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Uncertainty Assessment of Stochastic EM Problems via an Adaptive
Anisotropic Polynomial-Chaos Technique

Christos I. Salis1, Nikolaos V. Kantartzis2, and Theodoros T. Zygiridis1, *

Abstract—A novel polynomial-chaos (PC) technique is implemented based on anisotropic index sets.
The proposed scheme takes advantage of the effect of each random variable on the output parameter of
interest and adaptively constructs the PC expansion. Particularly, the algorithm starts by generating
bases via low and high reliability heuristics and builds a PC representation, until an error criterion
is satisfied or until the maximum desired polynomial order is reached. Our method is tested on a
variety of uncertainty problems, where the statistical moments of the outputs of interest are estimated.
Numerical results prove the efficiency of the proposed approach, since accurate outcomes are obtained
in lower computational times than other techniques.

1. INTRODUCTION

The inherent uncertainties present in the fabrication process of an electromagnetic (EM) component,
e.g., geometrical or electrical variations, may have a significant impact on the operation of the
constructed device. For example, various manufacturing tolerances induce randomness, which eventually
lead to uncertainty in the output response of the assembled component [1]. In such cases, an uncertainty
assessment is of vital importance since the extracted simulated outcomes may differ significantly from
the measured ones. Unfortunately, deterministic schemes are unable to perform a reliable analysis in
stochastic problems; therefore, various methods have been developed, which are suitable for uncertainty
quantification.

Monte Carlo (MC) techniques [2] are the standard approaches for dealing with stochastic cases, due
to their accuracy and simple implementation. Specifically, those algorithms perform a high number of
realizations, solving a given problem repeatedly using samples of random inputs. Then, the statistical
moments of the outputs of interest are extracted based on the obtained data. However, the MC
technique converges very slowly, and thus, a large number of simulations is required to produce reliable
outcomes. As a result, this approach introduces elongated computational times for complex problems
and eventually becomes impractical for those scenarios.

An alternative scheme utilizes Polynomial Chaos (PC) expansions [3]. This surrogate manages
to extract reliable outcomes in problems with low or moderate numbers of random variables. The
PC expansion has been applied in various EM cases, where uncertainty exists in the material [4–6] or
the geometric characteristics [1, 7, 8] of a given dielectric. However, the computational cost of the PC
scheme increases exponentially with the dimensionality of the examined problem, making it in some
cases less efficient than the MC technique. For this reason, various suggestions exist in the literature,
which propose improvements of the PC technique.

The proposed methodology is based on the works in [9] and [10]. Particularly, the novelty of this
paper compared to [10] is the introduction of two heuristics: a highly reliable and a lowly reliable one.
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Next, the work in [9] is extended by adding a leave-one-out (LOO) error for the adaptive construction
of a PC expansion from those heuristics, thus managing to extract accurate outcomes in a small
computational cost. As a result, this algorithm estimates the statistical moments of the output of
interest by taking into account the influence of each random input. It should also be noted that a
proper order of the PC expansion is automatically determined via the LOO error, without requiring
any excess computations. Additionally, the adaptive algorithm in [10] utilizes two extra parameters
(which are not present in our technique), i.e., ϵ1 and ϵ2, which aim at retaining or discarding certain
bases. However, the quantities of ϵ1 and ϵ2 must be known beforehand, and thus, their exact values
that produce the best outcomes are unknown. Our scheme is firstly tested on the Ishigami function, by
assessing its statistical characteristics. Furthermore, this technique is also applied to a 1D transmission-
line problem and to two microwave structure cases. Comparisons between the proposed approach and
other methods prove that valid outcomes can be extracted in a more efficient manner.

