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Transverse Orbital Angular Momentum of Spatiotemporal
Optical Vortices

Miguel A. Porras*

Abstract—Spatiotemporal optical vortices (STOVs) are electromagnetic wave packets that transport
a phase line singularity perpendicular to their propagation direction. We address the problem of the
transverse orbital angular momentum (OAM) actually transported by STOVs propagating in free space
or non-dispersive media, the most frequent experimental situation. An elliptically symmetric STOV
of topological charge l and carrier frequency ω0 carries an intrinsic transverse OAM per unit energy
γl/2ω0, where γ is the STOV ellipticity. Intrinsic stands for the OAM about a moving transverse
axis passing permanently through the STOV center. For circular STOVs (γ = 1) this value is half
the intrinsic longitudinal OAM of monochromatic light beams of the same charge and frequency. This
result agrees with that in Phys. Rev. Lett., Vol. 127, 193901, 2021. The formula (γ + 1/γ)l/2ω0 for
the intrinsic transverse OAM in Phys. Rev. A, Vol. 107, L031501, 2023 yields infinite values and is
not conserved on propagation for particular STOVs. When STOVs propagate losing their elliptical
symmetry, they preserve the intrinsic transverse OAM γl/2ω0 despite the phase singularity may split,
the split singularities may disappear, or even change the sign of their topological charges. The total
transverse OAM of a STOV about a fixed transverse axis crossing its center vanishes because the
extrinsic transverse OAM is opposite to the intrinsic OAM, which may preclude applications such as
setting particles into rotation, but STOVs could transmit their intrinsic OAM to the photons of other
waves, as in nonlinear frequency conversion processes.

1. INTRODUCTION

Within the dynamic area of research on the so-called structured light, optical vortices play now a
prominent role. Vortices in monochromatic light beams have been studied for decades [1]. They
feature a phase line singularity along the beam propagation axis, e.g., the z axis, where the intensity
vanishes, surrounded, in their simplest version, by a circularly symmetric distribution of intensity. The
orbital angular momentum (OAM) carried by these vortex beams is well-understood, and is commonly
quantified by the OAM per unit energy or “per photon” as l/ω0, where the integer l is the topological
charge of the vortex, and ω0 the beam frequency. For many applications these vortices are not nested in
monochromatic beams, but in ultrafast pulsed beams, which are often called “spatiotemporal vortices”.

However, the above name, or more precisely, spatiotemporal optical vortices (STOVs), is reserved
since a few years for pulsed beams carrying a vortex whose phase line singularity is not longitudinal but
transverse to the direction of propagation, say the y axis, with the gradient of the phase circulating in
the z-x plane, or equivalently, in the t-x plane in the usual description of pulsed beams at transversal
planes z = const. as time goes on.

STOVs were first observed experimentally in optical collapse and filamentation [2], but their linear
nature made it possible to generate them in air using standard pulse and beam shaping techniques [3, 4].
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Recent generalizations of these purely transversal STOVs include STOVs with arbitrarily oriented phase
line singularity [5], STOVs with mixed phase and polarization singularities [6], non-diffracting Bessel-
type STOVs [7], etc..

Detailed descriptions of the propagation features of STOVs with transverse OAM can be found in [8–
10], including closed-form expressions for higher-order STOVs (l > 1) propagating in free space [11].
Circularly symmetric, or given the different nature of the x and t coordinates, elliptically symmetric
STOVs, are theoretically considered as prototype STOVs, and they are assumed to carry transverse
OAM, but different authors provide expressions attributing different amounts of total, intrinsic, and
extrinsic transverse OAM per photon [8, 12, 13], which has sparked a subtle debate [14]. This point
is relevant not only theoretically but also to experiments with STOVs where the transverse OAM is
intended to be transferred to a second harmonic beam [15, 16], or even to high harmonics [17], and may
be also relevant to other linear or nonlinear interactions with matter [18, 19].

