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A Novel Dual-Band Printed SIW Antenna Design Based on Fishnet
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Abstract—This paper analyzes and solves the complexity to determine the optimum positions of
the Fishnet & Complementary Circular Ring Resonator (CCRR) based Defected Ground Structures
(DGS) for Substrate Integrated Waveguide (SIW) based antennas. A new state-of-art technique based
on Artificial Neural Network (ANN)-Machine Learning (ML) is proposed for overcoming the lack of
solid and standard formulations for the computation of this parameter related to a targeted frequency.
As a proof of concept and to test the performance of our approach, the algorithm is applied for the
determination of the CCRR and Fishnet-DGS’s optimal positions for a SIW based antenna. The
SIW technique provides the advantages of low cost, small size, and convenient integration with planar
circuits. The ANN-ML based technique is optimized to attain dual-band resonances with optimal gain
and radiation efficiency. The simulation results of the first Fishnet-DGS based antenna show good
minimum return losses at two center frequencies, namely, 16.6GHz (with gain of 6 dB and radiation
efficiency of 95%) and 17.7GHz (with gain and radiation efficiency of 9 dB and 96%, respectively). The
second CCRR-DGS based antenna shows about 8 dB gain and a radiation efficiency of 87% at 17.3GHz,
and gain and efficiency of about 8.5 dB and 85% are observed at 17.8GHz. The proposed CCRR and
Fishnet-DGS based antenna are low profiles, low costs, with good gains and radiation efficiencies, making
both designs very suitable for Ku-band applications. There is a fair agreement between the measured
and simulated results. The achieved dual-band resonances act as a proof of concept that the proposed
ANN-ML techniques can be employed for the determination of the optimal positions for CCRR and
Fishnet thereby attaining any target dual-bands in the Ku-band with good accuracy of about 98% and
a save of 99% in the overall the computational time.

1. INTRODUCTION

Patch antennas play an important role in the development of modern wireless communication systems
due to their low profile, low cost, and simple integration with other circuit components. However,
standard patch antennas have some drawbacks, for example, single frequency resonance, low impedance
bandwidth, low gain, larger size, and polarization problems [1]. On the other hand, enhancements in
bandwidths and gains are still topics and challenges which have attracted many researchers [2]. In [3],
a dual-band patch antenna operating at 13.0GHz and 18.1GHz with 2.03 dB and 3.65 dB gains and
radiation efficiencies of 78.4%, 82.3%, respectively, was developed. Another dual-band antenna for
satellite communications with gains of about 3.37, 3.32 dB and radiation efficiencies of 81.9%, 82.5%,
respectively, is presented in [4]. The low-profile patch antenna shown in [5] has an overall dimension of
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20× 20mm2; however, a low gain and radiation efficiency of 1.6/4.2 dB and 69%/80%, respectively, were
reported. Moreover, in [6], an antenna was developed for both Ku and K frequency bands with gains
of 3.1/4.13 dB and radiation efficiencies of 75.3%/86.4%, respectively. The aforementioned antennas
attain low gain with low radiation efficiency.

Recently, Metamaterials (MMs) and Defected Ground Structure (DGS) have drawn the attention of
researchers as approaches in the design of patch antennas and for the gain and bandwidth enhancements,
as well as for the miniaturization purposes [7–13]. Metamaterials are a new class of artificially engineered
materials that exhibit properties not available in nature. The properties of MMs are directly related to
their unit cell structures, geometries, and sizes. This is in contrary to the conventional natural materials,
where their properties are directly related to their base material composition [14]. A recently employed
technique by researchers, namely DGS, shows an advantage compared to other techniques in the
multiband antenna design process, keeping the antenna’s overall size small with good performance [15].

Developments based on MMs and DGS-based techniques require rigorous electromagnetic
(EM) simulations and lengthy computational challenges. To efficiently manage the EM numerical
computational challenges and to optimize and reduce the time of the design process, ANN techniques
were suggested and extensively used in antenna design process [16–21]. In [16], a mutual coupling
reduction using a neural network-based technique is applied to cross-dipole antenna for base stations.
Meanwhile in [17], authors used ANN to predict the optimal FSS reflector and ground’s dimension for
gain and bandwidth enhancement. In [18], authors used a hybrid approach based on support vector
regression (SVR) and ANN to predict the size of the slots etched on the ground surface. In a work
reported in [19], a hexagonal-shaped reconfigurable antenna operating at 2.36GHz and 3.92GHz bands
was designed using ANN. In another work [20], the ANN was used to design a notch antenna loaded
by an asymmetric slot. Furthermore, in [21], the ANN based optimization techniques were used to
design a multiband rectangular spiral shaped microstrip antenna. However, to the best of the authors’
“knowledge”, few works on the application of ANN in the DGS’s position for multiband antennas design
are reported in literature [22, 23].

In this work, we propose a novel approach for the design of a SIW antenna based on Fishnet and
Complementary Circular Ring Resonator (CCRR) MMs as DGS, with the targets of achieving dual-band
resonance with good gain and efficiency using an ANN-ML based technique. Since different positions of
DGS give different resonance frequencies, we used an ANN-ML algorithm to predict the optimal position
of both the Fishnet and CCRR based DGS within the ground plane of the SIW cavity for a targeted
resonance frequency. Section 2 presents the theoretical backgrounds of the SIW & DGS techniques
and the developed ANN model. The proposed fishnet & CCRR DGS-based antenna structures with
ANN modeling and simulation results are discussed in Sections 3, 4, and 5, respectively. Finally, the
conclusion is given in Section 6.