2. RELATED WORK

Many popular approaches utilize sparse grids, based on the Smolyak algorithm [11]. Those schemes can
significantly reduce the number of required simulations for the extraction of reliable results. However,
Smolyak grids still suffer from the “curse of dimensionality” for problems with a high number of random
variables. In [12], a weighted ℓ1-minimization technique is presented which is able to construct sparse
PC expansions. The proposed algorithm penalizes coefficients with small values, thus, increasing the
overall efficiency. The work in [13] combines the Method of Moments (MoM) with the PC scheme. By
considering the influence of each stochastic input on the output of interest, this technique can increase
the efficiency and accuracy of both the PC approach and the MoM. In [14], an adaptive algorithm is
presented that is based on non-isotropic Gauss-Paterson formulas. The proposed method utilizes nested
sparse grids and takes into account the global sensitivity of the output of interest with respect to the
stochastic inputs. Furthermore, the authors in [15] introduce a method that simultaneously performs
basis adaptivity and sequential sampling. As a result, the presented numerical outcomes indicate that
their PC algorithm can generate valid outcomes in a small computational burden. Moreover, a practical
problem that remains unanswered is how to locate the best regression nodes that yield the most accurate
results. This is partially tackled in [16], where a sparse linear regression technique is introduced, aiming
to locate design of experiments that satisfy the D-optimality criterion. Particularly, the D-optimality
criterion requires that the chosen nodes maximize the determinant of the information matrix in the
least-squares problem. In [17], the authors present an adaptive algorithm, as well as similar heuristics
to ours; however, their adaptive algorithm is not based on a LOO error. Additionally, the paper [18]
presents an adaptive multi-fidelity PC scheme for solving Bayesian inverse problems. By combining
low and high fidelity PC models, the authors prove that their approach can efficiently extract reliable
outcomes. The work in [19] introduces a dimension-adaptive PC algorithm which is able to construct a
nonuniform quadrature grid based on the significance of each random input. Also, this method is able
to determine a proper order of the PC expansion, thus avoiding any overfitting or underfitting issues.
The technique in [19] features several advantages compared to other schemes when a low number of
influential stochastic variables exists. In [20], the authors propose an adaptive PC technique that enrich
an existing basis set, of higher order bases, in chunks. An adaptive A-optimality design is utilized for
the enrichment of the design of experiments. The paper [21] introduces an intrusive variant of the
stochastic collocation technique. According to this work, the suggested algorithm utilizes fewer nodes
than known stochastic collocation methods.

3. METHODOLOGY

According to [3], the PC expansion posits that a second-order random function y, which depends on the
inputs ξ = [ξ1, ξ2, . . . , ξN ], can be represented via a series of orthogonal polynomials. Mathematically,
this is expressed as:

y (ξ) =
∞∑
r=0

crΨr (ξ) (1)
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where constants cr denotes the PC coefficients, and Ψr are proper orthogonal basis functions. The
approximation of (1) can be performed by truncating the summation into P+1 terms. In the traditional
PC scheme, the number of terms is equal to P + 1 = (N + k)!/(N !k!), where k is the order of
the expansion. For the multivariate case, the polynomial bases are constructed from the product of
univariate ones. Additionally, the choice of those orthogonal polynomials depends on the distribution
of each stochastic input. For example, Legendre functions are suitable for uniform distributions, and
Hermite bases are proper for normal random variables. After the computation of the PC coefficients,
the mean value and variance of y can be approximated as:

M {y} ≈ c0 (2)

σ2 {y} ≈
P∑

r=1

c2r ∥Ψr∥2 (3)

where

∥Ψi∥2 =
∫
ΩN

Ψ2
i (ξ) pdf (ξ) dξ (4)

ΩN is the N -dimensional random space, and pdf(ξ) denotes the joint probability-density function. In
order to estimate the expansion coefficients, two types of methods can be applied: intrusive and non-
intrusive ones. The first approaches compute the PC expansion terms by modifying the deterministic
solver accordingly. On the other hand, non-intrusive schemes perform a number of deterministic
simulations in the random domain, without requiring any changes to the existing solver. Then, the
expansion coefficients can be estimated via linear regression methods. After performing a number of
realizations at F collocation points in the random domain, the following overdetermined system of
equations is constructed: 

Ψ0 (ξ1) Ψ1 (ξ1) . . . ΨP (ξ1)
Ψ0 (ξ2) Ψ1 (ξ2) . . . ΨP (ξ2)

...
...

. . .
...