Barnett [20] identified the correct physical magnitude in classical, Maxwellian electromagnetism
that can be identified with the angular momentum transported by a monochromatic vortex beam:
the angular-momentum flux crossing a transversal plane, or angular momentum per unit time, since
the total angular momentum is infinite for a continuous beam. This formulation allows a physically
meaningful separation of spin and orbital angular momentum even for nonparaxial beams [20]. Here,
we adopt the same formulation, extend it to waves localized in space and also in time, such as STOVs,
and identify the angular momentum carried by the STOV with the angular momentum flux integrated
in time. Considering linearly polarized wave packets, this angular momentum is further identified with
the OAM carried by the STOV. We find that a STOV carries a transverse OAM with respect to a
moving transverse axis traversing permanently the STOV center, which we identify with the intrinsic
OAM, but a null total transverse OAM with respect to a static transverse axis that traverses the STOV
center, and an opposite extrinsic OAM.

At the transversal plane where a STOV is elliptic, the intrinsic OAM per unit energy of a STOV
can be calculated as lγ/2ω0, where l is the topological charge of the STOV at that plane, and γ measures
the ellipticity. This yields l/2ω0 for a circular STOV, half the OAM of circular spatial vortices. An
intuitive explanation of this fact is provided. When the STOV loses its elliptical symmetry due to
diffraction effects, the intrinsic OAM is conserved, but there is no any relationship between the OAM
and the topological charge(s) of the vortices in the STOV, which may disappear, even reverse their sign.

2. TRANSVERSE OAM TRANSPORTED BY ELECTROMAGNETIC WAVE
PACKETS

In classical electromagnetic theory, the energy W , momentum P⃗ , and angular momentum J⃗ carried by
an electromagnetic wave can be determined from their conservation laws. Conservation of energy is

expressed by the continuity equation for energy ∂tw + ∂mSm = 0, where w = (1/2)(ε0|E⃗|2 + µ−1
0 |B⃗|2)

is the energy density E⃗, B⃗ the real-valued electric and magnetic vectors, ε0 and µ0 the electric

permittivity and magnetic permeability of vacuum, and S⃗ = µ−1
0 E⃗ × B⃗ is the Poynting vector, or

energy flux density. The repeated subindex m implies summation over all its values, m = x, y, z,
the divergence operator in this case. Analogously, conservation of each component of momentum
reads ∂tpi + ∂mTim = 0, where pi = Si/c

2 is the i component of the momentum density, and

Tim = (1/2)δim(ε0|E⃗|2 + µ−1
0 |B⃗|2) − ε0EiEm − µ−1

0 BiBm is the momentum flux density, with δim
the Kronecker delta. The im component is the flux of the i component of the momentum across
an infinitesimal surface perpendicular to the m direction. These continuity equations are direct
consequences of Maxwell equations [20].

There is a third continuity equation consequence of the conservation of angular momentum. We
express the Cartesian components of the angular momentum density j⃗ = r⃗ × p⃗ more efficiently as
ji = ϵijkxjpk, where ϵijk is the permutation symbol of values ϵijk = +1 if ijk = 123, 312, 231, ϵijk = −1
if ijk = 321, 132, 213, and zero otherwise. As shown in [20], the continuity equation for angular
momentum is

∂tji + ∂mMim = 0, (1)
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where
Mim = ϵijkxjTkm (2)

is the angular momentum flux density, yielding the flux density of the i component of the angular
momentum across a surface perpendicular to the m direction, and having units of angular momentum
per unit area and unit time.

