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Intelligent Sensor System with Transmission Coefficient in X-Band
Frequency for Determining Sugar Content

Pornpimon Chaisaeng1, Thunyawat Limpiti2, and Prapan Leekul1, *

Abstract—This study describes a non-contact low-cost X-band sensor system for determining the
soluble solid content (SSC) of a sugar solution. The system adopts a transmission signal technique
with two frequency pairs (10.2GHz paired with 10.4GHz and 10.2GHz paired with 10.6GHz) from
three transceiver modules. Each module has a microstrip patch antenna, mixer circuit, and dielectric
resonator oscillator. To simplify the transmission power frequency of each frequency pair, the frequency
is down-converted to an intermediate frequency (IF) signal using a frequency mixer. The IF signals
are then compared using a gain and phase detector to find their magnitude ratio and phase difference.
The measured SSC-level data are randomly divided into three datasets and input to an artificial neural
network (ANN) for training. The training output is the SSC level in Brix degree. The proposed
ANN structure comprises four input nodes, eight hidden nodes, and four output nodes, affording low
complexity and resource savings while providing 92.98% accuracy. Therefore, the proposed low-cost
sensor system can achieve precise decision-making and real-time measurement.

1. INTRODUCTION

Sugar provides the energy required for organ function in the human body, but excessive sugar
consumption affects our health and can cause various diseases [1], thus sugar consumption control is
important. Excess sugar consumption causes serious complications in diabetes patients [2], with a global
estimate of 425 million for adults in 2017 [3]. The World Health Organization (WHO) recommends that
adults limit sugar intake to no more than 5% of their total energy intake from food and beverages per
day [4], but avoiding sugar intake is impossible because human food contains some sugar in natural
foods and as raw materials for production or food preservatives [5]. Several countries have enacted
food taxes [6] and must show the amount of sugar on food product labels for the good health of the
population; however, various foods cannot show the amount of sugar, thus sugar content measurement
in food is important [7]. A high accuracy sugar content measurement method for liquid food was liquid
chromatography, which separates a sample into its chemical composition [8]. This technique is limited
to its application in the food manufacturing process because it is a contact and destructive method,
non-real-time processing, sample preparation before measurement, time-consuming, and expensive.
Refractometers were commonly used to measure sugar content in beverages [9], fruit juice [10], or
wine processing [11, 12]. This technique was based on measuring the refractive index of sugar solution
in realtime and at a low cost; however, it was a contact method. Therefore, this study presented several
non-contact and real-time sugar measurement techniques. The sugar content measurement technique
with near infrared (NIR) spectroscopy based on absorption or emission at NIR range was presented with
a high accuracy method [13–16], but its application in the process was limited because it required a
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computer for a lot of data processing. A suitable environment, light condition, and temperature control
were necessary for field measurements. These factors strongly affect the system measurement, mostly
the NIR system experiment, which is still a laboratory test. The sugar content measurement with a light
source and a prism based on the refractive index of sugar solution [17] was less expensive, but still limited
in its application in real-world processes. Microwave is an intriguing technique for measuring sugar
content, and it is commonly used in industry because of its nondestructive and realtime processing [18].
Microwave sugar content measurement is based on the dielectric properties of sugar solution, which
differs at each sugar content level [19]. Sugar content determination techniques from a sensitivity of
radio frequency identification (RFID) tag antenna operating frequency range of 860–960MHz [20] and
from a shifted resonance frequency of the resonator [21] are examples of effects on microwave propagation
characteristics. Both methods were non-contact, and their RFID and resonators were low profile and low
cost, but they required an expensive measurement device, making them unsuitable for real applications.
The reflection coefficient of the microstrip antenna was another method for determining the sugar
content that was laid on the sugar solution [22–24]. This method has low complexity and microwave
power measurement, which can be developed for real application with a low-cost circuit. Furthermore,
the transmission coefficient is related to the sugar content of sugar solution [25], allowing for developing
sugar content determination in sugar solution systems based on transmission signals, allowing for non-
contact and non-destructive sample measurement. Another important issue for sensor systems is the
precision and simplicity of the processor. Artificial neural networks (ANNs) are data analysis algorithms
that are widely used in microwave measurement systems because they are suitable for nonlinear systems
and high efficiency [26, 27], multiple-input, and complicated interactions between input and output [28].
ANNs are the type of artificial intelligence system that is mathematically modeled after the human
neural system and is capable of patterning, language comprehension, perceiving, and responding.
Therefore, researchers were eager to use ANNs for data processing and sensor system analysis [29].
Thus, the presented sugar content determination sensor system used a low complexity transmission
microwave signal, real-time processing, and ANNs for system processor that can be implemented in
microcontrollers, then reduce system costs and suitable for field application.