Ψ0 (ξF ) Ψ1 (ξF ) . . . ΨP (ξF )


︸ ︷︷ ︸

A


c0
c1
...
cP


︸ ︷︷ ︸

C

=


y0
y1
...
yF


︸ ︷︷ ︸

Y

(5)

where A is an F ×(P +1) matrix, which stores the PC bases evaluated at each point. Also, the vector C
contains the unknown coefficients, and Y consists of the deterministic outputs of y. According to [16],
accurate results can be extracted with a number of simulations equal to 2× (P + 1).

In this paper, the efficiency of the PC approach is enhanced by utilizing anisotropic index sets.
These indices can be generated as follows [10]:

SN,k
w,q :=

{
d ∈ NN : ∥d∥w,q ≤ k

}
(6)

where d = (d1, d2, . . . , dN ) is a vector corresponding to the index of a given basis and

∥d∥w,q =

(
N∑
i=1

|widi|q
) 1

q

. (7)

Note that 0 ≤ di ≤ k and 0 < q ≤ 1. Furthermore, w is a vector consisting of N elements and is
calculated as [10]:

wi = 1 +K
Smax − Si

N∑
k=1

Si

(8)

where Si is the total Sobol index of the i-th input variable, Smax = max{Si}, and K is a non-negative
constant. The total Sobol index Si is defined as:

Si =

∑
a∈#i

Va

σ2 {y}
(9)
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where #i is the set which contains all the subsets of [1, . . . , N ] that include the index i, and Va is the
variance contribution of the inputs with corresponding indices in a. The higher the weight wi is, the
less influential the i-th variable is. It should be noted that the dissertation in [10] sets K equal to
1 and does not provide any further investigation for its value. In this work, this issue is tackled by
employing two heuristics: a highly and a lowly reliable one, which will be presented in this section. The
variance contribution of each input alone (Vi) [22] is utilized, instead of the total Sobol indices, since
the extraction of the later ones requires the knowledge of the variance of the output of interest, which
in our case is not known beforehand. In order to estimate Vi, the conditional variance that corresponds
only to the variable ξi is computed as:

Vi =
∑
d∈Di

c2d ∥Ψd∥2 (10)

where Di = {d ∈ NN : di ̸= 0, di̸=j = 0}. Additionally, Ψd ≡ Ψr : Ψr(ξ) =
∏N

i Pai(ξi), where Pdi
denotes the di-th univariate polynomial. The representation in (10) contains a small number of bases
with a cardinality of k ×N + 1. However, the values of Vi change at every point in the computational
domain (for example, distance points or frequencies); therefore, the averaged variance contribution at
those points is utilized. Now, the constant K is replaced by the parameter ki, which is the element of a
new vector K. The extraction of this vector will be done as follows. For every pair of stochastic inputs
ξj1 and ξj2 , a matrix, called “significance matrix”, with dimensions N×N is constructed with elements:

Sj1,j2 =
M {Vj2}
M {Vj1}

. (11)

M{Vj1} and M{Vj2} denote the averaged variance contribution of ξj1 and ξj2 , respectively. Then, K
is obtained by computing the mean value in each row of sigj1,j2 , excluding the elements in the main
diagonal. Furthermore, as the quantity of ki increases, lower orders of the polynomials corresponding
to the input ξi are preserved. In some cases, e.g., where the random parameters have a highly nonlinear
effect on the outputs of interest, this truncation may lead to inaccurate outcomes compared to the MC
or the traditional PC methods, and thus, additional bases must be included. However, as the number
of bases increases, the efficiency of the PC approach is significantly reduced. Consequently, the above
issues are tackled by employing two heuristics: a lowly and a highly reliable one. The lowly reliable
heuristic is described as follows:

• We initially set Kl = K. Then, we select the elements of Kl, with values greater than 1. Generally,
an element of K with a value greater than 1 means that the corresponding random input may
have less variance contribution than most of the other parameters and in this case is considered
non-significant. Additionally, this could also mean that some random variables in the examined
problem are much more influential than the remaining ones.

• We increase the selected quantities of Kl by adding to them the mean value of the elements which
are greater than 1.

