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Machine Learning Classification of Human Osseous Tissue through
Microwave Sensing
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Abstract—Globally, microwave frequencies are being extensively employed in numerous biomedical
implementations due to its high resolution, reasonable penetration through the human tissue, and cost-
effectiveness. However, the quantization of human osseous tissue through microwave sensing is still
not proficient. Therefore, this article provides an insight on the prediction of onset and progression
of osteoporosis developed through the use of a microwave setup for the contactless evaluation of
osteoporosis. This microwave setup comprises a human wrist model as a device under test which is
illuminated through a pair of planar stubbed monopole antennas to characterize the different degrees
of osteoporosis through frequency domain simulation analysis. By diversifying the wrist dimensions,
we are collecting the dataset of the transfer characteristics. Furthermore, different machine learning
algorithms are employed on this dataset to train, classify, and eventually evaluate the different degrees
of osteoporosis. Finally, an optimum machine learning algorithm was obtained to work at an optimum
bandwidth and optimum frequency.

1. INTRODUCTION

Currently, bone health is a universal health issue, with a worldwide estimate of 200 million people
being affected by osteoporosis-cognate fractures requiring expensive treatment. An epidemiological
investigation has predicted a significant escalation in osteoporotic fractures over the next few years, [1].
This calls for an effective method for bone health analysis, which can classify the bone tissues by
the degree of mineralization. The standard methodologies such as dual energy X-ray absorptiometry
(DEXA), quantitative Computed tomography (QCT), quantitative ultrasound (QUS), and magnetic
resonance imaging (MRI) are currently in use for the evaluation of bone mineral density (BMD). As
pointed out in previous researches, DEXA is one of the most prominent methods used for estimating
BMD; however, it does not offer a detailed understanding of bone quality and bone structure. Also,
both DEXA and QCT are dependent on ionizing waves which could lead to health hazards and enhance
cancer risks. Along with the MRI, these methods are expensive, non-portable, and time-consuming.
Although QUS uses non-ionizing radiation and is portable, it causes strong reflections and cannot
penetrate through the bones, and hence is less accurate [2–4].

On the other hand, based on the ever-growing applications of microwave techniques in health
care, it is intuitive that microwave systems have the ability to address the challenges of bone health
evaluation. Microwave systems are based on non-ionizing electromagnetic waves and are non-invasive in
nature. Microwave frequencies demonstrate good penetration capability into all types of human tissues,
particularly into the bones. The resolution of the microwave signal is precise enough to record minute
changes in the tissue properties. Thus, the electromagnetic properties of bone tissue extracted from
the reflected and/or transmitted signal can be used for bone health analysis and classification. Upon
analyzing the electrical characteristics of the return signal, the dielectric characteristics of biological
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tissues can be estimated, and based on this a precise assessment and cognizance of the properties of
bone health can be made.

The widespread application of machine learning algorithms in the field of signal processing has led
to many advancements in health care. Many ailments can be diagnosed on a real-time basis through
training and testing using machine learning algorithms. This can also shorten time-intensive and
computationally expensive procedures. In the light of the recent success of machine learning in health
care diagnostics, it is anticipated that similar processing will provide further light into the classification
of bone health [5–7].

A currently used fracture risk assessment tool, FRAX [8, 9], is a prototype that has implemented
twelve input quantities such as age, weight, sex, height, past fracture history, family fracture record, use
of glucocorticoids, rheumatoid arthritis, secondary osteoporosis, alcohol consumption, and smoking. Its
output product, the ten-year probability of fracture, has received some criticism.

A number of studies were done between 2001 and 2017 [10–13] which utilized one of the medical
decision parameters known as osteoporosis self-assessment tool (OST) which is a simple formula-based
methodology that utilized age and the human body weight as input parameters. These studies applied
various machine learning algorithms such as support vector machine (SVM), random forest (RF),
artificial neural network (ANN), and linear regression (LR). The limitation of this decision tool is
its low accuracy.

Wang et al. in 2018 [14] predicted the risk of hip fracture in postmenopausal women implementing
an artificial neural network. In the same year, Rivas et al. [15] studied the risk factor analysis of BMD
as predicated by selecting type 2 diabetes.