This study used the transmission of a triple-frequency electromagnetic wave in the X-band to
determine the soluble solid content of sugar solution using 2 frequency pairs of 10.2 with 10.4GHz
and 10.2 with 10.6GHz. The received signal was mixed with local frequency at each paired module
and selected low frequency to process for system simplification. The magnitude ratio (VMAG) of the
two IF signals (one from each module pair) and their phase difference (VPHS) were calculated as the
input data of ANNs training and SSC analysis. Section 2 is dielectric properties measurement of sugar
solution with different SSC levels using an open-ended coaxial dielectric probe and then calculating the
difference of dielectric constant (ε′r) and dielectric loss factor using a vector network analyzer (VNA).
Section 3 is sugar solution model development based dielectric properties for SSC determination of
sensor system simulation then analyzes the capability of soluble solid content classification from the
magnitude and phase of transmission signal comparison. Section 4 presents a low-cost X-band sensor
system with triple-frequency development by a motion detector module application that was developed
and tuned to operate at 10.2, 10.4, and 10.6GHz, the control of electromagnetic wave transmission, and
signal mixing, as well as RF switch control for receiving signals from each module pair to magnitude
and phase comparison. Section 5 analyzes the magnitude and phase change of measured IF signal from
a sugar solution with SSC levels ranging from 3, 6, 9, to 45◦ Brix for ANNs training. Section 6 consists
of training and testing ANNs with VMAG1, VMAG2, VPHS1, and VPHS2, ANNs structure adaptation and
decision capability development of ANNs, ◦ Brix error analysis at each level, and discussion. Section 7
is the conclusion.

2. DIELECTRIC PROPERTY OF SUGAR SOLUTION

The sugar solution for dielectric properties measurement was natural cane syrup for cooking brought
from a local market, which consists of sucrose, glucose, and fructose. The syrup was diluted with
water in proper ratio to prepare the sugar solution with SSC of 3 to 45◦ Brix using YOG339K Brix
refractometer to measure the SSC of diluted sugar solution. The dielectric properties of the sugar
solution were measured using Keysight N1501A dielectric probe kit, processed with field fox N9916A
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Figure 1. Dielectric property measurement of sugar solution.

VNA and calculated for dielectric properties with program Keysight material measurement suite version
18.0 to display the dielectric constant and dielectric loss factor. The VNA was calibrated with 3 steps
before measurement by 1) open with air 2) short circuit with short block, and 3) loaded with 25◦C water.
The sample sugar solution for the dielectric constant ε′r and dielectric loss factor ε′′r measurement volume
was 250ml and contained in a standard beaker (Fig. 1).

The dielectric of sugar solution from [30] showed the SSC effect to the change of ε′r and ε′′r ; at the
frequency of 10GHz, when the SSC is increased, ε′r decreases linearly, and ε′′r decreases following the
same trend. The change in the dielectric properties affected the transmission signal, reflection signal,
and power absorption. Therefore, in this study, the dielectric properties were measured with sugar
solution samples consisting of 14 samples from 3, 6, 9, 13 to 45◦ Brix with three frequencies 10.2, 10.4,
and 10.6GHz. The ε′r of water was in the range of 61.94 to 62.83, then measured ε′r of sugar solution
with 3◦ Brix 61.73 to 60.86, and ε′r linear decreases continuously when SSC increases from 6, 9, 13, 19
to 45◦ Brix. The measurement result of the ε′′r of water was in the range of 26.12 to 33.14; the ε′′r change
was clear when SSC increased from 3 to 45◦ Brix. The measured ε′r and ε′′r of the sugar solution are
shown in Fig. 2.

