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A Six-Port Slot Antenna System with Wideband and High-Isolation
for 5G NR Bands

Weidong Mu1, Zhonggen Wang1, *, Ming Yang2, Wenyan Nie3, and Pan Wang1

Abstract—In this article, a slot-antenna array with wideband and high-isolation for multiple-input
multiple-output (MIMO) systems is presented that can be used in fifth-generation new radio (5G NR)
communication. The MIMO antenna system is realized by loading six identical antennas (Ant 1–Ant 6)
into an FR4 substrate to form a six-port array for a 6 × 6 MIMO system. Each antenna element is
a slot antenna type that is composed of a T-shaped open slot and an L-shaped 50Ω microstrip line.
Each T-shaped slot is formed by inserting an I-shaped open branch in the center of the ground plane’s
U-shaped slot. The L-shaped microstrip line is placed on the upper surface of FR4 to enable coupling
feeding in the 3.3 to 5.10GHz frequency range to cover the 5G NR bands N77/N78/N79. The isolation
is increased to more than 18.1 dB by etching the T-shaped slot between the radiation elements on the
metal plate. The proposed antenna system was fabricated and tested. The experimental results indicate
that the MIMO system can cover the frequency range of 3.20–5.15GHz with a return loss of 6 dB and
provides isolation greater than 16.2 dB. Additionally, a total efficiency greater than 50% and envelope
correlation coefficient of less than 0.02 are obtained. The performance under hand-on scenarios is also
good. Simulated and measured results indicate that the stated results are consistent. The test results
indicate that the antenna satisfies the 5G communication requirements.

1. INTRODUCTION

With faster data transmission and lower delay rates, fifth-generation communication (5G) increasingly
meets user requirements for mobile communications compared to fourth-generation communications
(4G). According to protocol specifications, 5G’s data transmission rate can reach 100 times that of
4G. MIMO technology is becoming the key technology increasingly for multi-antenna operation due
to its ability to provide massive data flow for the network and improve channel capacity effectively.
There are many 5G communication technologies available. Still, the fifth-generation new radio (5G
NR) communication system is introduced due to its channel capacity, transmission rate, and delay
rate advantages. According to the 3G partnership project’s technical specification 38.101, 5G NR is
divided into two frequency bands. One is used for frequencies below 6GHz, while the other is used for
millimeter-wave frequencies [1]. It is widely accepted that bands below 3GHz have been used in 3G/4G
systems for a long period of time. WLAN-5GHz operates at frequencies between 5 and 6GHz (5.15–
5.825GHz). The 5G NR bands operating at frequencies N77 (3.3–4.2GHz), N78 (3.3–3.8GHz), and
N79 (4.4–5GHz) are expected to be widely adopted in communication networks due to their benefits
for 5G networks.

In recent years, numerous studies have been conducted on MIMO antennas used in the 5G NR
operation band [2–20]. Amid these studies, various antenna design techniques, such as inverted-F,
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planar inverted-F antenna (PIFA), monopole, and loop, have been proposed. To the above-mentioned
structure, slot antennas have also been applied in 5G communication due to their simple structure, wide
operation band, and easy integration of active equipment [21–27]. However, when being used for 5G
NR band applications, these slot antennas still have significant margins for improvement in terms of
bandwidth utilization and other areas.

Besides, the coupling between antenna elements is a major issue affecting the performance of MIMO
systems. Various decoupling mechanisms have been presented in the literature to solve this issue,
such as orthogonal polarization [28], defected ground structures [29, 30], and neutralization lines [31].
Self-isolation techniques [32–34] have also been investigated to further enhance the isolation. These
decoupling techniques provide the foundation for improving the isolation of MIMO systems.

In this paper, we propose a six-port slot antenna for 5G NR with wide band and high isolation.
Here, the method of metal plate slotting is used. An open branch is added in the middle of the original
U-shaped slot to improve the impedance matching characteristics and create a T-shaped slot antenna.
A coupling feeding scheme is adopted as an L-shaped branch that covers the 5G NR bands. Meanwhile,
to improve element isolation, T-shaped slots are etched between successive antenna elements along an
FR4 substrate to block the current transmission between the ports on the metal plate effectively. The
optimized slot antenna has a bandwidth of 3.3GHz to 5.10GHz and an envelope correlation coefficient
(ECC) of less than 0.02.

