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Application of Non-Embedded Uncertainty Analysis Methods
in Worst Case Estimation of the EMC
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Abstract—In recent years, the non-embedded uncertainty analysis method has been widely used in
the field of Electromagnetic Compatibility due to its wide application range. In this paper, from the
perspective of the practical application of uncertainty analysis methods, four non-embedded uncertainty
analysis methods are applied to the worst-case estimation of Electromagnetic Compatibility, which
are the Monte Carlo Method, Stochastic Collocation Method, Stochastic Reduced-Order Models, and
Kriging surrogate model method. The performances of four uncertainty analysis methods in terms
of computational accuracy, computational efficiency, and ability to deal with complex problems are
compared in detail by using the parallel cable crosstalk prediction example in the existing literature
and the uncertainty analysis example of self-constructed optimization test function, which provides a
theoretical basis for uncertainty analysis method to guide the actual Electromagnetic Compatibility
design.

1. INTRODUCTION

Uncertainty analysis method has been attracting much attention in the field of Electromagnetic
Compatibility (EMC) in recent years. In order to improve the credibility of simulation results, stochastic
mathematical model is constructed to describe the uncertainty factors in the actual electromagnetic
environment [1, 2].

The non-embedded uncertainty analysis method means that only a black box solver with good
stability is needed in the process of realizing uncertainty analysis, without any rewriting of the algorithm
inside the solver. For both EMC researchers and EMC engineering designers, it is an effective EMC
prediction method to construct complex geometric models and perform finite element analysis with
commercial electromagnetic simulation software [3, 4]. The underlying code of the electromagnetic
analysis algorithm in commercial electromagnetic simulation software is usually not open source, so
researchers in the field of EMC will pay more attention to the performance improvement research
and development application of non-embedded uncertainty analysis methods. It is worth noting that
the accuracy of the black box solver will directly determine the reliability of the deterministic EMC
simulation results and then affect the credibility of the uncertainty analysis results, so it is very important
to choose it reasonably.

The Monte Carlo Method (MCM) is the most widely used non-embedded uncertainty analysis
method. It has almost the highest computational accuracy, but also the lowest computational efficiency.
In the process of practical engineering application, the MCM is often unable to be used because of
the long simulation time. However, in theoretical research, the results provided by the MCM are
standard data to judge the accuracy of other uncertainty methods [5, 6]. The Stochastic Collocation
Method (SCM) is an uncertainty analysis method based on generalized polynomial chaos theory. The
convergence of the SCM is excellent, so it has the dual advantages of high computational efficiency and
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high computational accuracy. However, as the number of random variables describing the uncertainty
input of EMC simulation increases, the computational efficiency of the SCM will decrease exponentially,
which is the dimensional disaster problem [7–9]. In order to effectively solve the dimensional disaster
problem, the Stochastic Reduced-Order Model (SROM) [10] and Kriging surrogate model method [11]
have been applied to the uncertainty analysis of EMC simulation in recent years. The SROM has the
best application range for the random input mathematical model, but it can only provide the mean
prediction value and variance prediction value in the uncertainty analysis results. The Kriging surrogate
model method is proposed based on the continuity assumption. The disadvantage is that its accuracy
is poor when the EMC simulation nonlinearity is large.

In the application process of these non-embedded uncertainty analysis methods in the field of EMC,
more attention is paid to the calculation of the quantitative transfer process in the simulation model. In
other words, the goal is to obtain the uncertainty analysis results in the form of probability density curve,
which is closer to the research in the mathematical sense. The field of EMC is a discipline that focuses
more on practical applications, so the worst-case estimation form uncertainty analysis results are more
meaningful, which is the focus of the “gene” level of EMC. For example, the maximum crosstalk results
of cable bundles and the worst-case prediction of shielding effectiveness are typical worst-case estimation
applications in the field of EMC. In this case, from the perspective of EMC prediction practicability, this
paper compares the performance of different non-embedded uncertainty analysis methods in the worst-
case estimation application and provides a theoretical basis for the practical application of uncertainty
analysis methods in the field of EMC.

The structure of this paper is as follows. In Section 2, the worst-case estimation applications of
different non-embedded uncertainty analysis methods are given. In Section 3, the worst-case estimation
performance comparison is carried out by using the parallel cable crosstalk example. In Section 4,
the uncertainty analysis problem is constructed by the test function, and the performance of each
uncertainty analysis method is discussed in depth. In Section 5 gives the conclusion of this paper.