As for energy and momentum, the continuity equation can be expressed via divergence’s theorem
in integral form as

d

dt

∫
V
jidV = −

∮
S
Mimdsm, (3)

meaning that the variation of the angular momentum in a volume V equals the inward angular
momentum flux across its surface S, i.e., the angular momentum entering into V from outside. For
a transversally and temporally localized wave packet propagating along the z axis, we take V as a
coaxial cylinder of bases at planes z1 and z2 > z1. If the radius of the cylinder tends to infinity, the flux
across its lateral surface vanishes, and (3) reads

d

dt

∫
V
jidV =

∫
z1

Mizdx⃗⊥ −
∫
z2

Mizdx⃗⊥, (4)

since dsz = dxdy ≡ dx⃗⊥, with the integral in x, y covering the entire transversal planes. Integration
also in time from t = −∞ to t = +∞ yields∫

z1

Mizdx⃗⊥dt−
∫
z2

Mizdx⃗⊥dt =

∫
V
jidV

]t=∞

t=−∞
. (5)

The right hand side vanishes since at t = −∞ and at t = +∞ there is no angular momentum in
the limited volume V from z1 to z2 for a temporally localized wave. The total angular momentum
that crosses any transversal section as the wave packet surpasses that section, Ji =

∫
Mizdx⃗⊥dt, is

then independent of z. In [20], Barnett identified the angular momentum per unit time carried by a
monochromatic light beam with the angular momentum flux Mi =

∫
Mizdx⃗⊥ through a transversal

section z. Accordingly, we identify here the total angular momentum carried by a beam localized in
time with the angular momentum flux Mi, or angular momentum per unit time, integrated to all times,
i.e., Ji =

∫
Mizdx⃗⊥dt.

We wish to apply these fundamental relations to wave packets such as STOVs supposedly carrying
transverse OAM along a transversal direction, say, the y direction. The angular momentum flux density
and angular momentum about the y axis, i.e., about the axis (x, z) = 0, are

Myz = zTxz − xTzz (6)

and

Jy =

∫
Myzdx⃗⊥dt, (7)

where

Txz = −ε0ExEz − µ−1
0 BxBz, (8)

Tzz =
1

2

[
ε0

(
E2

x+E
2
y−E2

z

)
+ µ−1

0

(
B2

x+B
2
y−B2

z

)]
. (9)

Since we will only consider linear polarization, this angular momentum will be identified as the transverse
OAM carried by the wave packet.

For the purpose of computing the transverse OAM per unit energy, we also consider the energy
transported by the wave packet along the z direction. A procedure identical (and much better known)
as above, but starting with the continuity equation for energy, yields the carried energy as

W =

∫
Szdx⃗⊥dt, (10)

where Sz = µ−1
0 (ExBy −EyBx) is the energy flux density across the transversal plane. Obviously, W is

also independent of z.
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3. ELECTROMAGNETIC FIELDS OF PARAXIAL AND QUASIMONOCHROMATIC
WAVE PACKETS

In current experiments STOVs propagate paraxially, and their duration is much longer than the carrier
period 2π/ω0, i.e., they are many-cycle, quasimonochromatic, or narrowband wave packets, of typical
duration in the scale of hundred of femtoseconds in the visible spectrum. Under these conditions,
the propagation of the complex envelope ψ(x, y, z, t′) of any transversal component of the complex

electromagnetic field, ψ(x, y, z, t′)e−iω0t′ , where t′ = t − z/c is the local time, and ω0 is the carrier
frequency, is accurately described by the linear Schrödinger equation

∂zψ =
i

2k0
∆⊥ψ, (11)

where ∆⊥ = ∂2x + ∂2y , and k0 = ω0/c is the propagation constant. This is the common approximation

to paraxial propagation of narrowband pulses, ruled by ∂zψ = (i/2k0)∆⊥ψ − i(k′′0/2)∂
2
t′ψ, when group

velocity dispersion k′′0 vanishes. A more detailed derivation of the Schrödinger equation for paraxial and
quasimonochromatic fields can be found in [11, 21, 22] and references therein.

Following Lax’s et al. perturbation theory [23], the paraxial electromagnetic fields can be
constructed from solutions of the Schrödinger equation as

Ex = Re
{
ψe−iω0t′

}
, Ez = Re

{
i

k0
∂xψe

−iω0t′
}
,

By = Re

{
1

c
ψe−iω0t′

}
, Bz = Re

{
i

k0c
∂yψe

−iω0t′
}
,

(12)

Ey = 0 and Bx = 0 for linear polarization along x. For linear polarization along y, exchange x ↔ y in
all of the above equations.