This article is organized as follows. In Section 2, the design process and operating mechanism of
the MIMO system are discussed, including the designed structure, parameter analysis, and operating
principle. In Section 3, the antenna fabrication and simulated and measured performances of the
proposed MIMO system are presented. In Section 4, the performance under hand-held scenarios,
including the single handset mode (SHM) and double handset mode (DHM), is discussed. In Section 5,
a comparison chart is shown to highlight the advantages of the proposed design scheme. Finally, in
Section 6 the conclusion of this article is drawn.

2. PROPOSED MIMO ANTENNA SYSTEM

2.1. Antenna Geometry

The overall structure of the proposed six-port slot antenna system is illustrated in Fig. 1(a), and the
specific structure and size of the proposed antenna element are also shown in Fig. 1(b).

In Fig. 1(a), six antenna elements are placed along two sides of the FR4 substrate sprayed with tin
on both sides (εr = 4.4, tan δ = 0.02). The size of the dielectric substrate is 150mm× 75mm× 0.8mm,

(a) (b)

Figure 1. Geometry and dimensions of the proposed MIMO antenna system. (a) Perspective view.
(b) Detailed structure of the slot antenna element (Ant 1).
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making it suitable for 5.9-inch smartphones. Fig. 1(b) illustrates the antenna element’s detailed structure
(taking Ant 1 for example). Unlike traditional closed slot antennas, this one features an etched T-shaped
slot radiator with an open branch. The slots, in this case, are divided into three sections: vertical slot,
horizontal slot, and open branch slot. The length and width of the two vertical slots are 1mm and
0.5mm, respectively, while the length and width of the horizontal slot connected with the two vertical
slots are 6mm and 3.5mm, respectively. A combination of I-shaped open branch and horizontal slots is
etched on this basis. The size of the open branch is 4.4mm× 1mm. This extended open branch serves
to increase the slot antenna’s capacitance and introduce resonance points. At the feeding point, the
slot resonator is coupled and fed via an L-shaped microstrip. It has horizontal and vertical dimensions
of 4mm and 10.9mm, respectively, and a width of 2.5mm.

2.2. Design and Corresponding Analysis

A U-shaped slot is a common antenna structure. Unlike most other U-shaped slots, which are narrow
and long, the proposed U-shaped slot’s width accounts for approximately 75% of its length. An open-
branch is extended into it on this basis. To illustrate the open-branch’s effect on the antenna element’s
performance, in Fig. 2(a) the antenna element without an etched I-shaped open-branch is compared
to the proposed antenna element. Simultaneously, the element is used as a reference antenna element
without etching the I-shaped slot. However, when these two antenna elements are placed in the upper
left corner (the same location as Ant 1), the antenna element’s performance is significantly different. As
illustrated in Fig. 2(b), the reference antenna element’s impedance matching performance is extremely
poor. By contrast, the proposed antenna element generates 3.9GHz and 4.3GHz resonance modes by
incorporating an I-shaped open branch in the middle of the U-shaped slot, which exhibits superior
impedance matching characteristics.

(a) (b)

Figure 2. Evolution process of antenna element structure. (a) Reference and proposed. (b) Reflection
coefficient of reference and proposed.

The length L1 and width W1 of the open-branch are critical parameters for impedance matching.
Fig. 3 illustrates the simulated reflection coefficients for tuning L1 and W1. As illustrated in Fig. 3(a),
the reflection coefficients are extremely low when the open-branch is not connected to the U-shaped
slot (L1 < 4.4mm). It can exhibit exceptional impedance matching performance when being used in
conjunction with other components (4.4mm < L1 < 7.4mm). As illustrated in Fig. 3(b), the impedance
matching performance changes as W1 varies. While broadband coverage is possible with a W1 of 0.5mm,
the return loss is typically around 10 dB. When W1 = 1mm, the coverage of the N77/N78/N79 band
can be realized with better impedance matching performance than that when W1 = 1.5mm.

To facilitate the intuitive analysis of the proposed antenna element’s resonant mode and using
Ant 1 as an example, Fig. 4 shows the current distribution diagram of the slot antenna element at
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(a) (b)

Figure 3. Simulated reflection coefficients of tuning (a) L1, (b) W1.

