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ABSTRACT: Compelling evidence suggests that the interaction between electromagnetic metasurfaces and deep learning gives rise to the
proliferation of intelligent metasurfaces in the past decade. In general, deep learning offers a transformative force to reform the design
and working style of metasurfaces. Most of the inverse-design literature announces that, given a user-defined input, pre-trained deep
learning models can quickly output the metasurface candidates with high fidelity. However, they largely ignore an important fact, that
is, the practical input is always semi-known. In this work, we introduce a generation-elimination network that is robust to semi-known
input and information pollution. The network is composed of a generative network to generate a number of possible answers and then
a discriminative network to eliminate suboptimal answers. We benchmark the feasibility via two scenes, the on-demand metasurface
design of the reflection spectra and the far-field pattern. In the microwave experiment, we fabricated and measured the reconfigurable
metasurfaces to automatically meet the semi-known beam steering requirement that widely exist in wireless communication. Our work
for the first time answers the question of how to cope with semi-known input, which is ubiquitous in a panoply of real-world applications,
such as imaging, sensing, and communication across noisy environment.

1. INTRODUCTION

Probably few people have ever thought about a weird situa-
tion in deep learning when we are intoxicated with the in-

telligent beauty in the past decade, that is, the input of deep
learning is semi-known and information-polluted. It implies
that part of the information is deterministic, and the rest is un-
defined and unconcerned. If artificially repairing the unde-
fined part, the output result will be largely contingent on the
stochastic repaired version. In the mainstream applications of
classification, prediction, translation, and decision, such situa-
tion is inconspicuous because it is very straightforward to ob-
tain a fully deterministic input, e.g., video, image, text, and
audio [1–3]. However, in other disciplines, such as the bur-
geoning research on electromagnetic metasurfaces, the situa-
tion with semi-known input does exist but remains unanswered.
Metamaterials [4, 5] and their planar version, metasurfaces,

have attracted widespread attention in the past decades due to
the unparalleled capabilities in manipulating electromagnetic
waves and the easy generalization into other physical systems.
Realizing versatile capabilities is largely attributed to the high
degree of freedom in designing the geometries of constituent
unit cell and the spatial arrangement [6–8]. About five years
ago, metasurfaces started to gain a lot of traction from the
breakthroughs of deep learning [9–13]. As a powerful data-
driven method, deep learning allows a computational model to
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automatically discover many hidden features and then perform
tasks without being explicitly programmed and with procedural
instructions. The introduction into metamaterials brings many
benefits. Among them, accelerating on-demand materials de-
sign is an active area of research, exemplified by forward de-
sign, inverse design, and spectral correlation [14–17]. Many
works have benchmarked that deep learning opens a new path-
way to alleviate the time-consuming, experience-guided, and
low-efficiency disadvantages in conventional physics-based
and full-wave simulations [18–22]. Across various physical
scenes, great efforts have been made in improving the design
accuracy and reducing data dependency by using novel network
structures [23–27].
A universal conclusion drawn in most previous works is

that, for an arbitrary given input, the network can output de-
sired metasurface constellations with high accuracy. Indeed,
this is important. However, the given input is mostly arti-
ficially constructed, purposely-formed, and actually, pseudo-
arbitrary. In practice, the input is not easy to be accessed or
constructed, rendering it a semi-known problem. When using
a widely-used metasurface design to achieve excellent absorp-
tion at several resonant frequencies, the construction of the in-
put should be tailored accordingly, without much consideration
for other frequencies. Another example is that, if we feed a
non-physical electromagnetic response (e.g., the reflection am-
plitude is larger than unity) into the pre-trained neural network,
the output will be certainly wrong; in this case, do we still ac-
cept these anomalies or seek for any remedial strategies to cor-
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FIGURE 1. Schematic of intelligent metasurfaces with semi-known input. (a) Illustrative scenarios with semi-known input. (b) Comparison between
traditional discriminative network and the proposed generation-elimination framework.

