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ABSTRACT: In recent years, uncertainty analysis is a hot topic in the field of electromagnetic compatibility simulation. The actual elec-
tromagnetic environment is simulated by considering the randomness of the model input parameters. However, there are currently two
key issues that have not been resolved. One is the curse of dimensionality problem that occurs when there are many random variables.
The other is how to establish a random input model with generality and portability. In order to address these issues, this paper proposes a
new random input modeling method called random variable black box model. When applying to the Stochastic Collocation Method with
dimensionality reduction sparse grid strategy, the applicability of this uncertainty analysis method can be extended to any probability
density function, then enabling efficient electromagnetic compatibility simulation uncertainty analysis of high-dimensional random vari-
able models and fundamentally solving the curse of dimensionality problem. Finally, this paper implements a joint simulation technology
of the MATLAB software and COMSOL software to verify the strong portability of the random variable black box model, ensuring that
advanced uncertainty analysis methods can be smoothly introduced into commercial electromagnetic simulation software and expanding
the application scope of uncertainty analysis.

1. INTRODUCTION

Uncertainty analysis is a hot research topic in the field of
Electromagnetic Compatibility (EMC) in recent years. It

can improve the reliability and practicality of EMC simula-
tion models or methods, by treating numerical simulation input
parameters as uncertain parameters, such as random variable
models, random fuzzy variable models, and fractal dimension
models. Usually, the uncertainty of simulation input is caused
by factors such as actual environmental motion or vibration,
manufacturing tolerances, loose connections, and cognitive de-
ficiencies of researchers.
Monte Carlo Method (MCM) is the most commonly used

uncertainty analysis method, which is based on the weak law
of large numbers. The randomness of simulation inputs is de-
scribed through a large number of discrete sampling points [1].
All possible scenarios are considered by the MCM; therefore,
MCM is most in line with researchers’ understanding of un-
certainty concept. Therefore, MCM is suitable as a standard
to verify the accuracy of other uncertainty analysis methods in
theoretical research, rather than using actual measurement data.
Although MCM has the advantages of high computational ac-
curacy and easy implementation, it also has the problem of low
computational efficiency caused by poor convergence, making
it not competitive in practical engineering applications [2].
Subsequently, some efficient uncertainty analysis methods

(such as traceless transformation method [3], perturbation
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method [4, 5], method of moment [6], and direct solution
method [7]) are gradually applied in the EMC field, but
they all have varying degrees of computational accuracy
issues. Especially when faced with electromagnetic simulation
considering resonant frequency, high nonlinearity makes
that small changes in input parameters will cause drastic
changes in output parameters. At this time, these numerical
approximation methods will generate truncation errors, such as
the Taylor formula expansion of the method of moment or the
perturbation polynomial expansion of the perturbation method.
In 2013, the generalized polynomial chaos theory was intro-

duced into EMC simulation by the Turin Institute of Technol-
ogy research team in Italy. Multiple typical uncertainty analy-
sis problems have been solved, such as bundled cable crosstalk
analysis, random interference source field line coupling analy-
sis, and Printed Circuit Board (PCB) wiring electromagnetic
coupling analysis [8–11]. This theory includes two numeri-
cal solution methods, namely the Stochastic Galerkin Method
(SGM) and Stochastic Collocation Method (SCM), both of
which have the dual advantages of high computational accu-
racy and efficiency. SGM is an embedded uncertainty analysis
method, although it has slightly higher accuracy than SCM, and
it cannot as applicable as the SCM. SCM is a non-embedded un-
certainty analysis method which requires only a stable solver,
and it has the same applicability as MCM.
However, for SGM and SCM, the curse of dimensionality

is a big factor affecting their performance. When the number
of random variables describing uncertain inputs increases, the
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number of chaotic polynomials in SGM and the number of col-
location points in SCM both exponentially increase, leading to
a sharp decrease in computational efficiency, which is known
as the curse of dimensionality problem. Some literature points
out that when the number of random variables exceeds 20, the
computational efficiency of SGM, SCM, and MCM is almost
the same [12, 13]. With the deepening of research, more and
more uncertainty analysis methods are found to be plagued by
the curse of dimensionality. Therefore, how to respond to this
challenge has become a hot research topic in the past five years.
In response to the curse of dimensionality, the hierarchi-