For the case of the highly reliable heuristic, the next steps are employed:

• We initially set Kh = K.

• We decrease the quantities of Kh which are greater than 1 by subtracting their mean value from
them.

The less reliable bases Sl are generated by firstly replacing K with kli , where kli is the i-th element
of Kl, then applying the extracted weights to (6). The highly reliable ones, stored in Sh, are computed
in a similar way. It should also be pointed out that Sl is a subset of Sh, with Sh containing higher
order base indices. Initially, the PC representation contains only the polynomials of Sl with k = 1, and
the corresponding bases are initially stored in Sfinal, e.g., Sfinal = Sl. Next, the LOO error is computed
as [23]:

ELOO =
1

F

F∑
i=1

(
y (ξi)− ŷ (ξi)

hi

)2

(12)
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Algorithm 1: The pseudocode of the a-K-PC approach

Input: Mean variance contributions M {V}, Dmax, q,

t, G

Output: PC coefficients cf, S

S ;

A ;

Initialize the vector ycol ;

for d 1 to Dmax do
Compute the significance matrix from (11) for

k = d;

Calculate K l and K h ;

if d = 1 then
Extract the sets S l and S h from (6);

else
Extract S l and S h from (6) without including

the bases from the d 1 step;

end

S r S h \ S l ;

Initialize the collocation point matrix  ξ with

2 card {S l} rows via a Latin hypercube grid.;

LOO 1;

0;

Add to S the bases of S l ;

while true do

if LO O = 1 then
Compute y for each row of  ξ and add the

extracted values to ycol;

else
Generate a set of G collocation points via a

Latin hypercube grid;

Find the two points ξd1
and xi d2

of this set,

which maximize the determinant A T A ;

Compute y for the values of ξd1
and ξd2

;

Store the values of y computed in the

previous step to ycol;

Update matrix A with the basis of Smin and

the points ξd1
and ξd2

;

end

Extract c f by solving the system in (5);

Compute LOO from (13);

if LOO <= t then

1;

break;

end

if S r = then

break;

end

Find the basis Smin of S r with the minimum

weighted q-norm and add it to S l ;

Add Smin to S

end

if flag = 1 then

break;

end

end

final

final φ
φ

φ

−

×

flag

final

flag

φ

final
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where y(ξi) is the value of y at ξi point, ŷ the metamodel built from Sfinal, and hi the i-th diagonal
term of the matrix A(ATA)−1AT . The relative LOO can then be calculated as follows:

ϵLOO =
ELOO

σ2 {ycol}
(13)

where ycol denotes the values of y at collocation points constructed via a Latin hypercube grid. Next, if
ϵLOO is less than a target error ϵt, the algorithm stops. Otherwise, the basis of Sh\Sl with the minimum
weighted q-norm is added in the PC expansion and therefore in Sfinal. In case of the latter one, this
means that the expansion requires higher order bases. As a result, every time a new base index is
inserted into Sfinal, the number of collocation points is increased by 2, and thus, the value of F is always
equal to 2 × card{Sfinal}. In order to satisfy the D-optimality criterion, those two points are selected
from a new Latin hypercube set of G cardinality, aiming to maximize the determinant |ATA|. Then,
the metamodel ŷ(ξ) is built again from the updated Sfinal set, and the quantity ϵLOO is also computed
from (13). The above steps are repeated until ϵLOO is less than ϵt, or if Sh \ Sl becomes empty. In
case of the latter, the expansion order is increased by 1, and the whole process restarts, excluding any
indices already contained in Sl and Sh. The algorithm terminates if ϵt is satisfied, or if a maximum
polynomial order Dmax is achieved. From now on the proposed method will be called adaptive-K PC
(a-K-PC) in the latter sections. In Algorithm 1, the pseudocode of the a-K-PC technique is presented.