Krishnaraj et al. in 2019 [16] used an optimized SVM analysis in biological data sets with lower
density. Fathima et al. in 2020 [17] analyzed the sagittal view of CT spine images implementing a deep
learning approach. Here the multiclass segmentation approach was predicated on cascaded 2 U-nets.
Specificity, sensitivity and accuracy of the networks are quantized. In the same year, Recenti et al. did
two different works. The first one [18] was based on a deep learning method on the segmentation of
bone for BMD quantization from DEXA scan images, and the other was through a regression technique
to evaluate the BMD of patients suffering from total hip arthroplasty employing Gait analysis [19].

Further Minonzio et al. in 2020 [20] created an automatic classification of patients suffering from
non-traumatic fractures characterized by the ultrasonic guided wave spectrum image implementing a
dynamic SVM.

A flowchart of the microwave-based analyzer model using machine learning is demonstrated for
bone health evaluation (see Figure 1). It utilizes a pair of planar stubbed monopole antennas placed at
an optimized distance to get the transfer characteristic.

After data-collection using the previously described microwave sensing system, the data is used for
training the classifiers of the machine learning tool. During the dataset creation, the different stages of
osseous tissues are simulated by varying the electromagnetic parameters of the tissues. To create a more
realistic scenario in terms of variation of subject body tissue dimensions, each tissue size is varied during
the simulation using the high-frequency simulation software. The transfer characteristic responses are
recorded, and a dataset is created. For better estimation of the different degrees of osteoporosis, these
datasets are further analyzed with the help of different machine learning algorithms. The dataset is
subjected to training and testing in order to successfully classify the bone health condition. Various
predictive models such as Decision Tree, Random Forest, and SVM are employed for the detection of
outbreaks and advancement of osteoporosis from the information gathered through microwave analysis.

Another important step in the process of bone health classification is to be able to identify the
optimum frequency range of operation. In the research work, a wideband system has been used for
analysis. However, narrow-band systems often have an advantage over wideband counterparts in terms
of cost and ease of design. Hence, this article looks at the prospect of using a narrow-band system
for bone health analysis. This is achieved by using the prediction algorithms to identify the optimum
frequency range at which the classification system has the highest accuracy.
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Figure 1. Flowchart for microwave sensing for bone health evaluation through machine learning.

2. ELECTROMAGNETIC SENSING BEHAVIOR OF HUMAN OSSEOUS TISSUE

2.1. UWB Stubbed Planar Monopole Antenna

In this research, the prediction of bone quality is evaluated using a ultra-wideband (UWB) microwave
system. Here, a pair of circular stubbed planar monopole antennas have been proposed as illustrated
in [2]. The structure of a stubbed monopole antenna comprises a circular radiating structure along with
a circular slot, a 50Ω microstrip line, and a modified stub in the partial ground plane. Here Rogers
5880 LZ substrate is chosen as substrate material having a relative permittivity of 1.98, thickness of
1.016mm, length of 30mm, and width of 40mm.

The partial ground plane has a rectangular geometry with a rectangular stub integrated on the
upper edge of the ground plane resulting in the enhancement of bandwidth and gain with compact size.
The substrate was culled such that it can be easily integrated with cloths and had low E-field loss and
low moisture absorption.

Figure 2 shows a photograph of the fabricated prototype of the proposed monopole antenna with
a protruding stub. Figure 3 exhibits the comparison between the reflection coefficients of the simulated
and measured monopole stubbed antennas. In accordance with the measured results, the frequency
bands of the simulated and measured antennas range from 3 to 24GHz. However, in this methodology,
the operating frequency range has been limited to 3 to 8GHz as higher frequencies have exhibited lower
penetration capability towards human tissue [3].