cal dimensionality reduction method of chaotic polynomials is
proposed in [12], and its mathematical theoretical derivation
is reasonable. However, in practical applications, the trunca-
tion error of each layer will gradually accumulate in the trans-
mission of each layer, ultimately affecting the accuracy of the
simulation. The basis function of high-dimensional random
variables based on tensor method is constructed in [13] to im-
prove the computational efficiency of sparse solvers. How-
ever, when the nonlinearity of EMC simulation is high, good
uncertainty description ability is difficult to maintain by the
solvers, which affects computational accuracy. A polynomial
meta model with standardized low rank approximation is con-
structed by [14] and [15] to reduce the dimensionality of ran-
dom variables, but its accuracy is only applicable to cases where
the EMCmodel is simple (with small nonlinearity and small in-
put output range). Stochastic Reduced Order Models (SROM)
method is proposed in [16], but its convergence is difficult to
effectively determine in practical applications. When the num-
ber of selected representative sampling points is small, its ac-
curacy cannot be guaranteed. And when the number of rep-
resentative sampling points is large, there is still a problem
of curse of dimensionality. The improved method of moment
(IMOM) based on Richardson’s extrapolation method is pro-
posed in [17], but its accuracy in calculating the mean is still
poor, which affects the accuracy of the overall uncertainty anal-
ysis results. The Dimension-Reduced Sparse Grid Strategy for
the SCM (DRSG-SCM) proposed in [18] can effectively solve
the problem of curse of dimensionality, but its applicability is
limited by the probability density function of input random vari-
ables (the probability density function is symmetric about the
y-axis), such as the uniformly distributed random variables and
Gaussian distributed random variables. In summary, there is
currently no uncertainty analysis method that can completely
solve the curse of dimensionality problems.
In addition, in early research, researchers focused more on

the quantitative transmission process of uncertainty from input
to output, but to some extent ignored the importance of uncer-
tainty input modeling for simulation results. Therefore, in ad-
dition to the random variable models, random fuzzy variable
models [19], fractal dimension models [20], and random pro-
cess models [21] are gradually introduced into the EMC field
to improve the accuracy of uncertainty description. However,
for users, these high-end random input models are not easy to
understand, and the modeling process is difficult to implement.
Especially when commercial simulation software for models is
applied, incorrect understanding of uncertainty input can easily

lead to confusion between uncertainty and error concepts, and
instead reduce the credibility of the input model.
In order to better handle uncertainty, the Random Vari-

able Black Box Model (RVBBM) is proposed in this paper
to achieve modeling of EMC simulation inputs. Compared to
other complex and difficult to understand modeling methods,
RVBBM is more intuitive and avoids confusion between re-
searchers and users about the concept of uncertainty. At the
same time, RVBBM and DRSG-SCM are effectively combined
to solve the curse of dimensionality problem faced in high-
dimensional random variable spaces, ultimately achieving the
promotion of new uncertainty analysis methods in commercial
electromagnetic simulation software.
The structure of this article is as follows. Section 2 pro-

vides a detailed introduction to the principles of RVBBM. Sec-
tion 3 verifies the calculation accuracy of RVBBM. Section 4
combines RVBBM and DRSG-SCM to achieve efficient uncer-
tainty analysis. In Section 5, a parallel cables crosstalk predic-
tion example is used to verify the effectiveness of the proposed
uncertainty analysis method. In Section 6, the promotion of the
RVBBM in the commercial electromagnetic simulation soft-
ware COMSOL is implemented, and the uncertainty analysis
of the shielding effectiveness calculation example of the metal
box is achieved based on DRSG-SCM. Section 7 explores the
future research directions of RVBBM. Section 8 summarizes
the entire text.

2. PRINCIPLE OF RANDOM VARIABLE BLACK BOX
MODEL

In the process of modeling the uncertainty of simulation input
parameters, uncertainty and error are two concepts that are eas-
ily confused. Error refers to the deviation caused by inaccurate
models or algorithms when actual electromagnetic phenomena
are simulated, while uncertainty refers to the inherent changes
in simulation input parameters. Both can lead to uncertainty in
simulation results, but their sources are completely different.
The essence of uncertainty modeling is to consider all pos-