rect it? Similar examples are many in practice, but all of which
remain unexplored. In this spirit, how to comprehensively cope
with these situations with semi-known and noisy input is an im-
portant topic, albeit challenging.
To mitigate the challenge, we introduce a generation-

elimination framework to facilitate metasurface design within
complete and noisy input. The generation-elimination frame-
work is composed of a conditional variational auto-encoder
(CVAE) [28, 29] that automatically generates a diverse set of
candidates and a forward prediction network (FPN) that filters
inferior candidates. In this way, given a semi-known input,
the generation-elimination framework can robustly distill
the best output candidate. We verify the feasibility by two
proof-of-the-concept cases, the on-demand metasurface design
of the reflection spectra and the far-field pattern. The results
show that, in the first case, the resonant frequency shift is
less than 0.03GHz, and in the second case, the mean absolute
percentage error (MAPE) is less than 7% for the main lobe.
In the experiment, we fabricated reconfigurable microwave
metasurfaces to demonstrate the automatic beam steering
used in vague wireless communication scene. Our work

exhibits a promising approach to bring intelligent metasurfaces
into a plethora of real-world applications incorporated with
semi-known input and noisy information.

2. RESULTS
Illustrative applications of semi-known input in intelligent
metasurfaces. The inverse design of intelligent metasurfaces
means the direct retrieval of the proper metasurface structure
and spatial distribution (output) for a user-desired electromag-
netic response (input). However, in many cases, we only care
about part of the input information while ignoring what hap-
pens in the rest. Real-world scenes with semi-known input are
illustrated in Fig. 1(a). For example, for an airplane covered
by the metasurfaces, we only need to steer the main lobe of
scattering field towards the radar direction (deterministic part),
without the requirement on side lobes (non-deterministic part).
In addition, to image a deer, sometimes, we only care about
the reflection spectra at certain frequencies, while ignoring the
performance at other frequencies. For simplicity, we call this
deterministic part as region of interest (ROI). The inputs that
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FIGURE 2. Architecture of the generation-elimination network. (a) The network comprises a generator and a predictor. Here, P = {p̃1, p2, p̃3}
represents the electromagnetic response of metasurfaces, and S represents the geometries of unit cell or the distribution of metasurfaces. (b) The
generator is a deep generative network, such as CVAE, to automatically generate a diverse set of metasurface candidates. (c) The predictor is a basic
FPN to complete the mapping from the metasurfaces to the electromagnetic response.

satisfy the above ROI requirements are numerous, but each of
which will make conventional neural network generate a com-
pletely different output. These outputs are either good or bad
(depending on the repaired input version), but at least, they are
not the optimal. Thus, it naturally raises the question of how to
set up a suitable and complete input for the neural network to
enable a robust and optimal result.
We formulate the above process in Fig. 1(b). In general, a

semi-known input is expressed as P = {p̃1, p2, p̃3}, where the
middle interval p2 is deterministic, and the other two, p̃1 and
p̃3, are non-deterministic. It is infeasible to feed an incomplete
input into conventional neural network, so that one has to ar-
tificially remedy the non-deterministic part. Correspondingly,
conventional neural network gives a single output S∗ (meta-
surface structure or distribution) that is very sensitive to the re-
paired version. Such S∗ has the authentic electromagnetic re-
sponse P ∗ = {p∗1, p∗2, p∗3} that may be distinct from the ground
truth P , indicting that the inverse design result is terrible. To
address this issue, we propose a generation-elimination archi-
tecture. We feed P (p̃1 and p̃3 are arbitrary) into the architec-
ture that can generate a great number of candidates and elimi-
nate all unsuitable candidates to retain the best candidate with
P ′ = {p′1, p′2, p′3}. It is very likely to make p′2 match well with
p2. Although p′1 and p′3 may be different from or consistent
with p̃1 and p̃3, it is less important. Compared with conven-
tional neural network, this architecture is more robust and can
still generate a superior output even in the case of kaleidoscopic
inputs.
Generation-elimination framework. The architecture of

the whole network is depicted in Fig. 2(a), mainly composed
of a generator and a predictor. The generator is a CVAE-based