2.2. Electromagnetic Sensing Behavior

The proposed microwave sensing technique presented here for bone mineral density evaluation employs
a pair of planar stubbed monopole antennas as described in the previous studies [2]. The reason that
the human wrist model was chosen as the object under test is that it is considered the most prominent
location to test osteoporosis. Also, the wrist is the most prominent area where the early signs of
osteoporosis can be easily diagnosed. Here the volume of the bone tissue is more than other human
tissues especially compared to the muscle tissue. It is noted that muscle tissue has high permittivity
and hence attenuates most electromagnetic signals allowing very low energy to pass through. The
electrical and structural parameters of the human tissues are derived from the previous studies utilizing
microwave sensing [21] as elaborated in [3, 4]. For the dielectric features of healthy bones, skin, fat, and
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(a) (b)

Figure 2. (a) The geometry of the stubbed ground plane monopole antenna. (b) Fabricated design of
stubbed ground plane monopole antenna.

Figure 3. Comparison of the simulated and measured return loss characteristics of the stubbed ground
plane monopole antenna.

muscles in built bio-tissue characteristics in the CST Microwave studio simulation software, dielectric
properties of biological tissues database from the Italian national research council were taken into
consideration [22, 23]. The various parameters of the osteopenia and osteoporotic bones chosen for
the analysis at 6.3GHz from the previous study [21] are listed in Table 1. In previous studies [3, 4],
the analysis was focused on the temporal domain and spectral attenuation through human osseous
tissue, and a statistical approach was employed to characterize the progress of osteoporosis. To increase
the accuracy of the proposed system, the analysis is further enriched through the usage of a machine
learning-based classifier. For the classification of the human osseous tissue, six different stages of
osteoporosis are considered in a methodology as adopted in Table 1.

2.3. SAR Analysis

The radiation requirement can be estimated through Specific Absorption Rate (SAR) which is the
standard methodology for the estimation of absorption of electromagnetic power by the human tissue.
Here, the SAR computation is done through the stubbed planar monopole antenna and the human wrist
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Table 1. Electrical properties of human tissue at 6.3GHz.

Tissue
Relative Permitivity

(Er)

Loss

Tangent

Conductivity

(S/m)

Radius

(mm)

Healthy Bone 9.4543 0.38487 1.2772 15

Osteopenia Bone 14 0.2040 1 15

Osteoporotic Bone 1 18 0.2374 1.5 15

Osteoporotic Bone 2 23 0.2488 2 15

Osteoporotic Bone 3 28 0.275129 2.7 15

Osteoporotic Bone 4 32 0.30315 3.4 15

Muscle 47.801 0.33267 5.5818 4

Fat 4.9087 0.18965 0.32677 6

Skin 34.683 0.3424 4.1684 2

Figure 4. Maximum SAR analysis of the stubbed monopole antenna at 3.68GHz for 1 gm of tissue.

in CST microwave studio. Figures 4–6 represent the SAR distribution over the human wrist model. The
average value of SAR must be within 4W/kg for 1 gm of tissue for human wrist. The maximum SAR
value observed for 1 gm of the tissue was 2.99W/kg, 3.01W/kg, and 3.05W/kg for 3.68GHz, 5GHz,
and 7GHz, respectively. This SAR value is calculated for 1Watt of input power which is within the
specific limit.

3. DATA COLLECTION AND FEATURE EXTRACTION

The microwave-based bone sensing was conducted with the help of high-frequency simulation software
through frequency domain analysis from 3GHz to 8GHz. The transfer characteristics are recorded using
the wideband antenna, and it is analyzed for human tissues with six different degrees of osteoporosis for
standard wrist dimensions. The transfer characteristics are illustrated in Figure 7. It was observed that
as the bone mineral density decreases, the first resonance appears lower in the frequency scale as there
is an increase in electric permittivity and the conductivity of the bone, as illustrated in Table 1. The
advantage of implementing extremely wideband antennas is that we could employ any suitable wideband
which shows the most deviation and can easily differentiate between the different degrees of BMD.
Apparently, through transfer characteristics simulation result in Figure 7 of this paper, we observe that



94 Kerketta and Ghosh

Figure 5. Maximum SAR analysis of the stubbed monopole antenna at 5GHz for 1 gm of tissue.