The ε′r and ε′′r in 3 frequencies decreased as SSC of sugar solution increased, especially ε′r, indicating
that SSC of sugar solution significantly affects ε′r in frequencies 10.2, 10.4, and 10.6GHz. When SSC of

(a) (b)

Figure 2. (a) Dielectric constant and (b) dielectric loss factor of sugar solution.
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sugar solution increases, the free molecules of water are replaced by solute molecules. As a consequence,
the water behavior was decreased [31], thus dielectric constant of solution decreases according to the
increase in SSC quantities. The dielectric constant of soluble solids is lower than water, and the dielectric
loss factor decreases due to the orientation of the water and solute molecules [32]. This shows the ability
to classify SSC of sugar solution using triple-frequency transmission signal analysis. Furthermore, the
ε′r of sugar solution with each SSC was used to model sugar solution sample in sensor system simulation
for ability analysis of SSC classification from X-band frequency transmission signal technique.

3. SSC DETERMINATION SIMULATION

The efficiency simulation SSC determination of system analysis in sugar solution by triple X-band
frequency transmission technique antenna was simulated for the first time using microstrip patch because
the simulation system was structured identically to the system that would actually be built from HB
100 modules which was small and low cost for cost reduction [33, 34]. Therefore, the modeled antenna
was designed to operate in wideband with the same properties as the embedded antenna in the HB 100
module. Microstrip antenna has low profile and potential for miniaturization [35], and the dielectric
properties of substrate are important in considerations of model antenna design to optimize antenna
size, radiation efficiency, and bandwidth [36]. The geometry of the patch antenna was designed using
the physical cut-and-try method for operating frequencies ranging from 10.2 to 10.6GHz using the CST
studio suite simulator, which then provided optimized dimension and antenna characteristics. The S11

of antenna 1 at frequencies 10.2 10.4, and 10.6GHz was −18.1, −24.47, and −28.96 dB; that of antenna 2
was −18.37, −25.55, and −29.29 dB; that of antenna 3 was −19.16, −27.28, and −33.76 dB, respectively
(Fig. 3).

Figure 3. Return loss of antennas.

In sensor system simulation for magnitude and phase of transmission signal analysis, antenna
models were used in the simulation for transmitting and receiving signals, in which antenna 1 operated
at frequency 10.2GHz and placed opposite to antenna 2, and antenna 3 operated at frequency 10.4GHz
and 10.6GHz, respectively. The position of three antennas was in far field region of the lowest frequency
10.2GHz and reduced the signal coupling between antenna 2 and antenna 3. At the middle of 3 antennas
was acrylic sample holder model with size 3.2 × 7.2 × 18.2 cm which contained sugar solution model
with ε′r related to SSC level from 24 to 64, and ε′′r was taken as the average value (25.42) and height
7 cm (Fig. 4(a)). In the sensor system simulation, the shape of radiation pattern of antenna 1 during
measuring had changed due to radiation pattern responding to εr of sugars solution and sample holder
model (Fig. 4(b)). It showed a response of antenna to the measured material.

The transmission signal power was mixed to analyze intermediate frequency (IF) signal by frequency
mixer that operates to multiply 2 input signals when input 1 is received signal VRx cos(2πfRxt + ϕ),
and input 2 is local signal VLO cos(2πfLOt). Then output VIF is filtered for using only in low frequency
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(a) (b)

Figure 4. (a) Simulation geometry of SSC determination sensor system and (b) radiation pattern of
antenna 1.

that equal to the difference between fRx and fLO [37] as shown in Equation (1).

VIF (t) =
VRxVLO

2
cos [2π(fRx − fLO)t+ ϕ] (1)

The transmission signal power of the first pair, which was S12 and S21, was mixed to analyze VIF

consisting of magnitude in dB and phase (ϕVIF ) in degree by mixer equation, where local oscillator
(LO) signal at each receiver had 0 dB magnitude and 0◦ degree phase. The transmission signal power
of the second pair was S13 and S31 which were also analyzed by Equations (2)–(3)

VIF (dB) = VLO (dB) + VRx (dB)− 3 (2)

ϕVIF = ϕVLO + ϕVRx (3)

(a) (b)