4. TRANSVERSE ORBITAL ANGULAR MOMENTUM OF PARAXIAL AND
QUASIMONOCHROMATIC WAVE PACKETS

For quasimonochromatic light, integrations in time from −∞ to +∞ to obtain the transverse OAM and
the energy can be evaluated in two steps. First, when the fields (12) are introduced in (8) and (9) terms
oscillating at 2ω0 are cancelled upon integration over a carrier period, and only those independent of
ω0 remain, leading to the cycle-averaged transverse OAM flux density and transverse OAM as

⟨Myz⟩ = z⟨Txz⟩ − x⟨Tzz⟩, Jy =

∫
⟨Myz⟩dx⃗⊥dt, (13)

where

⟨Txz⟩ =
ε0
2k0

Im{ψ⋆∂xψ} =
ε0
2k0

A2∂xΦ, (14)

⟨Tzz⟩ =
1

2
ε0|ψ|2 =

1

2
ε0A

2, (15)

regardless whether polarization is along x or along y, and where we have introduced the amplitude A
and phase Φ of the complex envelope ψ = AeiΦ in the second set of equations.

Also, using the fields in (12) in Sz = µ−1
0 (ExBy − EyBx), the cycle-averaged z-component of the

energy flux density is ⟨Sz⟩ = (1/2)ε0c|ψ|2 = (1/2)ε0cA
2. The energy transported by the wave packet is

then

W =
1

2
ε0c

∫
A2dx⃗⊥dt

′. (16)

We may decompose the transverse OAM flux density and the transverse OAM into intrinsic and
extrinsic contributions. The intrinsic part is associated with the transverse OAM about a moving axis
parallel to the y axis traversing the wave packet “center”, and the extrinsic part is associated with
the rotation of this center about the y axis, i.e., about (x, z) = 0. For a wave packet moving at c, as
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STOVs, the moving axis at the plane z is [x − xm, z − c(t − t′m)] = 0, or in terms of the local time
[x− xm,−c(t′ − t′m)] = 0, where xm and t′m define the wave packet center at the plane z, and take into
account that at the plane z, the x-center xm may not be x = 0 and that the temporal center may be
delayed from t = z/c by t′m for a complex wave packet lacking symmetries. The intrinsic and extrinsic
transverse OAM flux densities are then

⟨M (i)
yz ⟩ =

[
z − c

(
t− t′m

)]
⟨Txz⟩ − (x− xm)⟨Tzz⟩

= −c
(
t′ − t′m

)
⟨Txz⟩ − (x− xm)⟨Tzz⟩, (17)

⟨M (e)
yz ⟩ = c

(
t− t′m

)
⟨Txz⟩ − xm⟨Tzz⟩

=
[
z + c(t′ − t′m)

]
⟨Txz⟩ − xm⟨Tzz⟩, (18)

verifying ⟨M (i)
yz ⟩+ ⟨M (e)

yz ⟩ = ⟨Myz⟩, with the intrinsic and extrinsic transverse OAM given by

J (i)
y =

∫ ⟨
M (i)

yz

⟩
dx⃗⊥dt

′, J (e)
y =

∫ ⟨
M (e)

yz

⟩
dx⃗⊥dt

′, (19)

also verifying J
(i)
y + J

(e)
y = Jy. Note that integration to all times t yields the same result as integration

in t′. Let us remark that the parameters xm and t′m are not directly related to the structure of the
wave packet as seen in space (x, y, z) at different times, but just describe what happens at a particular
plane z. Accordingly, the natural definitions of xm and t′m that are consistent with our formulation are
xm =W−1

∫
⟨Sz⟩xdx⃗⊥dt′ and t′m =W−1

∫
⟨Sz⟩t′dx⃗⊥dt′, or equivalently,

xm =

∫
A2xdx⃗⊥dt

′∫
A2dx⃗⊥dt

′
, t′m =

∫
A2t′dx⃗⊥dt

′∫
A2dx⃗⊥dt

′
. (20)

(One could think on relating these parameters to the energy density ⟨w⟩, but the result would be the
same, since ⟨w⟩ and ⟨Sz⟩ are proportional for paraxial fields.)