Figure 4. Current distribution of ground plane
at resonant modes.

Figure 5. S12 parameters without and with T-
shaped isolation slot.

3.9GHz and 4.3GHz. The current distribution diagram demonstrates that when the slot antenna
operates at 3.9GHz, the strong current is distributed primarily along the upper half and both sides of
the T-shaped slot. The open-branch current is weak, and the current distribution does not have a zero
point. The electric length of the strong current is 18mm, which is approximately half the wavelength
of the corresponding 3.9GHz signal, indicating that the antenna operates in half-wavelength resonant
mode at that frequency. When the slot antenna operates at 4.3GHz, the strong current is concentrated
on the half side of the T-shaped slot, with a length of 8.5mm, which is roughly one-quarter of the
corresponding wavelength of 4.3GHz. This indicates that the antenna operates at 0.25λ resonant mode
at 4.3GHz (λ corresponding to 4.3GHz wavelength). However, the weak current is still distributed
around the T-shaped open-branch. The addition of I-shaped branches increases the capacitance of the
slot antenna and significantly improves the antenna element’s impedance matching characteristics.

T-shaped structures have been applied in different functions in electromagnetics, such as that
demonstrated in [35], and T-shaped metamaterial absorbers exhibit excellent absorption performance.
However, in this case, the T-shaped structure acts as an isolator. The coupling between the elements
is primarily due to the metal plate’s current transmission. To reduce the degree of coupling between
antenna elements, a T-shaped slot is etched into the surface of the printed metal plate, effectively
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(a) (b)

Figure 6. Current distribution of ground plane when Ant 1 is excited. (a) Without T-shaped slot. (b)
With T-shaped slot.

blocking the current transmission across the metal plate’s surface. Fig. 5 shows the transmission
coefficients of the MIMO system without and with the proposed T-slots (taking S12 for example).
As can be seen from Fig. 5, the isolation between the antenna ports has been greatly improved with
the addition of the T-slots and reaches 18.1 dB or more. To demonstrate the effect of a T-shaped slot
on coupling, Figs. 6(a) and (b) depict the current distribution of metal plates when Ant1 is excited
alone. As illustrated in the figure, due to the existence of the T-shaped isolators, when Ant 1 is excited
alone, less ground current diffuses to other ports, implying that a good isolation effect between ports is
achieved.

3. RESULTS AND DISCUSSION

The proposed antenna array was fabricated, and its front and back views are shown in Fig. 7. The
proposed six-port MIMO antenna system was simulated using ANSYS software, and its S-parameters

(a) (b)

Figure 7. Fabricated prototype. (a) Front view. (b) Back view.



110 Mu et al.

were determined using a Vector Network Analyzer. The far-field test was conducted in an anechoic
microwave chamber. The corresponding results are presented and discussed in the following sections.

3.1. S-Parameters

Due to the symmetrical distribution of slot antennas, the simulated and measured S-parameter values
are given here for only one side. As illustrated in Fig. 8(a), there were differences in the results of
the reflection coefficients between simulation and measurement. The measured resonant frequency
points deviate from the simulated values. The low-frequency resonance point, in particular, moved
to the left. Compared to the simulated results, the high-frequency resonance point moved to the
right, and the impedance matching performance improved. These differences may be the result of
the manufacturing process or measurement errors. However, as illustrated in Fig. 8(a), the measured
impedance bandwidth defined by the 6 dB return loss for Ant 1–3 was 3.20–5.15GHz, which is sufficient
to cover the desired band (3.3–5.1GHz). In terms of transmission coefficients, as illustrated in Figs. 8(b)
and (c), the differences between simulated and measured values were less noticeable and mainly related
to measurement accuracy. The measured results indicate that the isolation between adjacent ports
is greater than 16.2 dB, implying that the ports perform well with multiplexing and comply with the
MIMO antenna communication standard.

(a)

(b) (c)

Figure 8. S-parameters. (a) Simulated and measured reflection coefficients. (b) Simulated transmission
coefficients. (c) Measured transmission coefficients.
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Figure 9. Measured radiation patterns for (a) Ant 1, (b) Ant 2, (c) Ant 3 at 3.9GHz.
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Figure 10. Measured radiation patterns for (a) Ant 1, (b) Ant 2, (c) Ant 3 at 4.3GHz.