Figure 5. Simulation result of (a) magnitude and (b) phase of IF transmission through sugar solution.
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thus total parameters were VIF12 VIF21 VIF13 VIF31 and ϕVIF12 ϕVIF21 ϕVIF13 ϕVIF31. The analysis
result was found when ε′r was 24, and the magnitudes of VIF12 VIF21 VIF13 VIF31 were −35.1, −33.4,
−36.4, and −33.4 dB, respectively. When ε′r increased to 29, 34, 39, and 64, VIF continuously decreased
to −39.22, −38.06, −40.5 and −38.06 dB, in the same way (Fig. 5(a)). Further, considering ϕVIF , when
ε′r increased from 24 to 64, all ϕVIF parameters decreased from −0.57, 64.86, −67.75, and 64.86 degrees
to −167.23, −89.21, 120.08, and −89.21 degrees, as shown in Fig. 5(b).

The simulation result shows that when ε′r of sugar solution increases from 24 to 64, the power VIF

from mixed-signal decreases because the attenuation is directly related to the dielectric constant. At
the same ε′r, the attenuation of the transmission wave with high frequency is more than low frequency;
thus, the magnitudes of VIF21 and VIF31 are equal, and the highest VIF12 and VIF13 are lower. The
ϕVIF increased when the ε′r of the medium was higher; at the same ε′r, high frequency was affected more
than low frequency. Thus, these results nonetheless show the possibility of SSC classification from the
VIF and ϕVIF of an X-band signal at a distance, as designed.

4. PROPOSED SENSOR SYSTEM

The proposed SSC of sugar solution determination sensor system used transmission triple-frequency
signal in X-band, which consists of 2 pairs of frequency modules, 10.2 with 10.4GHz and 10.2
with 10.6GHz, each pair operating transmitting and receiving signals alternatively. The power of
transmission through sugar solution of each frequency pair was mixed with LO by a mixer in the
receiver to produce 2 IF outputs, for down convert frequency of received signal to operating range
of a gain and phase detector (AD8302), which were then compared to determine the gain and phase
difference for the use in SSC of sugar solution analysis. The proposed system consists of a module that
contains a dielectric resonator oscillator (DRO), two array patch antennas, a frequency mixer for signal
generation, transmission, reception, and mixing with LO, a relay for DC voltage supplying control, RF
switch for data selection, gain and phase detector for IF signal comparison and microcontroller Arduino
UNO for system control. The structure of the proposed system is shown in Fig. 6.

Figure 6. The schematic of the proposed sensor system.

To reduce system cost, the sensor system was designed with a low-cost transceiver module HB100.
In the sensor system includes three transceiver modules HB100: module A, module B, and module C.
The DROs of A, B, and C modules were tuned simply by turning the metallic screw on the DRO,
generating signals at 10.2, 10.4, and 10.6GHz, respectively. The module operates signal generation,
transmission, reception, and mixing with LO, in which each pair of modules alternately operates.
Modules A and B operate, then modules A and C operate, to prevent the interference between 2
frequency pairs. Transceiver modules were installed in the same position as in simulation, where module
A was placed opposite modules B and C, and a sample holder with size 10×20×7 cm was in the middle
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(a) (b)

Figure 7. (a) Internal and (b) external of SSC level determination sensor system prototype.

(Fig. 7(a)). Each pair of modules was controlled to generate a signal simultaneously by DC voltage
supplying control from the relay, which made the phase comparison of IF signal effective; furthermore,
modules were controlled to alternately operate. The generated signal was transmitted from each module
and mixed with LO at the receiver in the paired module, but the mixer output was filtered only at low
frequencies. Each module pair operated in the same way, producing IF output at 200MHz from the first
pair and 400MHz from the second pair. The 2 IF outputs from paired module were sent to AD8302 for
magnitude ratio and phase difference comparison in Equations (4) and (5).