2. APPLICATION OF NON-EMBEDDED UNCERTAINTY ANALYSIS METHOD IN
WORST-CASE ESTIMATION

In order to show the worst-case acquisition methods of different non-embedded uncertainty analysis
methods, it is assumed that the uncertainty input of EMC simulation is a model of two random variables,
namely ξ = {ξ1, ξ2}.

2.1. Worst-Case Estimation Based on the MCM

The MCM is proposed based on the weak law of large numbers. It directly samples the random
variable vector {ξ1, ξ2} and generates a large number of sampling points {xi, yi}. The deterministic
EMC simulation is carried out on each sampling point, and the simulation result Ui = EMC(xi, yi) is
obtained. Finally, the maximum or minimum value that meets the worst-case condition can be selected
by direct statistics.

2.2. Worst-Case Estimation Based on the SCM

According to the generalized polynomial chaos theory, the chaotic polynomial corresponding to the
random variable ξ = {ξ1, ξ2} is derived. Take the zero points {a1, . . . , an} of the chaotic polynomial,
and then arrange it in the form of tensor product to obtain the collocation points, as shown below.

p(ξ) = {a1, . . . , an} ⊗ {a1, . . . , an} . (1)

Deterministic EMC simulation is performed on the collocation points p(ξ), and multidimensional
Lagrange interpolation is performed to obtain the random variable polynomial result USCM(ξ), as shown
below.

USCM(ξ) =

M∑
i=0

EMC [pi(ξ)]Li [pi(ξ), p(ξ), ξ] (2)
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Among them, EMC [pi(ξ)] refers to the result of deterministic EMC simulation at each collocation point
pi(ξ). Li [pi(ξ), p(ξ), ξ] is the result of the multidimensional Lagrange interpolation polynomial at the
collocation point pi(ξ), and the random variable ξ is used as the function.

The polynomial result USCM(ξ) is equivalent to a surrogate model, which directly brings in a large
number of sampling points {xi, yi} representing the random variable vector {ξ1, ξ2}, Ui = USCM(xi, yi).
Finally, the statistical Ui is selected to meet the maximum or minimum value of the worst-case condition.

It is worth noting that the calculation amount of the process of sampling points into polynomial
USCM(ξ) is negligible, so the SCM only needs to perform n2-order deterministic EMC simulation, and
the calculation efficiency is much higher than the MCM.

2.3. Worst-Case Estimation Based on the SROM

The first step of the SROM is the same as the MCM. The random variable vector {ξ1, ξ2} is statistically
sampled as {xi, yi}, and the similarity between sampling points is defined by Euclidean distance,

namely
√

(xi − xj)2 + (yi − yj)2. Applying the intelligent optimization algorithm, the center clustering
is realized to select N representative sampling points qk = {xq,k, yq,k}, and the weight wq,k of the
whole represented by the representative sampling points is calculated. Deterministic EMC simulation
is performed on representative sampling points, and the mean result E(U) and variance result σ(U) are
calculated using statistical principles. The results are as follows.

E(U) =

N∑
k=1

wq,k × EMC(qk) (3)

σ(U) =
N∑
k=1

wq,k × [EMC(qk)− E(U)]2 (4)

The SROM cannot directly obtain the worst-case estimation results. According to the nature
of Gaussian distribution, “mean ±3 times standard deviation” can be used to replace the worst-case
estimation, which is 99.73% confidence interval demarcation point.

2.4. Worst-Case Estimation Based on the Kriging Surrogate Model Method

Latin hypercube sampling is performed within the value range of the random variable vector {ξ1, ξ2},
and deterministic EMC simulation is performed at each sampling point {mx,i, my,i}, which is recorded
as EMC(mx,i, my,i). Similar to the idea of the SCM, these deterministic simulation results are applied
to construct a surrogate model, as shown below.

U(ξ) = Kriging [EMC(mx,i,my,i), ξ] (5)

Formula (5) is only a simplified version of the principal formula, and the detailed construction process
of the Kriging surrogate model method can be referred to [11].

Similarly, the random variable vector {ξ1, ξ2} is sampled in large quantities, and the calculation
result Ui is obtained by taking the sampling point {xi, yi} into the surrogate model of formula (5).
Finally, the maximum or minimum value that meets the worst-case condition is selected.