Using all the above expressions, the total, intrinsic, and extrinsic transverse OAM carried by the
wave packet are given by

Jy =
ε0z

2k0

∫
A2∂xΦdx⃗⊥dt

′ − 1

2
ε0

∫
A2xdx⃗⊥dt

′, (21)

J (i)
y = − ε0c

2k0

∫
A2∂xΦ

(
t′ − t′m

)
dx⃗⊥dt

′, (22)

J (e)
y =

ε0z

2k0

∫
A2∂xΦdx⃗⊥dt

′ +
ε0c

2k0

∫
A2∂xΦ

(
t′ − t′m

)
dx⃗⊥dt

′ − 1

2
ε0

∫
A2xdx⃗⊥dt

′. (23)

It should be clear that Jy and J
(e)
y are referred to the (x, z) = 0 axis and would take other values if

another transverse axis is taken. However, J
(i)
y would not change since it is always referred to the wave

packet center. Indeed, the transverse OAM about a new transverse axis, say (x, z) = (x0, 0), is the
same as the transverse OAM about (x, y) = 0 of the wave packet translated by −x0. Replacing A(x, y)
and Φ(x, y) with A(x+ x0, y) and Φ(x+ x0, y) in (21), (22) and (23), changing to variables x′ = x+ x0
and y′ = y, and using that ∂x′ = ∂x, one immediately obtains the new OAMs as Jy(x0) = Jy + x0Pz,

J
(i)
y (x0) = J

(i)
y , and J

(e)
y (x0) = J

(e)
y + x0Pz, where Pz =

∫
⟨Tzz⟩dx⃗′⊥dt′ is the z component of the

momentum carried by the wave packet. Thus, J
(i)
y is independent of the choice of the transverse axis.

5. TRANSVERSE ORBITAL ANGULAR MOMENTUM OF SPATIOTEMPORAL
VORTICES

As is well-known, monochromatic light beams with circular symmetry except for an azimuthal phase
dependence eilϕ, ϕ = tan−1(y/x) carry a longitudinal orbital angular momentum (OAM) per unit energy

Jz/W = J
(i)
z /W = l/ω0 about the z-axis (x, y) = 0, an OAM that is purely intrinsic.
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The amount of transverse OAM carried by STOVs is a subject of debate. Gaussian-type STOVs
considered theoretically have a transversal plane z where they present elliptical symmetry in the t′-x
plane [8]. Bessel-type STOVs are elliptical everywhere [12, 13]. We take advantage of the conservation
of transverse OAM (as verified later) to evaluate the transverse OAM at that plane.

With elliptical symmetry, STOVs are of the form

ψ = f(ρ)e−ilφ, (24)

where ρ =
√
τ2 + ξ2 and φ = tan−1(ξ/τ), with τ = t′/t0, ξ = x/x0, are polar coordinates in the

spatiotemporal plane t′/t0-x/x0, and the parameters t0 and x0 determine the ellipticity γ = ct0/x0.

The function f(ρ) may be complex and behaves as ρ|l| close to ρ = 0. Observing that t′ = t− z/c, e−ilφ

with positive l corresponds to a vortex in which the phase increases counterclockwise as viewed in the
z-x plane, as for a spatial vortex in the x-y plane with positive topological charge. Also, the STOV ψ
should be accompanied by an arbitrary complex amplitude profile Y (y) along the y direction, but this
factor is omitted in ψ since it only yields |Y (y)|2 factors in all the densities, and factorized integrals of
|Y (y)|2 on y in the transverse OAM and energy that cancel when evaluating the transverse OAM per
unit energy.