4. NUMERICAL RESULTS

4.1. Ishigami Function

The a-K-PC scheme is firstly tested on the Ishigami function [24], which is a widely known benchmark
for uncertainty quantification. This function is defined as:

Y = sin (X1) + 7sin2 (X2) + 0.1X4
3 sin (X1) (14)

where X1, X2, and X3 are uniform random inputs distributed over [−π, π]. The proposed technique
extracts the mean and standard deviation (std.) of Y by setting q to be equal to 0.85, while G has a value
of 40. Fig. 1 presents the absolute LOO and std. errors as a function of the model evaluations (the mean
error is relatively small, and thus it is neglected), computed with the full PC expansion, the anisotropic
PC K = 1 (a-PC) along with the a-K-PC and the MC techniques. The depicted curves indicate that
the proposed scheme can extract quite accurate outcomes in a small number of computations, rendering
it more efficient than the other techniques. It is also worth mentioning that the estimation of Vi is
performed with k = 7 and requires 44 (22 bases) computations. In Fig. 2, the probability density of the
Ishigami function is depicted. The a-K-PC method estimates this statistical characteristic with a PC
representation of only 68 bases, thus, a number of realizations equal to 2× 68 are performed. It should
also be noted that in this case q is equal to 0.85. Additionally, the algorithm terminates if the maximum
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Figure 1. Convergence rate of the LOO and the absolute std. error for the Ishigami function problem.
(a) Absolute LOO error of the Ishigami function. (b) Absolute error of the std. of the Ishigami function.
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Figure 2. Probability density of the Ishigami function computed with the MC and the PC approaches.

polynomial order Dmax becomes 12, or if ϵt ≤ 0.06. The full PC (k = 7) and the MC approaches need
240 (120 bases) and 106 model evaluations, respectively, making them less efficient than the a-K-PC
technique. The a-PC scheme constructs an expansion with 128 computations (64 bases); however, it
estimates the probability density function less accurately than the other algorithms.

4.2. 1D Transmission-Line

The second test case consists of the 1D transmission-line of Fig. 3 with length equal to 4.5m.
Particularly, the line comprises eight uniform random dielectrics, whose statistical properties are
depicted in Table 1. It should be noted that the magnetic permeability of all materials is considered
deterministic and has a value of µ0. Also, an incident Gaussian pulse, with a maximum frequency of
2GHz, is emitted at 0.015m for around 50 ns. The examined scenario is solved via the finite-difference
time-domain (FDTD) technique [25] in a computational space of 1200 cells. Moreover, the discretization
density is equal to 40 cells per wavelength in the vacuum at 2GHz, and the time-step size has a value
of 12.5 ps. Finally, the first-order Mur’s absorbing boundary condition [26] is applied at the two ends
of the domain, aiming to minimize unwanted reflections.

In Figs. 4 and 5, the mean and std. of the electric field intensity are displayed for this problem
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Table 1. Mean values and standard deviations of the dielectric materials for the transmission-line
problem.

Dielectric permittivities Mean Std.

ϵ1 8ϵ0 0.23ϵ0
ϵ2 2.4ϵ0 0.07ϵ0
ϵ3 5.6ϵ0 0.16ϵ0
ϵ4 4.2ϵ0 0.12ϵ0
ϵ5 6ϵ0 0.17ϵ0
ϵ6 7.2ϵ0 0.2ϵ0
ϵ7 9.4ϵ0 0.27ϵ0
ϵ8 8.7ϵ0 0.25ϵ0

ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8

First-order Mur' s 

absorbing boundary 

condition

First-order Mur's

absorbing boundary 

condition

Source at x = 0.015 m

Distance (m)

0 1.12 1.5 1.87 2.25 2.62 3 3.37 3.75 4.12 4.5

x

Figure 3. The schematic of the transmission-line problem.
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Figure 4. Mean values of the electric field intensity for the transmission-line problem.