model that builds up a probabilistic relationship among vari-
ables and can automatically generate a family of nominated
metasurface designs. The FPN-based predictor, acting as an in-
spector, is aimed for eliminating inferior candidates. As shown
in Fig. 2(b), there are four types of variables in the framework:
input variable S, condition variable P , output variable S̃, and
latent variable z. The CVAE is proposed here to overcome the
one-to-many issue that widely exists in the inverse design, be-
cause it can produce much more diverse candidates. The key
point is that the true posterior distribution of the latent vari-
able z that is conditioned on S and P , pθ(z|x, y), is approx-
imated by the approximate posterior qφ(z|x, y) and trained to
be close to the prior probability pθ(z) ∼ N (0, I), where φ
is the variational parameter. Since we have applied a stan-
dard Gaussian prior distribution, φi would be (µi, σi). After
training, any latent variable sampled from the N (0, I) would
be interpreted as a new candidate once decoded. Thus, our
CVAE-based generator is a deep generative model that can
generate new structures containing similar features to those in
the training data in a probabilistic manner. The CVAE is rec-
ognized for computational efficiency, particularly in handling
high-dimensional data. By learning to generate representa-
tions in a lower-dimensional latent space conditioned on cer-
tain inputs, CVAEs reduce the computational burden signifi-
cantly compared to traditional fully connected networks. Con-
sequently, for tasks requiring the modeling of complex distribu-
tions or the generation of new samples conditional on specific
inputs, CVAEs are generally more efficient and effective.
In the framework training process, the initial step involves

training the FPN, illustrated in Fig. 2(c). This network is trained
using the input S and the condition variableP . Then, we fix the
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FIGURE 3. Demonstration in the inverse metasurface design with semi-known reflection coefficient. (a) Three-dimensional illustration of the meta-
surface. We consider a symmetrical metasurface structure, and discretize the upper metallic patch as a 5×5matrix with the pixel size of 1.0mm. By
randomly setting the metallic patch, we can generate a great number of metasurfaces and obtain the reflection coefficient via numerical simulation.
(b) The loss of the CVAE over epoch. (c) Latent space. In this space, each point represents a possible configuration of the underlying data. Similar
data points are located closed to each other in the latent space, while dissimilar points are further apart. (d) Test instances.

parameters of the pre-trained FPN and connect it to the gener-
ator. The loss of the whole network comprises three parts, the
reconstruction loss of S (calculated as the negative maximum
likelihood), the Kullback-Leibler divergence that encourages a
standard Gaussian distribution of z, and the mean squared error
(MSE) of P and P̃ . After training, the decoder of the gener-
ator is taken out to produce desired candidates. By feeding a
semi-known input, we will obtain various sets of nominations,
from which we can select the optimal one where the p2 part is
in good agreement with the final output.
Scenario 1: Inverse metasurface structural design with

semi-known reflection coefficient. The first example we
consider here is the inverse structural design of microwave
metasurfaces. The basic unit cell/meta-atom is illustrated in
Fig. 3(a), where the metallic patch is characterized by 0–1 ma-
trix R; “1” signifies copper and “0” signifies vacuum. The
spacing substrate is a commercial dielectric substrate with the
dielectric constant εr = 4.3, loss tangent tan δ = 0.0025, and
thickness h = 2.0mm. The symmetrical metasurface has a pe-
riod of 10mm, thus described by 5 × 5 matrix. To reduce the
mutual coupling among adjacent meta-atoms, we set a spacing
of 1.0mm between the boundary of the metallic pattern and the
margin of the meta-atom. For the input variable S, the matrix is
unfolded into a vector with 16 dimensions. For the semi-known
input P , we take the reflection coefficient of the metasurface,

i.e., the amplitude of S11 parameter. We want to note that a ma-
jority of previous studies consider the amplitude and phase of
the reflection coefficient as the output format. However, since
multiple abrupt wiggles exist at the resonant frequencies, us-
ing the amplitude and phase as the output format poses a sig-
nificant challenge for the neural network to grasp the intricate
relationship with trip points [25]. Therefore, we consider the
resonant frequency, amplitude, and bandwidth as the input con-
dition, where the whole spectrum ranges from 5 to 15GHz.
The FPN is composed of 8 hidden layers with 1,000 neurons