sible scenarios, which is also the mathematical mechanism of
MCM. The uncertainty of input parameters comes from the
movement or vibration of the actual environment, tolerances
in the manufacturing process, loose connections, cognitive de-
ficiencies of researchers, etc. Therefore, simulation results
should cover the impact of all possible scenarios, and uncer-
tainty analysis methods should be used to quantitatively evalu-
ate the transmission process.
The RVBBM proposed in this article is a modeling method

that approximates all possible scenarios, and its core idea is
consistent with [12]. In [12], intermediate variables are con-
structed by researchers to achieve orthogonalization of chaotic
polynomials. However, RVBBM advances by retreating, con-
structing input variables that can generate specific possible sce-
narios based on numerical approximation methods, and assist-
ing in the efficient implementation of subsequent uncertainty
analysis methods by freely adjusting the properties of random
variables.
The modeling process of the RVBBM is as follows:

24 www.jpier.org



Progress In Electromagnetics Research M, Vol. 123, 23-33, 2024

FIGURE 1. Flow chart of RVBBM parameter identification based on the GA.
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Among them, ξNor
i is a normally distributed random variable,

and ξUni
j is a uniformly distributed random variable within the

range of [−1, 1]. kavg , kNor
i , and kUni

j are the parameters to be
identified. In addition, the number of random variables, namely
m and n, needs to be determined. The purpose of choosing uni-
form distribution and normal distribution here is because they
have good traversability, and the probability density curve is
symmetric about the y-axis, which is not limited by DRSG-
SCM method.
The theoretical basis of RVBBM is Bayesian Neural Net-

work (BNN) model. In BNN model, the input of the model
is a random variable, which enables the transmission of un-
certainty in the neural network model to enhance the robust-
ness and generalization ability of the algorithm [22–24]. There-
fore, RVBBMcan be regarded as a single-layer BNN equivalent
model with strong uncertainty description ability.
To determine the parameters to be solved in RVBBM, an op-

timization algorithm needs to be introduced. Due to the low
complexity of the RVBBM parameter identification optimiza-
tion problem, almost all intelligent optimization algorithms can
complete this task, and the most commonly used Genetic Algo-
rithm (GA) is chosen in this paper [25–27]. The difficulty of
the optimization process is how to accurately and quantitatively
evaluate the difference between the uncertainty of actual ran-
dom factors and the uncertainty described by RVBBM, and then
determine the fitness function in the GA. The Mean Equivalent

Area Method (MEAM) is a method for evaluating the effec-
tiveness of uncertainty analysis results based on the character-
istics of the EMC simulation. When the standard data (usually
the uncertainty analysis results of the MCM) is known, the dif-
ference between the evaluated results and the standard data is
quantitatively calculated to determine the effectiveness of the
uncertainty analysis method to be evaluated. MEAM is used in
this article to provide the fitness function of the GA, and more
details about MEAM can be found in [28] and [29].
The process of identifying the RVBBM parameters based on

the GA is shown in Figure 1, and the specific steps are as fol-
lows:

(1) TheRVBBMparameter {kavg, kNor
1 , . . . , kNor

m , kUni
1 , . . . ,

kUni
n } to be identified is considered as the chromosome
of the GA.

(2) For each chromosome, random variables ξNor
i and ξUni

j

are sampled, and the probability density function corre-
sponding to each chromosome is generated.

(3) For a large number of sampling points that can describe
random events, a probability density function is also gen-
erated and recognized as standard data.

(4) Based on MEAM, the difference between the two prob-
ability density functions is quantitatively calculated, and
the fitness function value for each chromosome is deter-
mined.

(5) The selection, crossover, and mutation operations of ge-
netic algorithms are performed to seek the optimal solu-
tion.

(6) The final identification results are obtained, and the con-
struction of RVBBM is completed.

From this, it can be seen that the concept of RVBBM is clear,
which not only simplifies the uncertainty input modeling pro-
cess, but also effectively avoids the confusion between uncer-
tainty and error, which is beneficial for researchers in the EMC
field to use uncertainty analysis methods more accurately.
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FIGURE 2. Probability density curves of voltage parameter calculation
example.

FIGURE 3. Probability density curves of weight parameter calculation
example.

3. VERIFICATION OF RVBBM CALCULATION ACCU-
RACY
The accuracy of the RVBBM modeling process is verified in
this section through examples of voltage parameters and weight
parameters.