VMAG = KM log(VINA/VINB) + 0.9 (4)

VPHS = KP [ϕVINA − ϕVINB − 90◦] + 0.9 (5)

The voltages VINA and VINB are input to ports INA and INB of the AD8302, respectively. KM and KP

are constants set to 0.03V/decade and −0.01V/degree, respectively. The IF from module A was sent
to AD8302 input A, and the RF switch switched input B to receive from module B or C. The outputs
of comparison from the first pair was VMAG1 and VPHS1, and those from the second pair were VMAG2

and VPHS2, which were DC voltage types that were converted by 10-Bit analog to digital converter.
The entire sensor system operation was controlled by Arduino UNO broad, and the internal structure
of the sensor system prototype is shown in Fig. 7(b).

5. EXPERIMENTAL SETUP

5.1. Data Collection

In experiment, sugar solution was in a sample holder with a height ranging from 2 to 8 cm, and the
measured results revealed a gain and phase difference of each SSC level at heights 7 and 8 cm, implying
that the height of sugar solution in the experiment was 7 cm for measurement performance. The sugar
solution was in the sample holder with size 3.2×18.2×7.2 cm that was placed in the middle of modules
then transmitted and received signal through sugar solution to measured VMAG1 VPHS1 VMAG2 and
VPHS2 at 14 different SSC levels including 3, 6, 9, 13, . . . , 45◦ Brix, where each sample was measured
5 times and calculated the average value for accuracy measurement data. The VMAG1 and VMAG2 from
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(a) (b)

Figure 8. Relation between (a) SSC level VMAG and (b) SSC level and VPHS .

the lowest SSC at 3◦ Brix were 0.909 and 0.946; when being measured at 6◦ Brix, they were 0.909 and
0.946; and when SSC increased to 9◦ Brix, they were 0.914 and 0.952 volt, and continuously increased
with an increase in SSC from 13, 16 to 45◦ Brix in 0.914 to 1.007 and 0.953 to 1.06 volt, respectively
(Fig. 8(a)). VPHS1 increased slightly from 3 to 45◦ Brix sugar solution in the range of 1.138 to 1.19 volt,
whereas VPHS2 slightly increased from 3 to 25◦ Brix sugar solution in the range of 1.223 to 1.26 volt
and from 28 to 45◦ Brix sugar solution in the range of 1.242–1.27 volt (Fig. 8(b)).

The sensitivity of VMAG1, VMAG2, VPHS1, and VPHS2 was 7.8, 9.3, 3, and 1.8mV/3◦ Brix,
respectively. Although the sensitivity of system was low, the system was still able to operate. The
stability of the proposed determination system was confirmed by calculating the standard deviation
(SD) of five voltage measurements for each sample. The lowest SDs in VMAG1 and VMAG2 were
0.0033 and 0.0061, respectively. The lowest SDs were higher in VPHS1 and VPHS2 (0.013 and 0.0164,
respectively) than in VMAG1 and VMAG2 but were still acceptable. The measurement result shows
that VMAG responds to SSC changes because the magnitude and phase changes of the transmission
signal are nonlinear. Increase of SSC makes the magnitude ratio between signal 10.2 and 10.6GHz
(VMAG2) more than the ratio between 10.2 and 10.4GHz (VMAG1), and the decrease of phase between
10.2 and 10.6GHz is (VPHS2) more than that between 10.2 and 10.4GHz (VPHS1). The correlations
(R2) between SSC and VMAG1 and VMAG2 are 0.973 and 0.966, respectively, indicating that VMAG1 and
VMAG2 change in the same trend, but the magnitude of VMAG2 has a wider range than VMAG1 because
medium attains transmission signal power at a high frequency more than low frequency, resulting in a
clearer measurement result in each SSC level. VPHS1 is related to R2 = 0.895, and VPHS2 is related to
SSC less than 25◦ Brix, but some intervals are nonlinear. Therefore, for the system to be effective in
classifying the SSC levels, ANNs were used in the decision part with VMAG1, VMAG2, VPHS1, and VPHS2

data for training and testing for structure optimization, input node, and SSC classification ability.

5.2. ANNS Training Method

The structure of ANNs type multilayer perceptron (MLP) consists of input i node v1, v2, . . . , vi weight
w1j , w2j , . . . , wij , system bias bk, and vk that was a summation of weight multiply with input and
bias (Fig. 9). Then, vk was used to calculate output yk with nonlinear activate sigmoid function (ysig)
shown in Equation (6).

yk = ysig


m∑
j=1

wijxj + bk︸ ︷︷ ︸
vk

 (6)
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Figure 9. Structure of MLP network with one hidden layer.