per layer. The activation function chosen for the hidden layers
is the Rectified Linear Unit (ReLU), while the Sigmoid func-
tion is selected as the activation function for the last layer to
ensure that the final responses are within the range of (0, 1).
After the FPN has been established, the next step is to train
the CVAE. In above process, a total number of 10,900 samples
are used for training, split into training, validation, and test set
with 80%, 10%, and 10% ratio. The samples are obtained by
co-simulation performed using the commercial software CST
Microwave Studio andMATLAB. As shown in Fig. 3(c), the la-
tent space of a CVAE is a 2-dimensional vector space in which
each point represents a possible configuration of the underly-
ing data. Similar data points are located closed to each other in
the latent space, while dissimilar points are further apart. By
exploring and manipulating the latent space, new data points
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FIGURE 4. Demonstration in the inverse metasurface design with semiknown far-field pattern. (a) In communication scene, to steer the main lobe
towards the user’s direction, the inputs are many, having different width at half maxima and side lobes. For those inputs, the generated outputs are
different. The perfect input field is a delta function (input 1). Yet, it does not mean that the generated output will be the best. Moreover, delta output
is almost impossible to be reached in practice. (b) The loss of the CVAE over epoch. (c) Test instances. The light blue region denotes the region of
interest. Baseline means conventional discriminative neural network, i.e., a fully connected neural network.

can be generated and the relationships between different data
points can be analyzed. The performance of the network can be
seen in Fig. 3(b), and the specific testing results are presented in
Fig. 3(d). With the input resonant frequencies of 13.024GHz,
12.023GHz, and 12.985GHz, the network produces the out-
puts of 12.998GHz, 11.997GHz, and 12.998GHz, respec-
tively, with an error of less than 0.03GHz. The desired re-
flection coefficients are 0.2712, 0.4127, and 0.2842, consis-
tent with the reflection coefficients generated by the network,
0.2857, 0.4344, and 0.2638.
Scenario 2: far-field customization of metasurfaces. The

proposed method can also be employed in the global far-field
customization. In the fifth generation (5G) wireless communi-
cation scenario, the demand for real-time localization and track-
ing services becomes increasingly urgent. In the past decade,
intelligent metasurfaces have found to be a superior candidate
for manipulating wireless channels in a green and cost-effective
manner. However, how to construct a suitable input of real-
world scenario for intelligent metasurfaces is the core. For in-
stance, to steer the main lobe towards a direction, the perfect
input field is a delta function (the inset of Fig. 4(a)). Yet, it is
almost impossible to be reached in practice. Even though we
feed the delta function into the pre-trained neural network, it
does not mean that the output field is also the optimal one. One
may conceive the input field with different widths at half max-

ima and side lobes, as long as the main lobe is directed towards
the defined direction. In this vein, we can easily find that this
is a semi-known problem, having infinite possibilities.
As a demonstration, we posit that the metasurface is com-

posed of 8 × 32 identical unit cells and that the far-field dis-
tribution is calculated based on antenna theory; the size of unit
cell is 7.5 × 7.5mm2. In this case, the semi-known input P
is far-field pattern, and the input variable S is the phase of the
unit cell. An FPN consisting of 8 hidden layers and 1,000 neu-
rons per layer was selected, with a rectified linear unit (ReLU)
used as the activation function for the hidden layers. The next
step is to train the CVAE with the FPN connected behind. We
trained the FPN and CVAE using 100,000 samples at 7.0GHz.
The network performance is shown in Fig. 4(c), and the test re-
sults are shown in Fig. 4(b). To intuitively exhibit the results,
we randomly produce the known part, and the unknown part is
artificially constructed. It turns out that the CVAE can generate
results with the MAPE of only 5.55%, 5.95% and 6.99%, com-
pared to 39.42%, 63.82%, and 73.41% for traditional neural
network. The results reveal that the CVAE output is remark-
ably robust, generating high-quality results irrespective of the
main lobe width or the shape of its side lobes.
Experiment verification. To demonstrate the real-world

significance in wireless communications, we fabricated the re-
configurable metasurfaces in a microwave experiment on the
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FIGURE 5. Experimental verification of the generation-elimination framework enabled intelligent metasurfaces for semi-known input. (a) Application
scenarios of the generation-elimination framework. (b) Experimental results. The light blue region denotes the region of known far-field. Baseline
means conventional discriminative neural network, i.e., a fully connected neural network. (c) Experimental setup connection diagram.