3.1. Example of Voltage Parameter Calculation
The first uncertainty model that RVBBM needs to construct is
the voltage value of a certain excitation source Em, which is
expressed as follows:

Em(ξx) = 1 + 0.1× ξx [V] (2)

Assume that the Probability Density Function (pdf) of its actual
uncertainty distribution is:

pdf(ξx) =


1

2
sin

(
3π

2
ξx

)
+

(
1− 1

3π

)
, 0 ≤ ξx ≤ 1

0, ξx represents other values

(3)

The probability density distribution can be obtained through di-
rect measurement or theoretical derivation and estimation, usu-
ally in the form of a large number of sampling points under
real engineering conditions. In this article, in order to verify
the accuracy of RVBBM, it is assumed that its true situation
is described by formula (3). According to calculations, the in-
tegration result of pdf(ξx) in the range of negative infinity to
positive infinity is equal to 1, and pdf(ξx) ≥ 0, so it satisfies
all the conditions of the probability density curve.
The modeling results of RVBBM are as follows:

ERV BBM
m = 1.045 + 0.020× ξ1 + 0.038× ξ2 [V] (4)

Among them, ξ1 and ξ2 are uniformly distributed random vari-
ables within the interval [−1,1]. The comparison between the
true uncertainty distribution given by formula (3) and the prob-
ability density curve of the model constructed by RVBBM is
shown in Figure 2. The common area of the two probabil-
ity density curves in Figure 2 is 97.36%, greater than 95%,

which belongs to the “excellent” level [28]. The accuracy of
the RVBBM in voltage parameter modeling is verified.

3.2. Example of Weight Parameter Calculation
The second uncertainty model that RVBBM needs to construct
is a certain weight parameter Wm(ξy), whose expression is as
follows:

Wm(ξy) = 1+0.1× ξy (5)
Assume that the probability density function of its true uncer-
tainty distribution is:

pdf(ξy) =


3

8

[
−2ξ2y + 8ξy − 6

]
, 1 ≤ ξy ≤ 3

0, ξy represents other values
(6)

Obviously, pdf(ξy) also satisfies the conditions of the proba-
bility density curve.
The modeling results of RVBBM are as follows:

WRV BBM
m = 1.202 + 0.051× ξ3 (7)

Among them, ξ3 is a normally distributed random variable.
Figure 3 shows the probability density curve comparison results
of the weight parameter calculation example, with a common
area of 97.92%, which also verifies the accuracy of RVBBM.

4. UNCERTAINTY ANALYSIS METHOD BASED ON
RVBBM AND DRSG-SCM
SCM is a nonembedded uncertainty analysis method based on
generalized polynomial chaos theory. Deterministic EMC sim-
ulations are conducted at selected collocation points, and uncer-
tainty analysis results are obtained through multidimensional
Lagrange interpolation. It has the advantages of high compu-
tational accuracy, high computational efficiency, and wide ap-
plicability. However, the tensor product form is adopted by the
traditional SCM to select collocation points, which inevitably
leads to the problem of curse of dimensionality.
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FIGURE 4. Crosstalk prediction example for parallel cables in References [29] and [30].

DRSG-SCM is an improved algorithm of SCM, which
greatly reduces the number of required collocation points
through a dimensionality reduction sparse grid strategy.
DRSG-SCM has a two-layer collocation points structure:
(1) the first layer only has u1 = {0}, which is the zero
point of the first-order chaotic polynomial (2). The second
layer contains M = 2k + 1 collocation points, such as
u2 = {0, ± A1,±A2, . . . , Ak}, which are the zeros of
other odd order chaotic polynomials [18]. Therefore, if the
dimensionality reduction sparse grid strategy is to be used, the
probability density function of the random variables must be
symmetric about the y-axis, such as the uniform distribution
or normal distribution of the interval [−1, 1]; otherwise,
the symmetry of the two-layer collocation points cannot be
guaranteed, which is the limitation of DRSG-SCM.
The principal formula of DRSG-SCM is as follows:

˜EMCDRSG(ξ) = A1(n+ 1, n) +

n∑
m=1

A2,m(n+ 1, n) (8)

Among them, ˜EMCDRSG(ξ) is the multidimensional Lagrange
interpolation result under the dimensionality reduction sparse
grid strategy. The number of random variables is n, andA1(n+
1, n) and A2,m(n+1, n) are the collocation points selected by
DRSG-SCM.

