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Polarization-Wavelength Locked Plasmonic Topological States
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Abstract—Plasmonic topological states, providing a new way to bypass the diffraction limits and
against fabrication disorders, have attracted intense attention. In addition to the near-field coupling
and band topology, the localized surface plasmonic resonance modes can be manipulated with far-field
degrees of freedom (DoFs), such as polarization. However, changing the frequency of the topological edge
states with different polarized incident waves remains a challenge, which has led to significant interest
in multiplexed radiative topological devices. Here, we report the realization of polarization-wavelength
locked plasmonic topological edge states on the Su-Schrieffer-Heeger (SSH) model. We theoretically
and numerically show that such phenomenon is based on two mechanisms, i.e., the splitting in the
spectra of plasmonic topological edge states with different intrinsic parity DoF and projecting the far-
field polarizations to the parity of lattice modes. These results promise applications in robust optical
emitters and multiplexed photonic devices.

1. INTRODUCTION

Plasmonic systems [1, 2], which possess features such as subwavelength field confinement and resulting
enhancement, bypass the diffraction limits and have gained significant interest in various applications,
including optical antenna, surface-enhance Raman scattering, biological sensors, harmonic generation,
and superlenses [2]. However, localized surface plasmonic resonance modes on small metallic particles
are prone to serious backscattering caused by fabrication disorders. To address this issue, a strategy to
protect against fabrication disorder is to push topological physics into photonics and plasmonics.

Topological photonics/plasmonics [3–7] applies the principles of topological physics to the study of
light to manipulate the flow of photons in specially designed materials and structures. These materials,
known as topological insulators, have unique properties that protect light waves from scattering or
diffraction, even when the material has defects or is subject to disturbances. This protection is achieved
through the guidance of light waves by topologically protected edge states, which are robust against
various perturbations. The Su-Schrieffer-Heeger (SSH) model is a simple topologically nontrivial model
that features a one-dimensional (1D) chain of atoms with staggered hopping [8–13]. In the field
of plasmonics, two analogous systems exist [14–27]: a straight chain of metallic nanoparticles with
alternating spacing [14–16] and a zig-zag chain [17–20, 27].

In addition to the near-field coupling and band topology, the localized surface plasmonic resonance
modes can be manipulated with far-field degrees of freedom (DoFs), such as polarization. In a zig-zag
nanoparticle chain, the interaction among induced dipole resonances strongly depends on the dipole
orientation, which is determined by the polarization direction of the normally-illuminated wave [2, 17–
19]. This provides a feasible way to tune the position of topological edge states without adjusting the
structure parameters. However, changing the frequency of the topological edge states with different
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polarized incident waves remains a challenge, which has led to intense interest in multiplexed radiative
topological devices [28–31].

Here, we demonstrate the realization of polarization-wavelength locked plasmonic topological edge
states on the 1D SSH model, as shown in Fig. 1(a). As shown in Fig. 1(d), the topological edge
states with even (odd) parity are pinned at 6.22GHz (6.19GHz) under a horizontal (vertical) linear-
polarized illumination. This phenomenon is accounted for by that the topological edge states of specific
mode parity are pinned to specific wavelengths, and the mode parities are one-to-one mapped to the
polarizations of far-field waves. We term this phenomenon as polarization-wavelength locking for short.
This phenomenon is based on two factors: (i) splitting in the spectra of plasmonic topological edge
states with different intrinsic parity DoF and (ii) projecting the far-field polarizations to the parity of
lattice modes. The parity splitting originates from the underlying inter-orbital couplings. The SSH
model is realized using ultrathin spoof plasmonic resonators, as shown in the inset of Fig. 1(b). Spoof
Surface plasmons mimic natural plasmonic materials in microwave and Terahertz regions, and they
have similar behaviors [32–39]. The resonance peak at ωh = 6.069GHz is the focus of our study, which
corresponds to the hexapole mode (as shown in the insets of Fig. 1(c)). Three crucial features of the
hexapole mode distinguish the spoof plasmonic topological edge states from previous demonstrations:
Firstly, the hexapole mode has two degenerate modes with even and odd parities, giving rise to two
copies of parity-dependent topological edge states [12]. Secondly, the hexapole mode exhibits spectrally
overlapping, which induces effective parity-dependent in-line long-range couplings and leads to the
parity splitting of topological edge states. This fundamentally differs from the dipole-dipole long-range
coupling observed in the zig-zag chains. Finally, the plasmonic resonance modes exhibit non-Hermicity,