at 50 ns. The examined output is of particular interest, since the uncertainty inside the dielectric
permittivities has a significant impact on the field components, thus in the reflection or the transmission
coefficients. Also, Fig. 6 depicts the absolute error of those moments between each PC approach and the
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MC algorithm. The a-K-PC technique is compared with 1000 MC realizations and also with the a-PC
and full PC approaches. Parameter q has a value of 0.85, for both the a-K-PC and a-PC schemes, while
the quantity G is equal to 10. Additionally, the proposed method terminates if ϵt = 0.2, and the order
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Figure 5. Std. of the electric field intensity for the transmission-line problem.
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Figure 6. Absolute error of the mean and the std. of the electric field intensity for the transmission-line
problem. (a) Absolute error of the mean electric field intensity. (b) Absolute error of the std. of the
electric field intensity.
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of all PC expansions is k = 3. The numerical results obtained via the PC techniques present a good
agreement compared to the ones of the MC algorithm. The approximation of Vi is performed with k = 4
and takes about 5.56 sec (66 simulations). The a-PC and full PC approaches require around 56 sec (320
simulations) and 57 sec (330 simulations), respectively. It should be noted that the duration of those
simulations includes the time needed for the construction of matrix A. Furthermore, the MC scheme
takes about 75 sec for the simulations to be completed. However, the suggested technique manages to
extract the simulated outcomes in 30 sec (170 simulations), thus rendering it more efficient than the
aforementioned methods.

The transmission-line problem is reexamined with k = 3, q = 0.15, and ϵt = 0.75, while all the other
parameters remain the same. In Fig. 7, the std. of the electric field intensity is displayed, and Fig. 8
illustrates the absolute error of the same quantity between each PC technique and the MC algorithm.
The results obtained with the a-PC method are less accurate than the ones in the a-K-PC and full
PC approaches. Concerning the simulations times, the a-PC scheme (50 simulations) and proposed
algorithm (46 simulations) both require around 4 sec. However, the a-K-PC approach can extract more
accurate outcomes than the a-PC scheme with around the same number of realizations. Finally, the full
PC technique takes about 7.2 sec (90 simulations) for the simulations to be completed.
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Figure 7. Std. of the electric field intensity for the transmission-line problem with q = 0.15 and k = 3.
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with q = 0.15 and k = 3.
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4.3. Dual-Band 5G Antenna

The third scenario comprises the patch 5G antenna [27] of Fig. 9, which resonates in the bands of 27GHz
and 37GHz. In this example, the effects of various random design parameters on the reflection coefficient
are examined. Particularly, those stochastic variables present a uniform distribution with their statistical
properties depicted in Table 2. The dual-band 5G antenna problem has been designed and solved in
the CST Microwave Studio 2019 [28] in a computational lattice of 58× 59× 24 cells. Furthermore, the
order of all PC schemes is equal to 3, while the parameter q in the anisotropic techniques has a value
of 0.85. It is also worth mentioning that the a-K-PC method estimates the statistical moments of the
reflection coefficient by setting G = 40, in order to further maximize the determinant of the matrix
ATA. Lastly, the boundaries are terminated via a 4-cell Perfectly-Matched Layer (PML) [29]. Fig. 10
displays the mean of the absolute value of the reflection coefficient, and Fig. 11 illustrates the std. of
the same quantity. In Fig. 12, the absolute error of those statistical moments is presented. Fig. 13

Table 2. Mean values and standard deviations of the design parameters for the 5G antenna problem.

Design parameters Mean Std.

Df 0.9mm 0.02mm

L1 3.1mm 0.09mm

L2 2.5mm 0.07mm

Wf 0.2mm 0.005mm

substrate dielectric constant 2.2ϵ0 0.06ϵ0
substrate thickness 0.254mm 0.007mm

t1 0.1mm 0.003mm

t2 0.7mm 0.02mm

t3 0.4mm 0.01mm

t4 0.4mm 0.01mm

L1

t1

t2

L2

t5

t4

Df

Wf

Lf

t3

Substrate thickness: 

0.254 mm

Relative substrate 

dielectric constant: 

2.2

Figure 9. The schematic for the dual-band 5G antenna problem.
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depicts the probability density function of the 6-dB roll-off frequency. The PC techniques generate
reliable outcomes compared to the ones in the MC scheme in this case too. Concerning the simulation
times of each method, the MC approach requires approximately 76.65 hours (5000 simulations), while
the full PC and e a-PC techniques need around 30.7 hours (2002 realizations) and 7.7 hours (502
realizations). Nonetheless, the a-K-PC algorithm takes about 2.2 hours (144 realizations), making it
again less computationally expensive than the other approaches. Additionally, the values of Vi are
estimated in 1.34 hours (82 realizations) with k = 4.
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Figure 10. Mean values of the reflection coefficient for the dual-band 5G antenna problem.
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Figure 11. Std. of the reflection coefficient for the dual-band 5G antenna problem.