A1(n+ 1, n) = −(n− 1)×

EMC1
u ⊗ · · · ⊗ EMC1

u︸ ︷︷ ︸
n

 (9)

A2,m(n+ 1, n) = EMC1
u ⊗ · · · ⊗ EMC1

u︸ ︷︷ ︸
m−1

⊗EMC2
u

⊗EMC1
u ⊗ · · · ⊗ EMC1

u︸ ︷︷ ︸
n−m

(10)

The total number of collocation points required for the DRSG-
SCM is:

Tn = 1 + (M − 1)× n (11)
Obviously, there is a linear relationship between the total num-
ber of collocation points Tn and the random variable n, which
is the most important property of the DRSG-SCM.

A large number of sampling points can be used for uncer-
tainty modeling by RVBBM, indicating that RVBBM has ex-
cellent applicability. According to principal formula (1), its
model is a linear combination of a uniform distribution with
an interval of [−1,1] and a standard normal distribution, which
can effectively solve the limitation of the DRSG-SCM’s dimen-
sionality reduction sparse grid strategy on the condition that
the probability density function must be symmetric about the
y-axis. That is, the combination of RVBBM and DRSG-SCM
can completely solve the curse of dimensionality problem of
uncertainty analysis.
It is worth noting that although there is a probability of in-

creasing the number of random variables in the RVBBMmodel-
ing process, the linear relationship in formula (11) ensures that
the increase in the number of variables does not have a sub-
stantial impact on the computational efficiency of uncertainty
analysis.

5. EXAMPLE OF PARALLEL CABLES CROSSTALK
PREDICTION
The parallel cables crosstalk prediction example proposed
in [29] and [30] is used in this section to verify the performance
of the combined uncertainty analysis method of the RVBBM
and DRSG-SCM proposed in the previous section. The
specific structure of this example is shown in Figure 4, which
has 3 uncertain parameters. The first uncertainty parameter
is the voltage value of the excitation source, which satisfies
formulas (2) and (3). According to the RVBBM constructed in
Section 2, it can also be represented by the random variables
ξ1 and ξ2 in formula (4). The other two uncertain parameters
are the height of two parallel cables, which can be described
by the following random variable model:{

h1(ξ4) = 0.045 + 0.005× ξ4 [m]
h2(ξ5) = 0.035 + 0.005× ξ5 [m]

(12)

Among them, ξ4 and ξ5 are uniformly distributed random vari-
ables within the interval [−1, 1]. The horizontal distance be-
tween the two cables is 0.05m, and the frequency range of the
remote crosstalk results to be solved is 1MHz to 100MHz. All
settings are the same as those in [30].
According to the RVBBMmodel constructed by formula (4),

the input parameter random variables are determined as ξ1, ξ2,
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FIGURE 5. Probability density results of the crosstalk voltage value at 5MHz.

FIGURE 6. Expectation results of the crosstalk voltage value from
1MHz to 100MHz.

FIGURE 7. Standard deviation results of the crosstalk voltage value
from 1MHz to 100MHz.

ξ4, and ξ5, with a uniform distribution of random variables in
four [−1, 1] intervals. According to DRSG-SCM, the Legendre
polynomial is used to construct formula (8), and the zero point
of the seventh order polynomial is selected for the second layer
collocation points. According to formula (11), the total number
of collocation points can be calculated as 4× (7−1)+1 = 25.
The uncertainty analysis results of crosstalk voltage values

based on the DRSG-SCM are shown in Figure 5, Figure 6, and
Figure 7. As a comparison, the results of efficient uncertainty
analysis methods such as SCM, SROM, and IMOM are also
presented, all of which use the simulation results of MCM as
standard data.
Figure 5 shows the comparison of probability density curves

of remote crosstalk voltage values at 5MHz. The simulation
results of MCM are used as standard data. The common area
between the probability density curves of MCM and SCM is
99%, and the common area between MCM and DRSG-SCM is
98%. Since both are greater than 95%, it indicates that the cal-
culation accuracy of SCM andDRSG-SCM is at the “excellent”
level specified in [28]. However, the common area correspond-
ing to the SROM is only 87%, while the IMOM is 68%, which
proves their poor computational accuracy.