Using that A = |f(ρ)|, Φ = arg[f(ρ)] − lφ and tm = 0, and changing to polar coordinates in the
integrals in (21), (22), (23), and (16) (without the integrals in y), it is a straightforward calculation to
arrive at

Jy = 0, (25)

J (i)
y = l

ε0ct
2
0

2k0
π

∫ ∞

0
|f(ρ)|2 ρdρ, (26)

J (e)
y = −l ε0ct

2
0

2k0
π

∫ ∞

0
|f(ρ)|2 ρdρ, (27)

and

W = ε0cx0t0π

∫ ∞

0
|f(ρ)|2ρdρ . (28)

Thus, STOVs carry opposite intrinsic [with respect to the moving (x = 0, z − ct) axis] and extrinsic
[with respect to the (x, z) = 0 axis] transverse OAMs, and null total OAM [with respect (x, z) = 0 axis].
The last two values are of relative importance as they depend on the choice of the fixed transversal axis.
The total intrinsic and extrinsic transverse OAM per unit energy are obtained to be

Jy
W

= 0,
J
(i)
y

W
=
l

2

γ

ω0
,

J
(e)
y

W
= − l

2

γ

ω0
. (29)

Of course the first and last relations only hold for a fixed transversal axis passing through the STOV
center, but the expression for the intrinsic OAM is independent of the choice of the axis, as demonstrated
above. The second equation coincides with the intrinsic transverse OAM in [8] for Gaussian-type STOVs
in vacuum, and apply also here to Bessel-type STOVs.

When the STOV is round (γ = 1), the intrinsic transverse OAM per unit energy is l/2ω0, half of
the longitudinal OAM of spatial vortices. The formula with γ + 1/γ in [12–14] yields l/ω0 for round
STOVs, which looks more appealing since it coincides with the longitudinal OAM. However, in addition
to be supported by classical electromagnetic theory, the fact that circular STOVs carry half of the
longitudinal OAM is even intuitively understandable from Fig. 1. In these symmetric STOVs, the z
component of the momentum flux density ⟨Tzz⟩ = c⟨pz⟩ does not contribute to the transverse OAM,
and the same happens for spatial vortices. Fig. 1 depicts only the components that contribute in each
case. In standard vortices there are two linear momentum fluxes, ⟨Txz⟩ = c⟨px⟩ and ⟨Tyz⟩ = c⟨py⟩,
contributing equally to the longitudinal OAM, as in (a), while in STOVs only ⟨Txz⟩ = c⟨px⟩ contributes
to the transverse OAM, as in (b), making understandable the factor 1/2. Similar arguments were
presented in [8] to support the factor 1/2.

The sketch in Fig. 2 is aimed at visualizing more intuitively the above results on the transverse
OAM. The arrows symbolize the positive and negative linear momenta along x transported by the
STOV in its leading and rear parts when the STOV is positively charged, as in Fig. 1(b). By the same
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(a) (b)

Figure 1. Schematic drawing of the cycle-averaged components of the momentum density, ⟨px⟩ and
⟨py⟩, for (a) a spatial vortex and (b) a STOV, both with topological charge l = 3. The horizontal axis
is −ct to visualize the rotation in z-x space.

Figure 2. Understanding the total, intrinsic and extrinsic transverse OAM of STOVs.