basis of Scenario 2. As shown in Fig. 5(a), the real-world sig-
nal that is input to the neural network may be contaminated,
ambiguous, and fragmentary. Intelligent metasurfaces aim to
convert these inputs into practical realization. For these unde-
sired and disturbed cases, intelligent metasurfaces are robust
to generate high-quality scattering field only based on the in-
terested part. The lower right corner shows the experimental
prototype of reconfigurable metasurfaces, each of which is in-
corporated with active components.
The basic reconfigurable metasurface is illustrated in

Fig. 5(c). We selected an F4B substrate with a dielectric
constant of 3.5 and a loss tangent of 0.003 for our study. The
metasurface inclusion has dimensions of 90 × 250 × 2mm3

(8 × 32 unit cells). In the y-direction, every column (8 unit
cells) shares the same bias voltage, with varactor diodes
attached between the metallic split I-shaped islands on the
dielectric substrate. As a result, we only need to consider 32
bias voltages for the entire metasurface inclusion. We used the
SMV2019-079LF varactor diode from Skyworks Solutions,
Inc. for the metasurface. To dynamically tune the reflection

spectrum, a reverse bias voltage ranging from 0 to 20V was
applied to each unit cell to control the capacitance of the
varactor diode.
The experimental setup is illustrated in Fig. 5(c). The semi-

known input P is a far-field pattern, and the input variable S is
the bias voltage of the meta-atom. We feed different bias volt-
age across the varactor diode and measure the voltage-phase
correspondence to be ready for network training. We measure
the far-field directional map of the metasurface by placing it on
a rotating platform and receiving the signal through a horn an-
tenna connected to a vector network analyzer. Experimental re-
sults are shown in Fig. 5(b). For the artificially-constructed in-
puts, the MAPE between the target responses and experimental
results on the main lobe is 8.24% and 8.14%, respectively. This
is in stark contrast to traditional neural network, which exhibits
37.51% and 70.24% for the same inputs. The proof-of-concept
cases and experimental results presented above demonstrate the
ability to generate high-quality output despite semi-known in-
put. Additionally, the framework exhibits a remarkable level
of robustness, further highlighting its potential in communica-
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tion scenarios where inputs may be contaminated by noise and
information incompleteness. Our generation-elimination net-
work, while robust, exhibits a dependence on the availability
of substantial volumes of high-quality training data to faithfully
characterize the underlying data distribution. Future iterations
of our research will prioritize the development of more effi-
cient data acquisition methodologies to mitigate this limitation
and enhance the network’s applicability.

3. CONCLUSION
To sum up, we introduced a generation-elimination frame-
work to enable intelligent metasurfaces toward semi-known
and noisy input. This framework has improved the robust-
ness over the conventional discriminative network and pro-
vides a superior output even in the presence of an input that
is somewhat out of the ordinary. We have verified the idea
by two cases, the on-demand metasurface design of the reflec-
tion coefficient and the far-field pattern. More prominently,
the generation-elimination framework can be readily extended
into other research domains of optics andmaterials science with
semi-known input and information pollution, leading to a vari-
ety of photonic designs and a broad range of real-world appli-
cations, such as cloaking, imaging, and wireless communica-
tions [3, 5, 21, 26, 30–45]. In the foreseeable future, along with
the influx of massive data, we have to encounter more and more
data with unexpected noise, incomplete annotation, and infor-
mation disclosure, making the application with semi-known in-
put widely exist. We anticipate that the proposed framework
may become a safe scaffolding to be relied on and promise the
access to a full-featured intelligent metasurfaces.
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Methods

Data collection. The training data for Scenario 1 was ob-
tained via co-simulation using the commercial software CST
Microwave Studio and MATLAB. Initially, MATLAB gener-
ates the pattern matrix R by uniformly sampling the complete
solution space and converting it into the corresponding binary
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into CST Microwave Studio to calculate the reflection coeffi-
cient. The reflection spectra of interestare set within the mi-
crowave region from 5 to 15GHz, discretized into 1,001 data
points at uniform interval. The frequency, amplitude, and band-
width of the resonance point are calculated from the amplitude
data. For Scenario 2, MATLAB is used to generate the training
data based on antenna theory.
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tating platform that is controlled by a PC through a serial port.
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voltage output channels of the converter are controlled through
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columns of the metasurface correspondingly, and the voltages
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