(a)

(b) (c) (d)

Figure 1. (a) The schematic of polarization-wavelength locked topological edge states on a plasmonic
SSH chain. “//” and “⊥” donates horizontal and vertical incident wave, respectively. (b) The near-field
transmission spectrum of a single spoof plasmonic resonator. The inset shows the schematic, where
the inner and out radii are r = 3mm, and R = 12mm, respectively. The groove number is N = 60,
and the filling ratio is FR = 50%. The points “S” and “P” denote the locations of the source and
probe, respectively. The yellow circles and black dashed lines are simulated and Lorenz-curve-fitted
results, respectively. The red, green, and blue denote quadrupole, hexapole, and octupole modes. (c)
The overlapping between resonance modes in (b). The inset shows the hexapole modes with different
parities. (d) Simulated field intensity at the edge and bulk resonator. The sample is normally incident
waves with different linear polarizations.



Progress In Electromagnetics Research, Vol. 178, 2023 39

which establishes a link between the far-field polarization and the near-field parity, allowing for the
polarization-wavelength locking of the parity-dependent topological edge states.

2. ANALYSIS

2.1. Coupling between Resonators

We first show the intrinsic chiral symmetry of parity DoF by investigating the coupling of hexapole
modes in a dimer system [35]. A spoof plasmonic dimer is shown in the inset of Fig. 2(a). The
two adjacent plasmonic resonators are coupled with evanescent waves since they host tightly localized
plasmonic modes. Quantitatively, such coupling is described with a coupling factor κ, which depends on
the integration of overlapped resonance wave fields of the two resonators [40]. When taking interorbital
coupling into consideration, there would appear an onsite-detuning to each resonance mode [41]. As
a result, the coupled hexapole modes on the plasmonic dimer can be generally described with the

effective Hamiltonian Ĥdimer = ωh +

[
−∆ωeff κh

κh −∆ωeff

]
, where ωh is the frequency of hexapole mode

in each resonator, κh the coupling coefficient between hexapole modes, and ∆ωeff the effective on-site
detuning (EOD). The dimer system exhibits two supermodes ϕ± = (1/

√
2)[1,±1]T , corresponding to

eigenfrequencies ω+ = ωh − ∆ωeff + κh, ω− = ωh − ∆ωeff − κh, respectively. The sign +/− donates
in-phase/out-of-phase, respectively. When the frequency ω+ of the in-phase supermode ϕ+ is higher
(lower) than that of the out-of-phase one ϕ−, the dimer system exhibits a positive (negative) coupling
κh. The EOD ∆ωeff = −(ω − ωh) measures the shift of the average frequency ω = (ω+ + ω−)/2, with
respect to the ωh.

The analysis above shows the parity-dependent of both ∆ωeff and κh. In the spoof plasmonic dimer,
the even (odd) hexapole mode is selectively excited by end (side) excitation as shown in the inset of
Fig. 2(a), and the corresponding spectrum is shown as the red (black) line in Fig. 2(a). Regarding
the even (odd) hexapole mode, the dimer system exhibits an in-phase supermode at a frequency
lower (higher) than that of out-of-phase one (shown in Fig. 2(b)). It means that parity-dependent
couplings are κh,o > 0 and κh,e < 0, where the subscripts “e” and “o” denote the even and odd
modes respectively. The average frequency ωh,e (ωh,o) of the even (odd) supermodes blueshift (redshift)
concerning ωh. It means that the EOD ∆ωeff exhibits the same parity-dependence as κh. Consequently,
these sign-reversed interactions imply that the dimer Hamiltonian should be completely expressed as

Ĥdimer = ωh +

[
−∆ωeff κh

κh −∆ωeff

]
⊗ σz, where σz represents the Pauli matrix for the parity DoF. We

theoretically find that the origin of EOD can be attributed to the interorbital coupling between the
hexapole mode and its neighboring quadrupole modes and octupoles due to their spectral overlapping.