3.2. Radiation Performance

For mobile terminals, the radiation pattern around its direction should be good. Figs. 9 and 10 illustrate
the test patterns for the XOZ and Y OZ planes of Ant 1–3 in resonant modes. As can be seen, when the
XOZ plane is used as the radiation plane, Ant 1–3’s higher radiation gain directions are near 0◦, 180◦,
and 270◦. Ant 1–3, on the other hand, can produce omnidirectional radiation in the Y OZ radiation
plane effectively. Due to the mirror image distribution of the antenna elements, the antenna radiation
directions are complementary, resulting in excellent far field radiation characteristics.

To provide a physical insight of the far field radiation performance of the proposed antenna element,
Fig. 11 exhibits the simulated 3D radiation patterns. It is evident that the radiation pattern simulated
using various resonance modes is slightly different when the port is the same. As shown in Fig. 11, when
being fed through port 1 alone, the pattern has a radiation maximum along the −x and ±z axes and
a radiation minimum along approximately the −y axis. However, the radiation maximum of port 3 in
solo operation is around the +x and ±z axes, and the radiation minimum is opposite to that of port 1
(along the +y axis). From Figs. 11(c) and (d), it is evident that when being fed through port 2 alone,
the pattern is different from those of port 1 or port 3. The pattern has a radiation maximum along the
−x axis and a radiation minimum along the y axis. Thus, good radiation pattern diversity is achieved
at 3.9GHz and 4.3GHz, contributing to a high isolation response. The maximum gain in each mode
can reach around 5 dB, fulfilling the requirement of high radiation gain.

Figure 12 illustrates the simulated and measured total efficiencies. Clearly, the measured total
efficiencies are between 50% and 63% in the operation bandwidth, which was approximately 13% lower
than the simulated values. Nevertheless, all measured total efficiencies were greater than 50%, indicating
that high antenna efficiency was achieved.
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Simulated 3D radiation pattern. (a) Port 1 excited at 3.9GHz. (b) Port 1 excited at
4.3GHz. (c) Port 2 excited at 3.9GHz. (d) Port 2 excited at 4.3GHz. (e) Port 3 excited at 3.9GHz.
(f) Port 3 excited at 4.3GHz.

(a) (b)

Figure 12. Total efficiency. (a) Simulated. (b) Measured.
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3.3. Multiplexing Performance

Envelope correlation coefficient (ECC) is a critical metric for determining the radiation pattern diversity
performance of MIMO antennas. The value of ECC reflects the quality of the correlation between the
antennas. Lower ECC values correspond to lower degrees of mutual coupling between the antennas
and smaller influence of each antenna on the other when they operate independently, representing an
excellent MIMO system function. The ECC of a MIMO antenna used in modern mobile terminals must
be less than 0.5 [24]. The equation for the calculation is as follows [36]:

ECC =
|Sii ∗ Sij + Sji ∗ Sjj |2(

1− |Sii|2 − |Sji|2
(
1− |Sjj |2 − |Sji|2

)) (1)

As illustrated in Fig. 13, the ECC values were less than 0.02. Across the operation bandwidth,
the largest ECC (between Ant 1 and Ant 2) was only 0.019, indicating an acceptable level of diversity
performance.

Figure 13. Calculated ECCs.

4. PRACTICAL APPLICATION ANALYSIS

In this section, the effect of practical antenna performance is discussed. The most frequently used
operation modes are single handset mode (SHM) and double handset mode (DHM). Fig. 14 depicts the
simulated application scenario. The effect on the user’s head will not be discussed here, as the operation
is used exclusively for data transmission, not for call mode.

(a) (b)

Figure 14. Two application scenarios of hand-held smartphone. (a) SHM. (b) DHM.
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(a) (b)

(c)

Figure 15. Simulated parameters under SHM. (a) Reflection coefficient. (b) Transmission coefficient.
(c) Total efficiency.