The expectation calculation results and standard deviation
calculation results of remote crosstalk voltage values from
1MHz to 100MHz are shown in Figure 6 and Figure 7, re-
spectively. The Feature Selection Verification (FSV) method
in computational electromagnetics is introduced in this section
to quantitatively evaluate the effectiveness of simulation re-
sults [31, 32]. Similarly, MCM simulation results are used as
standard data, with an FSV value of 0.017 between the MCM
and SCM, 0.016 between theMCM and DRSG-SCM, 0.012 for
the SROM, and 0.058 for the IMOM. According to the judg-
ment criteria of [31], all four simulation results belong to the
“excellent” level.
In the standard deviation calculation results, the FSV value

between the MCM and SCM is 0.11, and the FSV value be-
tween the MCM and DRSG-SCM is 0.10, but the FSV value
corresponding to the SROM is 0.24, and the FSV value corre-
sponding to the IMOM is 0.69. According to the standards of
reference [31], the calculation accuracy of the SCM andDRSG-
SCM belongs to the “very good” level; the SROM only belongs
to the “good” level; and the IMOM is in the “fair” level.
Therefore, the SCM and DRSG-SCM have the same compu-

tational accuracy as the MCM in parallel cable crosstalk pre-

28 www.jpier.org



Progress In Electromagnetics Research M, Vol. 123, 23-33, 2024

FIGURE 8. Construction of the joint simulation platform of the MATLAB software and the COMSOL software.

diction examples, while the SROM and IMOM have relatively
poor computational accuracy.
In terms of computational efficiency, the 3 random variables

ξx, ξ4, and ξ5 need to be processed by the MCM, and 10000
deterministic EMC simulations are conducted to ensure con-
vergence, with a required time of 18.71 hours. 3 random vari-
ables ξx, ξ4, and ξ5 are also processed by the SCM, with the
zero points of the 7th order chaotic polynomial as the colloca-
tion points. The collocation points are then combined in tensor
product form, and the deterministic EMC simulation frequency
is 7 × 7 × 7 = 343, with a required simulation time of 0.73
hours. Only 25 deterministic EMC simulations are required by
the DRSG-SCM, with a simulation time of only 2.80 minutes.
8 deterministic EMC simulations are required by the SROM,
with a simulation time of 0.91 minutes. 7 deterministic EMC
simulations are required by the IMOM, with a simulation time
of 0.79 minutes.
In summary, DRSG-SCM is the only uncertainty analysis

method that combines computational efficiency and accuracy,
and can effectively solve the curse of dimensionality caused
by the traditional SCM tensor product collocation point selec-
tion method. At the same time, it is also verified that RVBBM
can effectively address the limitations of DRSG-SCM random
variable form, in order to achieve efficient and accurate EMC
simulation uncertainty analysis.

6. THE PROMOTION OF THE RVBBM IN COMSOL
SOFTWARE
Many factors often need to be considered in the EMC problem
of practical engineering, and the setting of geometric regions
is relatively complex. Commercial finite element simulation
software usually needs to be used for simulation, such as CST,
COMSOL, and FEKO. Therefore, it is of great significance to
effectively integrate new advanced uncertainty analysis meth-
ods with commercial simulation software.
In January 2022, COMSOL made a preliminary attempt by

adding an uncertainty analysis module for the first time in its
new version of 6.0 software. However, there are two problems

that are always difficult to solve during use: (1)MCMand SCM
are used as core algorithms, and the problem of the curse of
dimensionality cannot be solved. The new uncertainty analy-
sis method itself has poor applicability and is difficult to pro-
mote in commercial simulation software. (2) From the perspec-
tive of users, it can better help users understand the concept of
uncertainty analysis and better serve practical engineering ap-
plications. For example, complex stochastic models similar to
nonGaussian stochastic processes are difficult for engineers to
understand and are not conducive to engineering applications.
If the uncertainty analysis method proposed in the third sec-

tion of this article is adopted, RVBBM is used to construct an
uncertainty model of input parameters. Engineers only need
to provide a large number of sampling points that can describe
the uncertainty (data can be directly obtained from experiments
or generated by sampling random variables using MATLAB
software), which not only reduces the probability of conceptual
confusion but also solves the applicability problem of the new
uncertainty analysis method. At the same time, if DRSG-SCM
is used as the core algorithm for uncertainty analysis, it not only
includes non-embedded features but also has many advantages
such as high accuracy, high computational efficiency, and not
affected by the curse of dimensionality. It is an ideal choice for
commercial electromagnetic simulation software at present.
To promote the uncertainty analysis method in Section 3,

the joint simulation debugging of the COMSOL software and
MATLAB software needs to be implemented first. An RVBBM
model needs to be constructed and implemented in MATLAB
software for two-layer collocation points calculation under the
dimensionality reduction sparse grid strategy. Then, deter-
ministic EMC simulation on the collocation points is imple-
mented in COMSOL software, and the deterministic simula-
tion results are returned to MATLAB software for uncertainty
analysis based on DRSG-SCM.
The construction method of the joint simulation platform is

shown in Figure 8, and the following two key technologies are
highlighted:

(1) The assignment problem of collocation points. If it is a
parameter of a numerical variable, it can be directly as-
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FIGURE 9. Calculation example of shielding effectiveness of metal
box.

FIGURE 10. Enlarged view of the heat dissipation holes on the metal
box.

signed. If it is a parameter of a character variable, it needs
to be assigned using the num2str function in MATLAB
software.

(2) The data transmission between COMSOL software and
MATLAB software relies on “TXT” files. If MATLAB
software needs to read deterministic EMC simulation re-
sults data from TXT files, pointer programming can be
used to delete useless information lines. For example, the
following program can read data and delete the first 8 lines
of information,
1 — fid = fopen (strcat (‘EMC_results’, ‘.txt’)),
2 — data = textscan (fid, ‘%f’, ‘HeaderLines’, 8).

Next, an example of the shielding effectiveness of a metal
box will be proposed to verify the effectiveness of the joint
simulation scheme proposed in this section. The specific situa-
tion of the calculation example is shown in Figure 9, where the
test antenna and metal shielding box are stored in an anechoic
chamber. The size of the darkroom is 3.9 × 3.9 × 3.3m3, and
its shielding material is low conductivity carbon loaded foam.
The Bi-Cone test antenna is located in the center of the dark-
room and emits spherical electromagnetic waves ranging from
1MHz to 10MHz.
On the right side of the anechoic chamber, there is a metal

aluminum box with a size of 0.6 × 0.6 × 0.6m3. The right-
most end of the box is 0.8m away from the right wall. The
skin thickness of the metal box is 0.02m, and the center of the
box is the shielding effectiveness testing point. The shielding
effectiveness calculation formula is as follows:

SE = 20 log10
(

Eno−box

Ewith−box

)
[dB] (13)

Among them, Eno−box is the simulated electric field strength
value at the test point position when the metal box does not
exist, and Ewith−box is the electric field strength value when
the metal box exists.
There are 3 heat dissipation holes on the right side of the

metal box, and their enlarged view is shown in Figure 10. As-

suming that the dimensions of these holes are uncertain, the
following relationship is met:



L1(ξ) = 0.22 + 0.05× ξ6 [m]
L2(ξ) = 0.3× (1 + 0.1× ξy) [m]
L3(ξ) = 0.38 + 0.05× ξ7 [m]
B1(ξ) = 0.4 + 0.02× ξ8 [m]
B2(ξ) = 0.4 + 0.02× ξ9 [m]
B3(ξ) = 0.4 + 0.02× ξ10 [m]

(14)

Among them, ξy is a random variable that satisfies formula (6),
and ξ6, ξ7, ξ8, ξ9, and ξ10 are all normally distributed random
variables.
By applying RVBBM, parameter L2(ξ) can be converted as

follows:

L2(ξ) = 0.3× (1.202 + 0.051× ξ3) [m] (15)

Among them, ξ3 is a normally distributed random variable,
and this transformation is derived from formula (7).
The uncertainty analysis results of shielding effectiveness

obtained by applying the joint simulation scheme proposed in
this section are shown in Figure 11 and Figure 12. There are
6 random variables in the simulation model, and the number of
sampling points required for theMCM is too high, resulting in a
high time cost that cannot be achieved. Therefore, in this case,
the SCM simulation results are used as standard data.
For the expected value results shown in Figure 11, FSV

method is also used. The FSV value between DRSG-SCM
and SCM is 0.0062; the FSV value corresponding to SROM is
0.0037; and the FSV value corresponding to IMOM is 0.0066,
all of which belong to the “excellent” level. Back to the stan-
dard deviation results shown in Figure 12, the FSV value be-
tween DRSG-SCM and SCM is 0.15, proving that the calcula-
tion accuracy of DRSG-SCM belongs to the “very good” level.
The FSV value corresponding to SROM is 0.56, which only be-
longs to the “fair” level. The FSV value corresponding to IMO
is 0.98, even in the “poor” level.
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FIGURE 11. Expectation results of shielding effectiveness of metal
box.