ANNs training for decision-making in sensor systems used input variables to optimize weight with
4 input data VMAG1, VMAG2, VPHS1, and VPHS2 from measurements of 14 SSC levels of sugar solution,
and each data has 406 data points. All data points were randomly divided into 3 sets including dataset
A, dataset B, and dataset C. The number of input nodes and data division for training, validation, and
testing of each dataset was defined in Table 1. The target of ANNs training was SSC level of sugar
solution ranging from 3, 6, 9 to 45◦ Brix, that map to 4 binary bits [38] for the complexity of the
training process reduction, thus the number of output nodes was 4 to represent 14 SSC levels shown in
Table 2.

Table 1. Training data of artificial neural networks.

Dataset A B C

Data input VMAG1,2
VMAG1,2

VPHS1

VMAG1,2

VPHS1,2

Data points 406× 2 406× 3 406× 4

Training (31%) 126× 2 126× 3 126× 4

Validation (31%) 126× 2 126× 3 126× 4

Test (38%) 154× 2 154× 3 154× 4

Table 2. Relationship between SSC level and mapping function of targets.

Mapping function 0001 0010 0011 ≈ 1100

Targets (◦ Brix) 3 6 9 45

The ANNs structure for the decision part in the system consists of 3 layers: input layer, hidden
layer, and output layer. The input layer received VMAG1, VMAG2, VPHS1, and VPHS2 from the sensor
and was varied from 2 to 4 nodes related to the number of input parameters as v1, v2 to vi. In the
hidden layer, the number of hidden nodes, h1, h2 to hj , were varied from 4, 6, 8, and 10 nodes. The
output layer consists of 4 nodes, y1, y2 to y4, and outputs from the training were compared with target
t1, t2 to t4 to fine-tune the error used to tune w11 w12 to wj4 for error reduction. ANNs structure
from training is shown in Fig. 10.
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Figure 10. Proposed model of artificial neural network.

6. RESULT AND DISCUSSION

6.1. ANNS Result Analysis

To evaluate the performance of the ANNs model, input nodes, hidden nodes, and learning rates were
varied. The learning rate was tested using various datasets, and the optimal value was 0.012. When
the error rate was less than 10−3, or the epoch exceeds 500, the neural network stops training. Training
started with dataset A, and hidden nodes ranging from 4, 6, 8, and 10 nodes provided mean square
error (MSE) values of 0.074, 0.055, 0.05, and 0.042 (Fig. 11(a)) because of the difficulty of learning
with only 2 trained data inputs. When dataset B was used as input training, ANNs learned more
efficiently; however, when 4 hidden nodes were used in training, ANNs still learned hard and had a
high MSE at 0.059. When 6 hidden nodes were used, learning was more efficient, providing less MSE at
0.022, and when 8 hidden nodes were used ANNs learning continuously increased efficiency, providing
MSE at 1.031 × 10−2. Finally, after training with 10 hidden nodes, MSE was slightly reduced at
epoch less than 300, indicating that the system became more complex as the number of hidden nodes
increased. However, increasing the epoch makes ANNs better at learning, and the MSE at 1.14× 10−2

(Fig. 11(b)) shows that increased input data improve ANNs’ learning. When learning with dataset C,
ANNs performed well except when using 4 hidden nodes because nonlinear input and number of hidden
nodes were insufficient for learning, then provided MSE 0.0402. When the number of hidden nodes
was increased to 6 nodes, learning fluctuated slightly at first but can learn and provide MSE at 0.0122.
When the number of hidden nodes was increased to 8 and 10 nodes, MSE fluctuated slightly at epoch
less than 300, but at 500 epochs, learning of 8 and 10 hidden nodes was efficient and provided MSE at
2.71× 10−3 and 2.661× 10−3 (Fig. 11(c)).