20 25 30 35 40 45 50

Frequency (GHz)

0

0.005

0.01

0.015

a-K-PC

a-PC

full PC

(a)



Progress In Electromagnetics Research B, Vol. 97, 2022 67

20 25 30 35 40 45 50

Frequency (GHz)

0

0.01

0.02

0.03

0.04

0.05
a-K-PC

a-PC

full PC

(b)

Figure 12. Absolute error of the mean and the std. of the reflection coefficient for the dual-band 5G
antenna problem. (a) Absolute error of the mean reflection coefficient. (b) Absolute error of the std. of
the reflection coefficient.
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Figure 13. Probability density function of the 6 dB roll-off point for the dual-band 5G antenna problem.

4.4. Lowpass Filter

The proposed technique is applied again in the lowpass filter of Fig. 14. This problem incorporates
eight uniform random variables with statistical characteristics presented in Table 3. In particular, the

Table 3. Mean values and standard deviations of the design parameters for the lowpass filter problem.

Design parameters Mean Std.

d1 5.69mm 0.32mm

d2 5.69mm 0.32mm

d3 5.69mm 0.32mm

h 2.54mm 0.14mm

s1 2.43mm 0.14mm

s2 2.43mm 0.14mm

substrate thickness 0.79mm 0.04mm

substrate dielectric constant 2.12ϵ0 0.12ϵ0
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Figure 14. The schematic of the lowpass filter problem.

effects of those inputs to the variability of the transmission coefficient is examined. The CST Microwave
Studio 2019 has been utilized as a deterministic solver in this case too. Additionally, the computational
grid consists of 103× 71× 22 cells, and also, the boundaries are terminated via a 10-cell PML. In this
test case, the polynomial order of both the a-PC and full PC techniques is equal to k = 4, and q has a
value of 0.9. The a-K-PC algorithm terminates with the criterion ϵt = 0.15, resulting in a PC expansion
of k = 3.

Figures 15 and 16 depict the mean and the std. of the absolute value of the transmission coefficient,
respectively. In Fig. 17, the absolute error between each PC technique and the MC method is illustrated
for the aforementioned quantities. Furthermore, Fig. 18 displays the probability density function of the
6 dB roll-off point. The PC approaches present a satisfying accuracy compared to the MC method in
this case too. The MC scheme takes about 86.1 hours (5000 simulations), while the a-PC and full PC
approaches require approximately 7.3 hours (424 simulations) and 17.05 hours (990 simulations). The
simulations in the a-K-PC technique last for about 1.61 hours (94 simulations), rendering it again more
efficient than the other PC schemes. It should be noted that the number of realizations in the a-PC
and full PC algorithms for k = 3 is equal to 122 and 330, respectively. As a result, those two methods
are still more computationally expensive than the proposed technique. Finally, Vi are approximated in
1.13 hours (66 simulations) with k = 4.
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Figure 15. Mean values of the transmission coefficient for the lowpass filter problem.
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Figure 16. Std. values of the transmission coefficient for the lowpass filter problem.
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Figure 17. Absolute error of the mean and the std. of the transmission coefficient for the lowpass
filter problem. (a) Absolute error of the mean transmission coefficient. (b) Absolute error of the std.
of the transmission coefficient.
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Figure 18. Probability density function of the 6 dB roll-off point for the lowpass filter problem.

5. CONCLUSION

A novel anisotropic PC approach has been implemented that manages to estimate the PC coefficients
in small computational times. Specifically, the presented scheme utilizes low and high fidelity heuristics
for constructing a PC expansion. Numerical outcomes and comparisons with other techniques prove the
validity and efficiency of this technique. In future works, different sampling algorithms besides the Latin
hypercube grid will be examined, in order to further improve the accuracy of the proposed method.
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11. Smolyak, S., “Quadrature and interpolation formulas for tensor products of certain classes of
functions,” Dokl. Akad. Nauk SSSR, Vol. 148, No. 5, 1042–1045, 1963.