FIGURE 12. Standard deviation results of shielding effectiveness of
metal box

In summary, the calculation accuracy of DRSG-SCM is at
the same level as that of SCM, while the calculation accuracy
of SROM and IMOM is poor.
For the DRSG-SCM under RVBBM model, there are 6 ran-

dom variables, including ξ3, ξ6, ξ7, ξ8, ξ9, and ξ10, all of which
follow a normal distribution. According to formula (8), the
Hermitian polynomial is selected to construct the collocation
point, and the zero point of the 7th order polynomial is also
used as the second layer collocation point. The number of
deterministic EMC simulations required for the DRSG-SCM
is 6 × (7 − 1) + 1 = 37. For SCM, the random variables
that it needs to handle are 6, including ξy , ξ6, ξ7, ξ8, ξ9, and
ξ10. The zeros of the 4th order chaotic polynomial are selected
to construct the tensor product form of the settlement point,
and the number of deterministic EMC simulations required is
46 = 4096. When simulating the shielding effectiveness of
the metal box, the simulation time required to achieve DRSG-
SCM is 2.33 hours, while the simulation time required for SCM
is 10.68 days.
Therefore, DRSG-SCM can achieve the same computational

accuracy as SCM with less than 1% of the computational re-
sources used. The significant advantages of the DRSG-SCM in
dealing with high-dimensional random variable problems are
fully demonstrated.
In summary, by implementing the joint simulation technol-

ogy of COMSOL software and MATLAB software, RVBBM
andDRSG-SCMare promoted to the application of commercial
electromagnetic simulation software in this section, verifying
that the modeling approach based on RVBBM can effectively
assist in the implementation and promotion of various new un-
certainty analysis methods in commercial simulation software
in the future.

7. THE OUTLOOK OF THE RVBBM
The theoretical basis of the RVBBM modeling method is the
Bayesian neural network model. However, in the model con-
structed in this article, the nonlinear threshold calculation of
neurons is ignored, as shown in formula (1). The core idea
of this article is to conduct joint uncertainty analysis with the
DRSG-SCM, so this part is ignored. If non-linear threshold

calculation is introduced into formula (1), it will definitely im-
prove the ability of the RVBBM to handle nonlinearity in prac-
tical engineering. For example, the numerical calculation of
singular fields in Reference [33], or the simulation of dipole
antennas in Reference [34]. The effectiveness of this part can
be discussed in detail in subsequent research.
Meanwhile, in the modeling process of the RVBBM, only

a portion of random variables are considered. In subsequent
research, it can be replaced with other random variable models,
even random fuzzy variable models, fractal dimension variable
models, and random process variable models. The impact of
improvements in this section on the performance of RVBBM
can also be discussed in detail in subsequent research.

8. CONCLUSION
Based on the MEAM and genetic algorithm, an uncertainty in-
put modelingmethod for electromagnetic compatibility simula-
tion called random variable black box model is proposed in this
paper. This method can directly model a large amount of sam-
pling points data to effectively avoid simulation errors caused
by researchers confusing the concept of uncertainty. A random
variable black box model method is applied to DRSG-SCM,
and the limitations of the use condition of the dimensional-
ity reduction sparse grid strategy “probability density function
must be symmetric about the y-axis” are solved. Efficient un-
certainty analysis of electromagnetic compatibility simulation
under high-dimensional random variables is achieved, and the
problem of the curse of dimensionality is fundamentally solved.
By using the computational electromagnetic feature selection
verification method, this performance is effectively verified in
parallel cable crosstalk examples and metal box shielding ef-
fectiveness examples. Finally, the joint simulation technol-
ogy of MATLAB software and COMSOL software is imple-
mented in this paper. The random variable black boxmodel and
DRSG-SCM are applied to commercial electromagnetic simu-
lation software, verifying the strong portability of random vari-
able black box model and ensuring the effective promotion of
various new uncertainty analysis methods in commercial elec-
tromagnetic simulation software, in order to broaden the appli-
cation scope of uncertainty analysis.
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