It can be observed from the number of input and hidden nodes of ANN optimization to find suitable
weights that the number of input nodes affects the learning and solving capability of the decision system.
The ANN testing result shows that training with dataset A did not provide good learning capability
because it was insufficient, and the number of hidden nodes at 4 or 6 nodes cannot solve complicated
problems. Considering 8 and 10 hidden nodes, testing accuracy was 66.82% and 67.14%, respectively,
which is sufficient for use in the decision-making process of systems. For dataset B, using 3 input nodes
when training with 4 and 6 hidden nodes, learning was more accurate but still below 70%. When
the hidden node was increased to 8 and 10 nodes, MSE decreased, and accuracy increased to 78.1%
and79.08%, respectively. The last input data training was dataset C since using more input data,
accuracy slightly increased when the number of hidden nodes was 4 and 6 nodes, and when using 8
hidden nodes, learning was efficient and provided an accuracy of 92.98%. When using 10 hidden nodes,
ANNs learning was slightly more efficient with an accuracy of 93.55%, which is approximate to 8 hidden
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(c)

Figure 11. Performance plots of all neural networks, (a) dataset A, (b) dataset B, (c) dataset C.

Table 3. Performance of ANNs training and testing.

Input

node

Hidden

Node
MSE

Training performance Validation performance Testing performance

Error Acc. Error Acc. Error Acc.

2
8 4.959e-02 4.748e-02 74.60% 5.885e-02 71.13% 0.1517 66.82%

10 4.237e-02 4.132e-02 73.02% 5.734e-02 70.27% 0.1432 67.14%

3
8 1.031e-02 9.653e-03 94.44% 9.813e-03 88.10% 3.086e-02 78.10%

10 1.14e-02 1.003e-02 93.65% 1.018e-02 87.84% 2.995e-02 79.08%

4
8 2.71e-03 2.641e-03 98.41% 9.261e-03 93.2% 1.211e-02 92.98%

10 2.661e-03 2.580e-03 97.62% 8.182e-03 94.6% 1.127e-02 93.55%

nodes at the same epoch 500 (Table 3).
The result shows that training with 4 input nodes resulted in a good performance, thus dataset

C, which included VMAG1, VMAG2, VPHS1, and VPHS2, was suitable for use. When the performances
of SSC level classification at 8 and 10 hidden nodes were compared, the results were close. Because of
the complexity and resource used, 8 hidden nodes were suitable for applications. The ANNs structure,
which consists of 4 input nodes, 8 hidden nodes, and 4 output nodes, was implemented only Equation (6)
on the Arduino UNO microcontroller board to serve as the decision part of the sensor system using
8,716 bytes of memory and 542 bytes of variable memory. Furthermore, Arduino UNO broad was used
to control system synchronized operations, allowing SSC level determination to be done in real-time.
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6.2. Testing and Evaluation of the ANNS Model

The decision performance of ANNs was tested for error analysis SSC level of sugar solution determination
from 3, 6 to 45◦ Brix 154 samples, with 11 samples for each SSC level. The percentage error from the
decision was calculated using Equation (7),

%Error =
NTest −NMea

NTest
× 100 (7)

where the number of the tested samples at each SSC level is NTest, and the number of right decision
samples is NMea. The decision result of ANNs at each SSC level provided maximum error at 27.3% of
16◦ Brix because of measurement data VMAG1 close to VMAG2 of 16 and 19◦ Brix thus provided 2nd
maximum error of 18.2% at 19◦ Brix. The 3rd maximum error was 9.1% at 6, 31, and 40◦ Brix (Fig. 12).

Figure 12. Percentage error of testing result.

The novelty of this work is the measurement technique that uses two pairs of frequencies mixing
combining with ANNs. The advantages of this system are low cost and non-contact measurement in
which the ANNs can afford low complexity and resource savings. The sensor system was easy to use
by implementation in a microcontroller board. The SSC levels in solution were analyzed in a previous
work; however, they are invasive measurement with sugar solution [22–24] and contact with sample
holder [20, 21], in addition, parameter measurement for processing used equipment in laboratory, high
cost, and skilled operator required. The sensor systems are compared with those of previous sugar-
content measurement techniques in Table 4.

