [EL]
— e 5'mm ° - € TfL

iy Vee jem] )

[ (Pe)
(Prm)

"/me Wmm

where f = nwo is the fractional volume of the bi-isotropic inclusion
phase in the mixture. Substituting (47) into (44), we have

et = €01 + [Tee (48a)
Tt = b0I + [T (48b)
Eur = &I + [Fom (48¢)
Cott = Gl + e (48d)
where .
Cer=) Cifii C=epé (48e)
i=1

The equation (48) is the Maxwell-Garnett formula of the bi-isotropic
mixture consisting of ordered layered ellipsoids.

In the absence of a strong external aligning field, the layered el-
lipsoids are randomly distributed. Then the mixture formula for this
configuration are

3
1 .
Cn=3) Car C=emé (49)
i=1

Now we turn to the derivation of mixture formula using the effec-
tive medium approximation (EMA). Based on EMA (see Ref. [10] and
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references therein), the effective medium parameters are assumed to be
€9 Mg, €9,( and the original mixture is divided into two
mixtures. * One (called A) is the original layered ellipsiods with the
fractional volume f located in the background medium g4, f14,&,, (q-
The other (called B) is the original background medium (eg, fg, &g, ¢g)
with the fractional volume (1 — f) and the same ellipsoid geometry
as the original outmost ellipsoid located in the background medium
(€gs g, €9, Cg). EMA formulates the problem by letting the additional
polarizations in the effective medium (eg, g, &g, ¢g) to be zero.

<F;‘>] [(Ff)} [5}
L I ICE I g 50
e+ len ) o o0
This yields

age agm a?e aeBm A

P EXCEl el ELCS

ie.,

fort +(1—flaB, =0. rs=eorm (52)

where af, and of have been thoroughly discussed in Section 2 of
this paper. From the above four scalar equations we can solve the four

unknowns €4, fig,&,, and (y, which have been appeared in of and

aB. Notice that of,af can be replaced by o?4 and off or o

and o¥? and o4 and oZB. So the above procedure is easily adapted

to determine (g, 2y, zg,?g) in the ordered layered-ellipsoid case.

4, Conclusion

In conclusion, the low-frequency electromagnetic scattering of an
electrically small layered bi-isotropic ellipsoid immersed in a host bi-
isotropic medium was obtained. The polarization dyadic is computed
by a recursive algorithm. The Maxwell-Garnett formula is derived for
the layered-ellipsoid bi-isotropic mixture. And the effective medium
approximation is also used to analyze this mixture.

* After submitting this paper, a EMA treatment of the bi-isotropic
mixtures published [11]. Numerical calculations of [11} show that the
results of EMA are significantly different from those of Maxwell—
Garnett formula.
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Appendix: Elements of ﬁk,kﬂ and =ﬁk+1,k

The elements bg;;(3,j = 1,2,3,4) are as follows:

bk11 = bra1 M + 1,
br12 = braa M,
bx1z = brss My — My,

br1a = braa M,

where

brai = Akilirk — Brirk

brai = Bri€rk — AkiCr

Akl = €r(41) = €rk
Ar2 = &rkr1) — &rk
Az = €rer1y My + €rk M
Ake = &y My + En M,

Ak = (M + M) (erkbirke — Erirr)

Ak = (Mi + M) (€rkbrr = vy Gr(er1))

bk21 = braa My + 1
bz = brao M
bros = bras My — My

broga = braa My (A1)
i=1,2,3,4, (A2)
i=1,2,3,4, (A3)

Bii = Grkt1) — Crk

Bia = pr(iet1) — rk

Bia = Gokay My + Gk Mo

Bia = pr(k+) Mg + My (A4)

(45)

(A6)

The elements fi;(3,7 = 1,2,3,4) can be obtained by exchanging the
(€rks birks ey Grk)  TOT (Erhp1ys Kor(ia1)s Erit1)s Gr(ir)) I (A1)~(A4)

and replacing bii; by frij-
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