symmetry reasons as above the linear momentum along z does not contribute to the transverse OAM.
The STOV is shown at the instant of time t −∆t at which the positive momentum Px flows through
the plane z, and at the instant of time t+∆t at which the negative momentum −Px flows. The y axis
(x, z) = 0 and the moving y axis (z − ct, x) = 0 are indicated by small circles. At t −∆t the leading
part contributes with a positive transverse OAM zPx, and at t+∆t the rear part contributes with the
opposite transverse OAM −zPx, by which the STOV does not carry transverse OAM with respect to
the y axis (x, z) = 0. In contrast, at t−∆t the transverse OAM contribution with respect to the STOV
center is c∆tPx, and the transverse OAM contribution at t + ∆t is again c∆tPx, making 2c∆tPx in
total. The extrinsic transverse OAM refers to the transverse OAM of the STOV center with respect to
the y axis (x, z) = 0. At t −∆t this center is at c(t −∆t), so that the contribution to the transverse
OAM is c(t −∆t)Px. At t + ∆t, the center is at c(t + ∆t), yielding a transverse OAM −c(t + ∆t)Px.
The sum of these two is −2c∆tPx, just the opposite of the intrinsic transverse OAM.

Elliptical STOVs experience drastic changes on propagation in a non-dispersive medium, including
the loss of elliptical symmetry and even the disappearance of the vortices. Even if the total transverse
OAM is zero and conserved, one may suspect that the intrinsic transverse OAM may change on
propagation, along with the opposite change in the extrinsic transverse OAM. Also, the total and the



102 Porras

intrinsic OAMs are different, and therefore the conservation of the latter cannot be taken for granted.
However, the separation of intrinsic and extrinsic transverse OAM in paraxial and quasimonochromatic
wave packets propagating according to the Schrödinger equation is robust: Starting with dJy/dz

(by way of verification) and dJ
(i)
y /dz, with Jy and J

(i)
y given by (21) and (22) for general ψ, using

A2∂xΦ = Im{ψ⋆∂xψ}, and A2 = ψψ⋆ for convenience, introducing the derivative with respect to z
into the integrals, using Schrödinger equation to evaluate ∂ψ/∂z, and performing several integrations

by parts, all integrals are found to vanish, and hence dJy/dz = 0 and dJ
(i)
y /dz = 0. The intrinsic

transverse OAM is then also conserved on propagation.

6. EXAMPLES AND DISCUSSION

The above results would seem to indicate that the intrinsic transverse OAM is directly connected to

the topological charge of the STOV, but the relation J
(i)
y /W = lγ/2ω0 holds only at the plane (or

planes) where the STOV is elliptic. Indeed, the spatiotemporal singularity of the phase is a dark region
that itself does not transport energy, momentum or angular momentum. It is only the momentum flux
density about the STOV center that determines the intrinsic transverse OAM. Propagation of STOVs
may maintain the sign of the topological charge, eliminate the vortices, or reverse their sign, while the
intrinsic transverse OAM is conserved. Reversal of the sign has been previously described in STOVs
in normally dispersive media [8], in STOVs in free space [11], and is a phenomenon common to spatial
vortices, e.g., in nonlinear media [24], and observed in free space as earlier as in [25].

For example, the elliptic STOV ψ = [(t′/t0) − i(x/x0)]
|l|e−(x/x0)2−(t/t0)2 of positive charge l and

transverse OAM J
(i)
y /W = lγ/2ω0 at z = 0 continues to have a total positive charge l in l split vortices

of unity charge on propagation [11]. However, an elliptic STOV of positive charge l converging from
z = −∞ to a focus transforms at z = +∞ into a elliptic STOV of negative charge −l [11]. The intrinsic
transverse OAM of this STOV is zero [11]; indeed J

(i)
y /W = lγ/2ω0 = 0 at z = ±∞ since γ = ct0/x0 = 0

given the constant value of t0 and indefinitely increasing value of x0 as z → ±∞. It is then clear that
spatiotemporal phase singularities in STOVs may not be associated with any transverse OAM.