In summary, the MCM needs to perform deterministic EMC simulation point by point on a large
number of sampling points {xi, yi}, so the computational efficiency is extremely low, while the other
three uncertainty analysis methods only need to simulate at a specific selected point. In addition, the
SROM cannot directly obtain the worst-case estimation results, while the other three methods do not
have this problem.

3. PARALLEL CABLE CROSSTALK PREDICTION EXAMPLE CONSIDERING
GEOMETRIC RANDOMNESS

The parallel cable crosstalk prediction considering geometric randomness is the benchmark example in
references [12] and [13], and its schematic diagram is shown in Figure 1.



176 Bai, Geng, and Niu

Figure 1. Example of parallel cable crosstalk prediction in references [12] and [13].

The height of two parallel cables has geometric randomness, which can be modeled by the uniform
distribution random variables ξ1 and ξ2 in the range of [−1, 1], as shown below.

h1(ξ1) = 0.045 + 0.005× ξ1 [m] (6)

h2(ξ2) = 0.035 + 0.005× ξ2 [m] (7)

The frequency range of the example is from 1MHz to 200MHz, and the far-end crosstalk voltage VdB

to be simulated is presented in the form of decibels.

VdB= 20 log10
|VL|
|V0|

(8)

Additional information about the example can be found in detail in [13].
When the cable is in a moving object such as a car or an aircraft, the geometric position of the cable

will show randomness as in Formulas (6) and (7), and the geometric position changes in real time. At
this time, it is clear that the maximum crosstalk value has the greatest impact on the disturbed cable,
that is, the maximum crosstalk value meets the electromagnetic protection requirements, and the entire
system will be in a compatible and stable state. Therefore, for this uncertainty analysis example, the
worst-case estimation results are more important than other results such as mean, standard deviation,
and probability density curve.

Figure 2 shows the worst-case estimation results of the far-end crosstalk voltage of four non-
embedded uncertainty analysis methods, namely MCM, SCM, SROM, and Kriging. The simulation
results of MCM are regarded as standard data, and the accuracy of the simulation results of other
uncertainty analysis methods is evaluated by the Feature Selection Verification (FSV) method. The
results are shown in Table 1. The relevant content of the FSV method is detailed in [14, 15].

Table 1. The effectiveness evaluation results provided by the FSV method.

Non-embedded uncertainty analysis method FSV values

SROM 0.0447

SCM 8.6811× 10−4

Kriging 0.0097

According to the results in Table 1, the SCM, SROM, and Kriging all belong to the “Excellent”
level, but the SROM is slightly worse than the other two uncertainty analysis methods. The SROM is
a highly accurate uncertainty analysis method, but it cannot directly obtain the worst-case estimate,
so the error is introduced by the “mean ±3 times standard deviation” representation.

The MCM uses 8000 deterministic EMC simulations to ensure convergence. In order to compare
the accuracy, the other three uncertainty analysis methods use 16 EMC simulations, which show that
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Figure 2. The worst-case prediction result of the far-end crosstalk voltage is estimated.

the calculation efficiency of the MCM is far worse than that of other methods. In summary, in the case
of parallel cable crosstalk prediction considering geometric randomness, the SCM and Kriging perform
well in accuracy and computational efficiency. The accuracy of the SROM is slightly worse, and the
computational efficiency of the MCM is poor.

Figure 3 shows the far-end crosstalk voltage results of all MCM sampling points at 75MHz. The
overall result value presents a plane, which shows that the relationship between the far-end crosstalk
voltage VdB and the ground distance of the two cables is an approximate linear function. Obviously, the
relationship between the input and output of the EMC simulation is relatively easy, that is, the parallel
cable crosstalk prediction example considering geometric randomness is a simple uncertainty analysis
problem. Therefore, in order to better show the performance of non-embedded uncertainty analysis
methods, it is necessary to construct more complex EMC simulation uncertainty analysis problems.

Figure 3. Uncertainty analysis results of the MCM at 75MHz.

4. UNCERTAINTY ANALYSIS EXAMPLES CONSTRUCTED BY THE OPTIMIZED
TEST FUNCTIONS

The optimization test function is usually used to test the performance of intelligent optimization
algorithms. The uncertainty analysis problem constructed in reverse based on optimization test function
is complex, so it can be more effectively used to test the performance of uncertainty analysis methods.
By using the boundary [A, B] of the optimization test function, the model of uniformly distributed
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random variables is established, as follows.