As illustrated in Fig. 14(a), Ant 1 and Ant 6 exhibit high reflection coefficients for SHM due to
their direct contact with fingers. In comparison, Ant 2, 3, 4, and 5’s reflection coefficients were slightly
less affected because they were further away from the fingers and still covered the 3.3–5.1GHz band.
However, the reflection coefficients remain slightly higher than in the absence of hand interference.
Despite this, isolation can be greater than 11.5 dB across the entire operating frequency band. As
illustrated in Fig. 15(c), because hand tissue can absorb electromagnetic waves, Ant 1 and Ant 6
radiation efficiencies were reduced to less than 40%. Due to the close proximity to the palm, the
efficiencies of Ant 2 and Ant 5 were also reduced by about 18%. In comparison, Ant 3 and Ant 4 were
located far from the hand and exhibited greater than 55% efficiency.

For DHM, only Ant 4 and Ant 6 were in direct contact with fingers, as illustrated in Fig. 14(b). All
other antenna elements were not in direct contact with fingers. Because Ant 4 and Ant 6 were covered
by the thumbs, their reflection coefficients were significantly increased. The resonant points shifted to
the right, resulting in significantly worse impedance matching. While their resonant frequencies were
not significantly different from those of other antenna elements, their impedance matching was also
worse than that in the absence of interference. However, between ports, a good isolation performance
of more than 11 dB was still maintained. As illustrated in Fig. 16(c), the radiation efficiencies of these
antenna elements that were not in contact with fingers or palms remained greater than 50% throughout
the operating bandwidth. In comparison, when Ant 4 and Ant 6 were in contact with fingers, their
efficiency was significantly reduced, and the maximum efficiency was only around 45%.
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(a) (b)

(c)

Figure 16. Simulated parameters under DHM. (a) Reflection coefficient. (b) Transmission coefficient.
(c) Total efficiency.

Table 1. Performance comparison of 5G antenna array.

References Bandwidth (GHz) Isolation (dB) ECC Total Efficiency (%)

Pro. 3.2–5.15 (−6 dB) > 16.2 < 0.02 50–63

[3] 3.4–3.6 (−10 dB) > 10 < 0.2 62–78

[5] 3.4–3.6 (−6 dB) > 12.7 < 0.13 35–64

[9] 3.4–3.625, 3.90–4.55 (−10 dB) > 20.1 < 0.3 > 40

[10] 3.3–3.6 (−6 dB) > 15 < 0.15 45–60

[14] 3.4–3.6 (−6 dB) > 10 > 0.15 40–52

[15] 3.4–3.6 (−6 dB) > 14 < 0.15 40–52

[18] 3.4–3.6, 4.8–5.1 (−6 dB) > 11.5 < 0.08 40–85

[21] 3.3–4.2 (−6 dB) > 9.5 < 0.06 40–58

[22] 3.4–3.6 (−6 dB) > 11 < 0.23 40–53

[24] 3.3–3.9 (−6 dB) > 15 < 0.01 > 60

[27] 3.4–3.6 (−10 dB, 5G modules) > 12 < 0.02 60–90

[28] 3.39–3.67 (−10 dB) > 17.5 < 0.036 62–76
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5. COMPARISON AND DISCUSSION

To illustrate the proposed antenna array’s advantages, Table 1 compares the proposed work to several
designs presented previously. As shown in Table 1, the proposed antenna array has a wider bandwidth
than those of previous works. Additionally, the proposed design achieves a higher degree of isolation.
The bandwidth constraint is overcome at a lower cost in terms of overall efficiency. Since it achieves
high isolation and spatial reuse, it is an excellent candidate for 5G NR communication.

6. CONCLUSION

This paper proposed a six-port wideband and high-isolation antenna array for the 5G NR operation band
of mobile terminals. Broadband is achieved in this case by loading an I-shaped open branch onto the slot
antenna element’s metal plate. Meanwhile, good isolation is achieved by etching a T-shaped slot along
the substrate between the antenna elements. The proposed antenna array successfully covers the desired
band (3.20–5.15GHz), which corresponds to the N77/N78/N79 band of 5G. The critical performance
indices are excellent, including suppressed mutual coupling (< −16.2 dB), acceptable antenna total
efficiency (50%–63%), excellent envelope correlation coefficient (< 0.02), and excellent far-field radiation
patterns. Additionally, this work simulated the practical application of the proposed antenna array in
data transmission mode. The corresponding results demonstrate that the proposed antenna array still
performs well in this scenario.
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