12. Peng, J., J. Hampton, and A. Doostan, “A weighted ℓ1-minimization approach for sparse
polynomial chaos expansions,” J. Comput. Phys., Vol. 267, 92–111, 2014.

13. Salis, C. and T. Zygiridis, “Dimensionality reduction of the polynomial chaos technique based
on the method of moments,” IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 12, 2349–2353,
Dec. 2018.

14. Beddek, K., S. Clenet, O. Moreau, V. Costan, Y. Le Menach, and A. Benabou, “Adaptive method
for non-intrusive spectral projection — Application on a stochastic eddy current NDT problem,”
IEEE Trans. Magn., Vol. 48, No. 2, 759–762, 2012.

15. Thapa, M., S. B. Mulani, and R. W. Walters, “Adaptive weighted least-squares polynomial chaos
expansion with basis adaptivity and sequential adaptive sampling,” Comput. Methods Appl. Mech.
Eng., Vol. 360, 112759, 2020.

16. Ahadi, M. and S. Roy, “Sparse linear regression (SPLINER) approach for efficient multidimensional
uncertainty quantification of high-speed circuits,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., Vol. 35, No. 10, 1640–1652, Oct. 2016.

17. Salis, C., N. Kantartzis, and T. Zygiridis, “An adaptive sparse polynomialchaos technique based
on anisotropic indices,” COMPEL, Vol. 39, No. 3, 691–707, May 2020.

18. Yan, L. and T. Zhou, “Adaptive multi-fidelity polynomial chaos approach to bayesian inference in
inverse problems,” J. Comput. Phys., Vol. 381, 110–128, 2019.

19. Yangtian, L., H. Li, and G. Wei, “Dimension-adaptive algorithm-based PCE for models with many
model parameters,” Eng. Comput., Vol. 37, No. 2, 522–545, 2019.

20. Thapa, M., S. B. Mulani, and R. W. Walters, “Adaptive weighted leastsquares polynomial chaos
expansion with basis adaptivity and sequential adaptive sampling,” Comput. Methods Appl. Mech.
Eng., Vol. 360, 112759, 2020.

21. Zhang, Z., T. A. El-Moselhy, I. M. Elfadel, and L. Daniel, “Stochastic testing method for transistor-
level uncertainty quantification based on generalized polynomial chaos,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., Vol. 32, No. 10, 1533–1545, 2013.

22. Zygiridis, T., A. Papadopoulos, N. Kantartzis, and E. Glytsis, “Sparse polynomial-chaos models
for stochastic problems with filtering structures,” AEM, Vol. 8, No. 5, 51–58, 2019.

23. Blatman, G. and B. Sudret, “Adaptive sparse polynomial chaos expansion based on least angle
regression,” J. Comput. Phys., Vol. 230, No. 6, 2345–2367, 2011.

24. Ishigami, T. and T. Homma, “An importance quantification technique in uncertainty analysis for
computer models,” Proceedings — First International Symposium on Uncertainty Modeling and
Analysis, 398–403, 1990.

25. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-
Domain Method, 3rd Edition, Artech House, Norwood, 2005.

26. Mur, G., “Absorbing boundary conditions for the finite-difference approximation of the time-
domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat., Vol. 23, No. 4, 377–
382, Nov. 1981.

27. Shorbagy, M. E., R. M. Shubair, M. I. AlHajri, and N. K. Mallat, “On the design of millimetre-wave
antennas for 5G,” 2016 16th Mediterranean Microwave Symposium (MMS), 1–4, Nov. 2016.

28. “3ds.com, 2020, Electromagnetic systems — Cst Studio Suite,” https://www.3ds.com/products-
services/simulia/products/cst-studiosuite/ electromagnetic-systems, accessed: 2020-03-10.

29. Berenger, J.-P., “A perfectly matched layer for the absorption of electromagnetic waves,” J.
Comput. Phys., Vol. 114, No. 2, 185–200, 1994.