D (ξ3) =
A+B

2
+

A−B

2
ξ3 (9)

where ξ3 is a uniformly distributed random variable in the interval [−1, 1]. All intervals are modeled by
uniformly distributed random variables to form a random variable vector ξ = {ξ3, ξ4}, which constructs
an uncertainty analysis problem. The two optimization test functions selected in this section are as
follows.

z1(x, y) = − |x| − |y| − |xy| , −5 ≤ x ≤ 5, − 5 ≤ y ≤ 5 (10)

z2(x, y) = −4x2 + 2.1x4 − 1

3
x6 − xy + 4y2 − 4y4, −5 ≤ x ≤ 5, − 5 ≤ y ≤ 5 (11)

The maximum values are known, namely z1,max = 0 and z2,max = 1.032, which are the answers to
the worst-case estimates in uncertainty analysis. The uncertainty analysis based on the MCM is realized.
The results are shown in Figure 4 and Figure 5, respectively. It can be seen that the uncertainty analysis
problem is more complicated than the parallel cable crosstalk prediction example.

Figure 4. The MCM results of the optimized test function in Formula (10).

Figure 5. The MCM results of optimizing test functions in formula (11).
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Table 2. The worst-case estimation results of two kinds of optimization test function uncertainty
analysis examples.

Simulation times Problem 1 Problem 2

Answer / 0 1.032

MCM 80000 −0.0252 1.0299

SCM
49 −0.0052 1.0257

81 −5.8218× 10−5 1.0235

SROM
49 −3.0330 −756.6769

81 −3.0378 −927.3897

Kriging
49 −0.5625 43.3622

81 −0.3943 69.2149

Table 2 shows the worst-case estimation results of the MCM, SCM, SROM, and Kriging in the
uncertainty analysis problems constructed in Figure 4 and Figure 5. The MCM still uses 80,000
deterministic simulations, and the remaining three non-embedded uncertainty analysis methods give
the estimation results under 49 simulations and 81 simulations, respectively.

From the results of Table 2, the difference between the SROM and correct answer is the largest,
which is a completely wrong result. The main reason is that the SROM cannot directly give the worst-
case estimation results, and the accuracy and stability of the results in the form of “mean ±3 times
standard deviation” are poor. Therefore, this representation is not suitable for popularization and
application. The accuracy of the Kriging is not as good as that of solving the parallel cable crosstalk
prediction example. The reason is that the complexity of the uncertainty analysis problem in Figure 4
and Figure 5 becomes larger, and the disadvantage of poor convergence of the Kriging surrogate model
method appears, which affects the accuracy. For the MCM and SCM, their worst-case estimation results
are within the acceptable range. The results of the MCM are better in Problem 2, while the results
of the SCM are better in Problem 1. The MCM requires much deterministic simulation time. Thus,
from the perspective of computational efficiency and accuracy, the SCM is the most suitable uncertainty
analysis method for this example.

5. CONCLUSION

For the EMC simulation, this paper realizes the application of the existing non-embedded uncertainty
analysis method in the worst-case estimation. The performances of the MCM, SCM, SROM, and
Kriging surrogate model method are compared in detail in the parallel cable crosstalk prediction example
considering geometric randomness and the uncertainty analysis example of self-built optimization test
function, and the following conclusions are drawn. First, the MCM achieves high accuracy in worst-case
estimation, but the computational efficiency is extremely low. Second, the SROM cannot directly give
the worst-case estimation results, and the accuracy of the results in the form of “mean ±3 times standard
deviation” is poor, which is not suitable for this application. Third, the Kriging surrogate model method
is not suitable for this application when the EMC simulation problem becomes complicated, and the
accuracy is poor. Finally, the SCM has both computational efficiency and computational accuracy,
which is most suitable for the worst-case estimation of the EMC simulation.

In order to show the complexity of the EMC simulation uncertainty analysis, this paper adopts
two-dimensional random variables model. At this time, the inherent dimension disaster problem of
the SCM is not exposed. Therefore, in practical application, we should avoid using the SCM to deal
with the worst-case estimation problem in the case of multi-dimensional random variables and strive
to alleviate the dimension disaster problem in theoretical research. For the other three non-embedded
uncertainty analysis methods, it is necessary to improve the computational efficiency of the MCM as
much as possible, to propose the worst-case estimation representation method of the SROM as much
as possible, and to improve the ability of the Kriging surrogate model method to deal with nonlinear
simulation as much as possible.
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