To directly display the interorbital coupling, we take a straight plasmonic trimer for illustration
(as shown in the inset of Fig. 2(c)). We consider first the trimer model without interorbital couplings,
thus only couplings between hexapole modes (i.e., hexapole-hexapole-hexapole coupling). The trimer

Halmitonian is expressed as Ĥtrimer,0 = ωh+

[
0 κh 0
κh 0 κh
0 κh 0

]
, without considering the parity DoF. Three

eigenfrequencies are obtained as ω1,3 = ωh ∓
√
2κh, ω2 = ωh. Interestingly, the middle eigenfrequency

ω2 does not depend on κh, which means for both even (κh,e < 0) and odd (κh,o > 0) modes, the middle
eigenfrequencies ω2,e and ω2,o are degenerate and pinned at ωh. Both ω2,e and ω2,o correspond to the

supermode [AL, AM , AR]
T = 1/

√
2[1, 0, 1]T , where AL,M,R denote lattice modes on the left, middle,

and right resonators, respectively. Different from the vanished AM in the hexapole-hexapole-hexapole
coupling model, the simulated field pattern (Fig. 2(d)) shows nonvanishing fields. By mode decomposing,
the simulated AM is a superposition of quadrupole and octupole modes. It implies that the interorbital
couplings (i.e., hexapole-quadrupole-hexapole, and hexapole-octupole-hexapole) do exist.

The interorbital coupling, effectively expressed as Ĥtrimer,IOC =

[−∆ω 0 κ3
0 −2∆ω 0
κ3 0 −∆ω

]
results

in a modified trimer Hamitonian Ĥtrimer = (Ĥtrimer,0 + Ĥtrimer,IOC), where κ3 and ∆ω represent the
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Figure 2. The parity-dependent couplings between plasmonic resonators. (a) The transmission spectra
of a spoof plasmonic dimer with a center-to-center distance of 29mm. The red and black lines are
measured with the end and side excitations, respectively. The red (ωe) and blue (ωo) dashed lines
indicate the average frequencies of two split resonance peaks. The black dashed line represents the
frequency ωh of hexapole modes. The inset shows the schematic of the spoof plasmonic dimer. (b)
The illustration of parity-dependent couplings in the spoof plasmonic dimer. The even and odd parities
exhibit negative and positive couplings, respectively. (c) The transmission spectra of a spoof plasmonic
trimer. The inset shows the schematic of the meta-trimer. (d) The field patterns for odd and even
parities at ω2,o (the blue star in (c)) and ω2,e (the red star in (c)), respectively. The patterns on the
middle metaatom are the superpositions of quadrupole modes and octupole modes. (e) The illustration
of the effective long-range coupling induced by the interorbital coupling. a. u. is short for arbitrary
units.

effective long-range coupling (Fig. 2(e)) and effective onsite detuning, respectively. Solving the modified
Hamiltonian, we find that the middle eigenfrequency ω2 = ωh − ∆ω − κ3 shows a spectral shift with
respect to ωh. Additionally, the average eigenfrequencies ω = (ω1 + ω3)/2 = (2∆ω + κ3)/2. So
that the effective coupling coefficient can be expressed as κ3 = (2ω − 3ω2)/4, ∆ω = (2ω + ω2)/4.
According to the spectral results in Fig. 2(c), the middle resonance peak of even (ω2,e = 6.079GHz) and
odd ((ω2,o = 6.060GHz)) show blue- and red-shifts with respect to ωh. It means that the interorbital
couplings are also parity dependent, i.e., κ3,e = −κ3,o, ∆ωe = −∆ωo. Therefore, the trimer Hamiltonian

should be completely expressed as Ĥtrimer =

[−∆ω κh κ3
κh −2∆ω κh
κ3 κh −∆ω

]
⊗ σz. The effective long-range

coupling originates from spectral overlapping of neighboring modes, essentially different from direct
long-range coupling induced by dipole-dipole interactions. And the long-range coupling is realized in
the straight trimer system, which can help make the lattice more compact.
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2.2. SSH Model with Parity Multiplexing and Long-Range Coupling