6.3. Discussion

In addition to ANN decision error, some errors were from sample holding in the sample holder and
bubbles during sample change. Therefore, the height of sugar solution in sample holders must be
at the same level in each measurement, and measured SSC during sugar solution sample should not
ripple and contain no bubble before decision-making. This control was efficient to reduce the error of
measurement with the transmission. The SSC sensor system based on the transmission coefficient is
not suitable for a large volume sample solution because the width of the sample solution affects the
attenuation of transmission. Then the received power is not enough to process, and the accuracy of
the system is low. As the voltages VMAG1, VMAG2, VPHS1, and VPHS2 measured in the prototype
system are not appreciably different at different Brix levels, decisions based on a particular parameter
may be inaccurate. Therefore, the measured voltages were averaged to improve the system accuracy.
Temperature affects the change in value of εr. However, in normal environment, the effect of temperature
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Table 4. The comparison of the real-time sugar content measurement technique characteristic.

Ref.
Sensing

Technique

Analyzed

parameters

Frequency

(GHz)
Installation

Measurement

Device
Handling

[22]
Microstrip

Antenna

Reflection

coefficient

3.2, 8.7,

11.6, 14.5
Invasive VNA

Training

is required

[20] RFID Sensitivity 0.915 Contact
RFID

reader

Skilled

operator

is required

[23]
Dipole

antenna

Reflection

coefficient
1.1–3.3 Invasive VNA

Training

is required

[24]
Microstrip

antenna

Reflection

coefficient
3.2–10.6 Invasive VNA

Training

is required

[21] Resonator
Transmission

coefficient
1.10, 2.20 Contact VNA

Training

is required

This

work

Microstrip

antenna

Intermediate

Frequency

10.2, 10.4,

10.6
Noncontact

System

prototype

Easy

to use

is not significant, and also ANN is used for data processing, thus the effect of temperature has been
reduced substantially. In addition, the sensor system had controlled effect of electromagnetic wave by
shielding to prevent interference from external electromagnetic wave, thus the system was more accurate.
Although the Q-factor of sensor system is not so high, VIF spectrum measurement from HB100 module
in low frequency to 2.7GHz can improve for less distortion in the system and no interference from
other frequencies. In addition, the power below −60 dBm is out of AD8302 operating range that makes
the sensor system more stable. The low SDs verified the stability of the system. Furthermore, the
presented system accurately processed four measured voltages with an ANN and was implemented in
a microcontroller board. The designed device is suitable for field measurement as it has low cost and
displays the SSC level in real time.

7. CONCLUSION

The SSC of sugar solution determination with triple-frequency transmission in X-band started with
dielectric properties measurement of sugar solution that had different 14 SSC levels ranging from 3, 6, 9
to 45◦ Brix, and their ε′r, and ε′′r were in the range 61.73 to 25.22 and 31.2 to 18.66, respectively. The ε′r
from different SSC levels was used to develop a sugar solution model, which was then used to simulate
a sensor system with a sugar solution model and 3 microstrip patch antennas in the same way as the
system diagram and used εr change related to SSC level. The simulation resulted in a relationship
between the magnitude and phase of the S-parameter and ◦ Brix. Three transceiver modules were used
to create the prototype system, which included two transceiver antennas, a frequency mixer circuit, and
a DRO. Each module was tuned to operate at 10.2, 10.4, and 10.6GHz. The module was programmed
to work in pairs, 10.2 with 10.4GHz and 10.2 with 10.4GHz, and the transmission signals of each paired
were mixed to generate IF signals with frequencies 200 and 400MHz. The 2 IF signals of each paired
module were compared to calculate the magnitude ratio and phase difference using gain and phase
detector (AD8302), which provided an output as a DC voltage. The 14 SSC levels solution samples
were measured as VMAG1, VMAG2, VPHS1, and VPHS2, with results ranging from 0.748 to 0.847, 0.786
to 0.899, 1.223 to 1.277, and 1.123 to 1.192 volts, respectively. All measurement data points were
randomly divided into three sets as datasets A, B, and C. The optimized dataset for ANNs training was
dataset C, which has four input nodes and eight hidden nodes that use worth memory to store weight
and reduce processor complexity. Four output nodes were mapped to binary bits that represented the
SSC level and learning rate of 0.012. The MSE was 2.71× 10−3, and the testing accuracy was 92.98%,
demonstrating that a low-cost X-band sensor can classify SSC level determination in real-time.
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