Figure 6. Maximum SAR analysis of the stubbed monopole antenna at 7GHz for 1 gm of tissue.

after 7.5GHz the S21 characteristics for different bone mineral density tend to merge showing very little
deflection and fully merges at 8GHz. So eventually, we chose a 3–8GHz frequency band that showed a
maximum and clear deflection. Each human subject may have different wrist sizes with different radial
dimensions of three tissues at the wrist. The transfer characteristics will obviously deviate even with
a slight alteration of the tissue dimensions. For demonstrating the proposed methodology with respect
to realistic test subjects, it is essential to consider such minor dimensional variations as part of the
system design. In order to address this variation, the dataset of transfer characteristics is generated by
varying the different radial dimensions of tissues while at the same time varying the electromagnetic
parameters of bone tissues. While creating the dataset, each human tissue such as the bone, fat, and
muscle was changed individually by 0.1mm till the radial dimension increased by 1mm. This was
repeated incorporating bone tissue with the six degrees of osteoporosis as tabulated in Table 2. This
process is able to generate a total of 186 cases of transfer characteristics over 1000 individual frequency
ranges between 3 and 8GHz.

For reference purposes, a few snapshots from the collection of 186 sets of data of transfer
characteristics is shown plotted in Figures 8 to 10 over the complete reference measurement frequency
range of 3GHz to 8GHz. Each of the characteristic plots shows the variation in attenuation levels with
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Figure 7. Through bone signal of the simulated wrist for standard dimension.

Figure 8. Through bone signal of the healthy bone by varying the bone tissue.

Table 2. Database description.

Degree/stages of osteoporosis (healthy bone,

osteopenia bone, osteoporotic bone 1, 2, 3, 4)
6

Types of human tissue (fat, muscle, bone) 3

Number of deviation of each individual tissue (0.1mm to 1mm) 10

Number of initial readings with standard wrist dimensions 6

Total number of readings of transfer characteristics 6× 3× 10 + 6 = 186

the alteration in the dimensions of a particular chosen human tissue. This is in contrast to Figure 7,
wherein the variable was the degree of osteoporosis, and the tissue dimension was maintained constant
during the investigation. Hence, each of Figures 8 to 10 shows that even with a slight change in the
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Figure 9. Through bone signal of the osteoporotic bone 1 by varying the muscle tissue.

Figure 10. Through bone signal of the osteoporotic bone 4 by varying the fat tissue.

tissue dimension there is a significant variation in the transfer characteristics. It can be deduced that the
determination of osteoporosis and its advancement becomes dependent on the human subject chosen.

This dependency may render the recognition of osteoporosis advancement invalid. In other words, a
uniform diagnostic mechanism may fail to deliver accurate results unless the tissue variation is factored
into the processing stage.

To address this non-osseous variable, it is proposed to train the classifier to identify this variation
from among the collected dataset with the implementation of machine learning algorithms. Due to
the absence of an accurate classification approach, it would be tough to estimate the stage of the
advancement of osteoporosis. An appropriate classification algorithm will be able to distinguish the
distinct features attributable to the variation in BMD while repressing the effect of the variations in
the human tissue dimensions.
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4. IMPLEMENTATION OF MACHINE LEARNING ALGORITHM IN HEALTH
CARE

Machine learning algorithms are formulated to combine algorithmic strategy with statistical
methodology. Machine learning algorithms are recognized as a subclass of Artificial Intelligence (AI)
applications [24]. They are employed by computerized systems for implementing a function without
utilizing definitive instructions. Properly trained, they are able to do the job with accuracy identifying
pinpointed intrusions and delicate patterns. The health care diagnostic instruments are highly
dependent on the accuracy and time-effectiveness of the adopted technology. So the implementation
of the machine learning algorithms for computer-aided diagnosis enables the system for rapid analysis
and enhances the diagnostic accuracy at the same time [25]. A few of the machine learning algorithms
in a particular random forest, decision trees, and support vector machines (SVMs) which have distinct
advantages in terms of building a prediction model with the basic form of datasets [26] are detailed
here.

4.1. Decision Tree Induction

Decision trees are broadly acknowledged as a machine learning and data mining approach that
undertakes an attribute value dataset as the input and develops Boolean decisions the output. It
consists of a tree where each individual node is depicted as a test attribute and each leaf node depicted
as classification. The test example classification starts at the root, then each node is tested according
to the attribute values of each individual node and followed by the sorting of branch appropriately
until it attains the appropriate leaf node classification. Here, the training set is divided in accordance
with the relevant values of the selected nodes through these branches, and the decision tree algorithm
is implemented recursively to each dataset [27]. It gives optimal results if the dataset is adequately
classified and consists of the least number of nodes. The accuracy generated through this method is
high, but it also has the disadvantage of excessive complications [28].