Based on the microscopic analysis above, we can abstract the spoof plasmonic SSH chain in Fig. 1 as the
models shown in Fig. 1(c), where ±κ1, ±κ2, and ±κ3 represent the intracell coupling, intercell coupling,
and the effective long-range coupling, respectively. Its Hamiltonian is expressed as

ĤSSH = ĤSSH,0 ⊗ σz + ĤSSH,IOC ⊗ σz (1)

where ĤSSH,0 = ωh +

[
0 κ2 + κ1e

ikd

κ2 + κ1e
−ikd 0

]
is the Hamiltonian of conventional SSH model, and

the ĤSSH,LRC =

[
2κ3 cos(kd)−∆ω 0

0 2κ3 cos(kd)−∆ω

]
. The energy dispersion is given by ESSH,± =

2κ3 cos(kd) ±
√

κ21 + κ22 + 2κ1κ2 cos(kd). This expression clarifies that the long-range couplings break
the chiral symmetry, translating into an asymmetric band structure about E = 0 [42, 43].

The topological properties of the SSH model can be described with the winding number W =
−i
2π

∫ 2π
0 dk h′(k)

h(k) , where h(k) = κ2 + κ1e
ikd. For the conventional SSH model, when κ1 < κ2 (κ1 > κ2),

W = 1 (W = 0), the system is in topological (trivial) phase. Moreover, for the SSH model with long-
range coupling, the properties of the system in the topological phase can be divided into two regimes:
(i) When κ3 < κ1/2, the system has insulating properties and the bandgap exists. The winding number
is still defined by the ratio κ1/κ2 and corresponds to the number of edge states. (ii) When κ3 > κ1/2,
the system behaves like metal and direct bandgap disappear. However, in this regime, the maximum
of the valence band is at k = 0 while the minimum of the conduction band is at k = π, i.e., the energy
bands do not cross, which implies there is no topological phase transition.

To understand the influence of parity multiplexing and long-range coupling on topological edge
states, we start from a finite conventional SSH chain with the intracell coupling κ1 and intercell coupling
κ2 as Fig. 3(a) shows. When κ1 < κ2, the topological edge states (black lines in Fig. 3(d)) exist in
the bandgap and are pinned at zero frequency (i.e., ωh) while when κ1 > κ2 the topological edge
states disappear. By introducing the parity multiplexing into consideration as Fig. 3(b) and Fig. 3(e)
show, the edge states with different parity are degenerate at zero frequency ωh in the topological phase
(κ1 < κ2). And then, we apply the long-range couplings as Fig. 3(c) and 3(f) show. With the increasing
of long-range coupling κ3, the topological corner states with different parities split. In Fig. 3(f), the red
(black) lines indicate that the energies of edge states with even (odd) parity blue- (red-) shift with the
increasing of κ3. When κ3/κ1 > 0.18, the even (odd) edge states overlap with odd (even) bulk states
in spectra. However, they can be distinguished through selective excitation. It is also noteworthy that
in the system where the long-range coupling and EOD exist, the topological edge states at different
ends of the chain are degenerate, unlike the nondegenerate end states induced by asymmetrical onsite
detuning [13].