In passing, we note that the expression J
(i)
y /W = l(γ + 1/γ)/2ω0 in [12–14], and more recently

Figure 3. Propagation in vacuum of the focused STOV ψ = [(t′/t0) −
i(x/x0)]

|l|e−(x/x0)2−(t/t0)2e−ik0x2/2f , of positive topological charge l = 3, with x0 = 0.2mm, t0 = 100 fs,
f = 50mm, of carrier frequency ω0 = 2.5 rad/fs (λ0 = 754 nm), evaluated by solving numerically
Schrödinger equation. First row: Cycle-averaged intensity ⟨Sz⟩ (contour plot) and momentum density
⟨px⟩ (arrows) in the plane t′-x at the indicated propagation distances. Second row: the same for the
phase arg{ψ}. The intensity is normalized to its peak value at each distance. The momentum is
relative to its maximum value. a.l.: after the lens, b.l.: before the lens. The order of time is reversed
to visualize rotations in z-x space.
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in [26] for the intrinsic transverse OAM would yield, in the above example, J
(i)
y /W = +∞ for the elliptic

converging STOV from z = −∞ and J
(i)
y /W = −∞ for the diverging elliptic STOV to z = +∞, which

is not conserved and hard to justify.
Yet, it could still be argued that flipping of topological charge is allowed because the

transverse OAM is zero. In the example of Fig. 3 the STOV carries positive intrinsic transverse
OAM, but still the positive topological charges turn negative. The expression ψ = [(t′/t0) −
i(x/x0)]

|l|e−(x/x0)2−(t/t0)2e−ik0x2/2f , f > 0, represents a elliptical STOV with a converging spherical

wavefront. According to (22), the positive transverse OAM J
(i)
y /W = lγ/2ω0 is not altered by the

introduction of the converging wave front, but only changes the wave front and momentum density
distribution (first and second columns in Fig. 3). It is clear from the second row that the l-charged
vortex splits in l unit-charged vortices (columns 1, 2 and 3), they disappear at the focus (column 4),
and new l unit-charged vortices of opposite sign emerge after the focus (columns 5, 6, and 7). We note
that an elliptical symmetric −l-charged STOV is not formed at any distance, including the far field
(last column). An elliptical STOV at the far field would imply, as in the previous example, that the

transverse OAM is zero, but it continues to be J
(i)
y /W = lγ/2ω0. This example also illustrates that

the intrinsic transverse OAM cannot be directly associated with the “rotation” of the intensity pattern.
Before the focus, this pattern appears to rotate clockwise, but after the focus it does counterclockwise.
An intuition of the sign of the intrinsic transverse OAM can only be gained by visualizing ⟨px⟩ (blue
arrows in the first row).

7. CONCLUSION

In short, STOVs in non-dispersive media carry an intrinsic transverse OAM per unit energy given by
lγ/2ω0, which is in agreement with [8]. For circular STOVs this is half the intrinsic longitudinal OAM
carried by circular spatial vortices. When the STOV is circular or elliptic, the intrinsic OAM and the
topological charge of the spatiotemporal phase singularity have the same sign and are proportional.
When the STOV loses the symmetry the intrinsic OAM is preserved but the STOV may indistinctly
feature spatiotemporal phase singularities with topological charge of equal or opposite signs, or none.

Probably the discrepancies with other authors and among themselves have to do with subtle
differences in the respective formalisms. Here we have considered a STOV as a classical wave subject to
the laws of classical electromagnetism. Treating angular momentum as a quantum mechanical operator
that acts on the wave field [8], or invoking the concept of “photon wave function” [27] may be problematic
in very special situations. In this regard we have not used the expression “OAM per photon” but “OAM
per unit energy,” regardless of whether it is true at the quantum level or not.

We have limited our analysis to STOVs in non-dispersive media, as air with the long durations
of these STOVs, to focus on addressing the controversy, because STOVs are mostly generated and
propagate in this medium, and because the present results can impact the results and interpretation
of experiments where STOVs interact with matter. Our analysis do not apply to STOVs in dispersive
media, but can be understood as a confirmation of, and used to reinterpret, the results of the analysis of
the OAM content in non-dispersive and dispersive media in [8]. We mention that STOVs were conceived
theoretically in nonlinear media as early as in [28], and that the present analysis may also shed light on
the OAM content of those nonlinear STOVs.
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