4.2. Random Tree

The fundamental idea of the random forest algorithm is the incorporation of several decision tree
classifier models. It can be explained as that the combination of random subspace and bagging creates
decisions and produces a final output by voting through decision making. The procedure of the random
forest algorithm is split into two important sections, firstly towards the growth of the decision tree and
secondly towards the voting on the procedure. In particular, the growth procedure is again separated
into three features such as randomly selecting the training dataset, construction of random forest, and
splitting up the nodes. The final prediction is made by aggregating the decisions developed by trees in
the forest [29–31].

4.3. Support Vector Machine

Support vector machines are some of the supervised learning models which are associated with machine
learning algorithms that can analyze the data and figure out the patterns, and they are utilized in the
regression and classification analysis. Originally, SVM was established to solve the binary problems
based on classification, which employed a hyper-plane that acted as a decision boundary separating the
data point from distinct classes [32]. These can manage both linear, simple classification operations
and nonlinear, more complex, classification problems. They can handle both distinguishable and non-
distinguishable problems in linear and nonlinear tasks.

The basic notion of SVM is to project the data points from the original input space towards a
high or infinite-dimensional feature space in such a way that the classification task seems simplified in
the feature space. The mapping is created through the most appropriately selected kernel function.
The fundamental distinction between the SVM and other conventional algorithms is that it employs
the structural risk minimization (SRM) technique and opposes the empirical risk minimization (ERM)
technique which is extensively utilized in statistical training. Generally, the SRM attempts to diminish
the upper bound on the generalization instead of diminishing the training error which is expected
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to have better efficiency than the traditional ERM technique. Additionally, SVM consists of convex
optimization, which particularly assures that the local minimization is a distinctive minimization [33, 34].

5. CLASSIFICATION AND VERIFICATIONS

The machine learning algorithms were implemented utilizing Python programming language. Three
classification models were built using the decision tree, random forest, and support vector machine
algorithms on the dataset of transfer characteristics described in Section 3. The classification report is
generated by training using 60% of the dataset and using the rest 40% of the dataset for testing [35, 36].
Table 3 illustrates the classification report using different machine learning algorithms in terms of
accuracy and confusion matrix. While the 6 different cases of osteoporotic bone tissues are classified,
the accuracy for the decision tree is 91%; random forest is 95%; and for SVM it is 97%. Further, the
precision, recall, f1-score, and support parameters for the employed classifiers are detailed in Table 4 for
each of the machine learning algorithms. This outcome is very encouraging, particularly because of the
high accuracy achieved even in the presence of significant variation in the dataset due to unaccounted
variations in the tissue dimensions chosen.

Table 3. Report on bone health classification over a frequency band of 3–8GHz.

ML
Algorithms 

Random  Forest Decision Tree Support Vector Machine 

Confusion 
Matrix

 
 

Accuracy 91% 95% 97%

It may be noted that the classifiers were employed on the raw data collected from the microwave
sensing system, and further feature extraction may be utilized in the future to increase the accuracy
while reducing the training complexity.

The above procedure has been employed on wideband sensor data. However, as pointed out it is
worthwhile to investigate the frequency dependence on the accuracy of the model. This can help in
focusing on the frequency range with higher accuracy and be able to use a narrow-band system.

For this purpose, the frequency band of 3–8GHz was subdivided into 1GHz bands. The original
3–8GHz band consisted of 1000 frequency samples. After subdivision into 1GHz bands, each of the
datasets consists of 186 transfer characteristics with each measured at 200 distinct frequencies. This
results in the creation of 5 independent datasets which are next fed into the machine learning algorithms
for training and testing as described previously. The classification result is detailed in Table 5.

It is observed that for each of the machine learning algorithms employed the system accuracy varies
depending on the frequency band chosen. For the decision tree algorithm, the system is most accurate
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Table 4. Report on bone health classification over a frequency band of 3–8GHz using random forest,
decision tree algorithm and support vector machine.