3. RESULTS AND DISCUSSION

The theoretical analysis above can be applied in the spoof plasmonic SSH chain, as Fig. 4(a) shows.
Here, we use the full-wave approach to numerically examine the properties of spoof plasmonic SSH
chain. The sample can be realized by printing 18µm thick copper on a 0.254mm thick RT/duroid
5880 (permittivity ϵ = 2.2 ± 0.01; loss tangent ∆δ = 0.0009) dielectric substrate. The geometric
parameters of the resonator are as shown in Fig. 1(b). The distances between resonators are set as
d1 = 29mm and d2 = 26mm, respectively. In Fig. 4(b), we show the numerically computed bulk
bands for the infinite structure corresponding to the chain shown in Fig. 4(a), and though curve fitting
the corresponding coupling coefficients can be extracted as κ1;e,o = ±0.0297, κ2;e,o = ±0.0918, and
∆ωe,o = κ3;e,o = ∓0.0031, respectively. With the introduction of effective long-range coupling and
onsite detuning, the bands of even mode and odd mode are not degenerate. The two bands with
the same parity are not symmetric about E = ωh because of the broken chiral symmetry. Applying
the extracted coupling coefficients in a finite SSH chain with 14 sites shows the numerical calculated
eigenfrequencies and eigenmodes in Fig. 4(c). In bandgap, two groups of edge states respond to the
topological edge states with different parities, and the field intensity is highly localized at the edge
resonators. Fig. 4(d) shows the local densities of even (odd) edge states detected at the A (B) point.
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Figure 3. Effects of mode parity and long-range coupling on SSH model. (a) The schematic of
conventional SSH chain. (b) The schematic of SSH chain with parity multiplexing. The coupling
coefficients for the odd (even) mode are positive (negative). (c) The schematic of the SSH chain with
both parity multiplexing and long-range coupling. (d) The energy spectrum of a finite conventional
SSH chain (161 sites), with varying ratio κ2/κ1. (e) The energy spectrum of a finite SSH chain with
parity multiplexing. (f) The energy spectrum of a finite SSH chain with both parity multiplexing and
long-range couplings. The yellow (blue) lines show the bulk states with odd (even) parity, and the
black (red) dashed lines show the bulk states with odd (even) parity, respectively. assuming κ2 = 1 and
ωh = 0.

The spectra show dominated peaks at 6.147GHz (red) and 6.122GHz (black) for points A and B,
respectively. When comparing with the localized densities of bulk states (yellow and blue regions in
Fig. 4(d)), the topological edge states distribute in the bandgap. Near-field patterns further confirm the
parity-dependent edge states. In Fig. 4(e), the edge resonator shows brighter odd hexapole modes at
6.122GHz than those on other resonators. One even-parity edge state at 6.147GHz is also demonstrated
in Fig. 4(f). This is consistent with the theoretical results in Fig. 4(c).

Besides the near-field observations, the parity-dependent topological edge states in spoof plasmonic
SSH chains can also be probed with far-field polarized illuminations. The fundamental reason is that
the ultrathin spoof plasmonic resonator exhibits radiative non-Hermicity, which imposes no effect on
in-plane bulk topologies but opens radiation channels to observe the far-field response. The radiative

non-Hermicity can be described as ĤNH ⊗ σ0, where ĤNH =

[
iγh 0
0 iγh

]
and σ0 represent identity

matrix, and γh = 0.006 represents the radiation loss of the hexapole mode. Since a diagonal and
uniform Halmitonian cannot change the bulk topologies, the topological edge states can still exist with
the radiative non-Hermicity. Fig. 5(a) shows the radiation pattern of an individual resonator excited by
a near-field monopole at 6.069GHz (i.e., ωh). The radiation of the hexapole mode consists of in-plane
and out-of-plane parts, indicating the existence of radiative non-Hermicity.

Unfortunately, the hexapole mode on the single resonator cannot be excited by a normally
illuminated linear-polarized wave. Fig. 5(b) shows that only dipole mode can be excited. Interestingly,
in a dimer system, the resonators can be normally excited by horizontal polarized (H-polarized, i.e.,
the electric field is parallel with the dimer axis) and vertical polarized (V -polarized, i.e., the electric
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Figure 4. The near-field characteristic of parity-splitted topological edge states in spoof plasmonic
SSH chain. (a) The schematic of the spoof plasmonic SSH chain. d1 and d2 represent the intracell
and intercell distance, respectively. A and B points represent the exciting position for even and odd
modes, respectively. (b) Simulated band energy of the SSH chain. (c) The Calculated eigen spectrum
of different parities with κ1;o,e = ±0.0297, κ2;o,e = ±0.0918, κ3;o,e = ∓0.0031. The insets show filed
strength distribution of the topological edge states. (d) The simulated local density of states. (e)–(f)
The simulated near-filed patterns of topological edge states. The odd-parity edge state at 6.147GHz is
shown in (e), and even at 6.122GHz is shown in (f).

field is perpendicular to the dimer axis) illuminations. Fig. 5(c) shows the total scattering cross-section
of a spoof plasmonic dimer with H- (red line) and V - (black line) polarized incident wave. Due to the
existence of a dipolar radiation spectrum, Fano resonances can be observed at 6.18GHz and 6.28GHz,
i.e., the resonance frequencies of hexpole modes [44–46]. The two resonances correspond to even- and
odd-parity supermodes, as shown in the insets of Fig. 5(c).

The correspondences between far-field polarizations and near-field parities can be explained through
dipole decomposition as Figs. 5(d)–(e) shows [41]. In an individual resonator, the hexapole can be
decomposed into three dipoles with the same strength, spaced at 60◦ intervals. Therefore, the total
dipolar momentum vanishes. It implies the hexapole modes cannot be excited by the normal incident
wave of the mismatching between the total dipolar momentum and the electric field of the incident wave.
Nevertheless, in the coupled system, the strength of three composite dipoles would be unbalanced due
to the perturbations from the neighboring resonators, which leads to the residual dipole and induces the
matching with the electric field of the incident wave. Fig. 5(e) shows the dipolar decomposition of the
supermodes in the dimer system. Note that only the symmetric supermodes (i.e., ϕ+ = (1/

√
2)[1, 1]T )

own the nonzero residual dipole momentums.
Figure 5(f) shows the numerically calculated total scattering cross-section spectra for the structure

in Fig. 4(a) with normal linear-polarized illumination. The bulk states in the symmetric phase have
induced a considerable resonance against the continuum spectra of dipole modes. At the frequencies
of topological edge states as marked in Fig. 4(f), the near-field pattern is shown in Figs. 4(g) and (h).
This polarized illumination selection on parity-dependent topological edge states is consistent with both
theoretical and near-field experimental results.
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Figure 5. The far-field demonstration of polarization-wavelength locking of topological edge states.
(a) The far-field radiation pattern of an individual resonator excited by a near-field monopole. Si and
So represent the in-plane and out-of-plane radiation of the hexapole mode, respectively. (b) Simulated
total scattering cross-section of a single resonator. The sample is normally illuminated with linearly-
polarized waves, as the inset shows. (c) Simulated scattering cross-section of the dimer illuminated with
H-polarized wave(red line) and V -polarized wave (black line), respectively. (d) The dipolar compound
of dipole mode and hexapole mode on a single resonator. (e) The polarization-parity correspondence of
plasmonic dimer. (f) Simulated total scattering cross section with H- and V -polarized incident plane
wave. (g)–(h) The simulated patterns of topological edge states at the frequencies in (f). (g) shows
the even-parity edge state excited by H-polaried incidence and (h) for the odd parity by V -polarized
incidence.

4. CONCLUSION

In conclusion, we realized polarization-wavelength locked topological edge states on a spoof plasmonic
metasurface. The parity is an intrinsic DoF and does not depend on any crystalline. Hence, intriguing
topological physics could be anticipated by incorporating the parity into other 2D or 3D lattices and
can act with more DoFs such as anti-PT symmetry. In such spoof plasmonic systems, non-Hermitian
coupling, which has been realized to observe anti-PT phase transition [39], could also be implemented
to interact with the long-range coupling. Such a platform would be promising for investigating many
interesting non-Hermitian topological phenomena (such as the non-Hermitian skin effect [47–49]).
Moreover, the parity of resonance modes could be manipulated by incorporating interorbital couplings
originating from spectral overlapping between neighboring modes. Our results may promise applications
in polarization-dependent topological lasing [29] and quantum emitters [30].
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