Random Forest Decision Tree Support Vector Machine

Tissue precision recall f1-score support precision recall f1-score support precision recall f1-score support

Healthy

Bone
0.67 0.67 0.67 9 1 1 1 12 1 1 1 15

Osteopenia

Bone
1 1 1 12 1 1 1 11 1 1 1 9

Osteoporotic

Bone 1
1 1 1 14 1 1 1 11 1 1 1 12

Osteoporotic

Bone 2
1 0.91 0.95 11 1 0.93 0.97 15 1 1 1 11

Osteoporotic

Bone 3
0.79 0.92 0.85 12 0.8 0.92 0.86 13 1 0.86 0.92 14

Osteoporotic

Bone 4
0.94 0.88 0.91 17 0.92 0.85 0.88 13 0.88 1 0.93 14

Table 5. Accuracy comparison bone health evaluation with diversified frequency data employed for
training.

Broadband

3–8GHz
1GHz Bandwidth Single Frequency

Total No. of

frequency

data

1000 200 1

Frequency 3–8GHz 3–4GHz 4–5GHz 5–6GHz 6–7GHz 7–8GHz 3.485GHz 3.62GHz

Random

Forest
91 89 92 80 72 72 56 74

Decision

Tree
95 92 85 80 72 67 76 70

SVM 97 91 96 87 86 68 73 50

(92%) for a bandwidth of 4–5GHz, and for the random forest algorithm the system shows similar levels
of accuracy (92%) for frequency bands of 3–4GHz. However, when SVM is implemented it shows a
maximum accuracy of 96% for the frequency band of 3–4GHz. In this case, the most appropriate
frequency band is found to be 4–5GHz. Though the above result shows some variation, it does point to
the fact that frequencies in the lower ranges up to 6GHz carry more information regarding the tissue
characteristics than the frequencies higher than 6GHz. This definitive understanding is crucial to the
future system design of microwave-based bone health diagnostic systems.

On the basis of the above findings, a further investigation was carried out to identify the effectiveness
of a single frequency band system for the classification process. The frequency band of 3–5GHz was
chosen, and the machine learning algorithms were employed on individual frequency data in the range.
By applying each of the three algorithms, it is found that the system is most accurate at 3.485GHz
for both random forest and SVM algorithms with the accuracy of 74% and 73%, respectively. For the
decision tree, it is found that the system is most accurate at 3.62GHz with 74% accuracy. It is noted
that there is a clear fall in the accuracy of the classification process when a single frequency evaluation
is carried out. This is likely due to the lack of sufficient data points in the dataset created for single-
frequency evaluation. It is well known that the accuracy of the machine learning classifier is heavily
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dependent on the availability of a large dataset for training the classifier. Hence, the above results
indicate that a single frequency setup may not be the most appropriate solution under this scenario.
At the same time, this procedure allows us to fine-tune our system highlighting the most appropriate
frequency of operation.

6. CONCLUSION

The proposed methodology presented here focuses on microwave-based sensing of bone health evaluation
employing a machine learning algorithm for varying human wrist sizes. A series of simulations
utilizing a pair of planar stubbed monopole antennas placed in proximity to the human wrist with
varying dimensions are undertaken to create a dataset. Machine learning algorithms such as decision
trees, random forest, and support vector machines have been employed on the dataset of transfer
characteristics for a bandwidth of 3 to 8GHz. It is shown that even though the size of each tissue
is varied the sensor is capable of classifying six different degrees of osteoporosis with high accuracy.
To further evaluate the system accuracy the bandwidth of 5GHz is divided into 1GHz bands, and it
is shown that the frequency band of 4–5GHz gives a good accuracy even with fewer samples in the
dataset. To further find an optimum frequency single frequency-based classification is undertaken.

The human osseous tissue permittivity and conductivity are correctively related to the bone quality
and bone mineral density features which include the micro-architecture and mechanical characteristics.
The attenuation of electromagnetic signals through healthy bone is quite different from that of
osteopenia and osteoporotic bone despite the different wrist sizes. Hence, in the practical examination,
properly training and testing the dataset and implementing an appropriate machine learning algorithm
can give a highly accurate prediction.
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