2. THEORETICAL BACKGROUND

2.1. Substrate Integrated Waveguide (SIW) Technology

The SIW technology for high-frequency electronics and optoelectronics was first presented by Wu’s
team [24]. His work showed the advantages of the antenna to be low profile, compact in size, which
in turn allows easy integration with various components (passive or active), and presents a high Q-
factor and high power-handling capability. The SIW is a planar version of the classic bulky rectangular
waveguide, which consists of two rows of parallel periodic via holes inserted in a dielectric substrate and
connected to both the top and bottom metal layers.

As reported in [24, 25], the SIW was also used for wideband Band Pass Filter (BPF) designs, and
the equivalent dimensions of the SIW as illustrated in Figure 1 are determined using the width (W )
and length (L) of the classical rectangular waveguide. The diameter of the holes (d) and the spacing
(p) between the holes can be determined from the following equations:

Weff = W − 1.08×
(
2d

p

)
+ 0.1×

(
2d

W

)
(1)

fTE10 =
c

(2×Weff ×
√
εr)

(2)
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Figure 1. The SIW based parameters.

where fTE10 is the cut-off frequency of the dominant mode. The spacing between the two consecutive
vias must be small enough to reduce the leakage loss, as given by Eq. (3) below:

p

d
< 2 (3)

2.2. Metamaterial as Defected Ground Structure (DGS)

As previously mentioned in the introduction, researchers used a simple slot structure referred to as
DGS in the ground plane of the microwave planar circuits for various enhancements of the antenna
parameters and size miniaturization [26–33]. The DGS consists of inductance and capacitance that
creates a disturbance of the current distribution in the ground plane, which in turns creates a change
in the transmission characteristics. In recent years, the use of MMs in the design of high-performance
microwave components has drawn the attention of many scientists, engineers, and researchers [34].

On the other hand, MMs show properties that are directly related to their geometries and to
the unit cell dimensions in comparison with conventional natural materials, where their properties are
directly related to the base material composition [35]. Generally, the unit cell of the structure is smaller
than the wavelength of the incident electromagnetic wave.

The use of MMs in microstrip patch antennas as a DGS affects the surface current distribution
in the ground plane and leads to the creation of second resonance frequency. Different positions of
DGS give different resonance frequencies. The Fishnet and CCSR MMs structures are popular and
commonly used structures. For the current work, we use ANN-ML algorithm to predict the optimal
positions of both the Fishnet and CCRR based DGS within the ground plane of the SIW cavity for a
targeted resonance frequency with enhanced gain and fractional bandwidth for Ku-band applications
(radar and satellite communications). The geometries of the two-unit cells are illustrated in Figure 2,
and the design parameters are presented in Table 1.

(a) (b)

Figure 2. The geometry of the proposed DGS’s unit cells. (a) Fishnet-DGS unit cell. (b) CCRR-DGS
unit cell.
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Table 1. The design parameters of the unit cells.

Variables A1 A2 A3

Value (mm) 3.50 1.75 1.75

Variables A4 A5 A6

Value (mm) 0.75 2.60 4.60

2.3. Machine Learning

The ANN is used to predict the optimal positions of both the Fishnet and CCSR based DGS within
the ground plane of the SIW cavity in terms of the resonance frequency. The input parameters of the
developed ANN model are the two-resonance frequency and Fishnet/CCSR-DGS X & Y positions as
output, together with a hidden layer of 100 neurons (the number of neurons is chosen based on the
regression output where 10 neurons present accurate results as shown in Table 2).

Table 2. Regression values for different numbers of neurons.

Number of neurons 5 10 25 50 75 100

Regression outputs (R) 0.13 0.95 0.88 0.77 0.61 0.42

Figure 3 shows the developed model. As reported in Table 3, the back propagation along with
Levenberg-Marquart (LM) learning algorithm is chosen with a learning rate of 0.09, which is the
developed ANN model adaptation rate to the problem with epochs number of 100, which indicates
the number of times that the ANN model operates through the entire training dataset.

(a) (b)

Figure 3. The proposed ANN-ML approach. (a) ANN-ML Model. (b) ANN-ML Flow chart.

3. ANTENNA DESIGN

This section describes the designs of the Fishnet/CCSR-DGS based antennas. The initial patch length
and width are computed based on the standard well-known basic equations for patch antenna design
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Table 3. The main parameters of the developed ann model.

Antenna Parameters Parameters Value

Neurons in Input Layer 2

Neurons in Output Layer 4

Neurons in Hidden Layer 10

Learning Rate 0.09

Number of Epochs 100

Training Algorithm Levengberg-Marquardt (LM)

as reported in [36]. Figure 4(a) shows the proposed antenna with its outlined dimensions depicted in
Table 4. Equations (1)–(3) are used to develop the SIW structure. The proposed antennas are designed
on 1.6mm thick Roger5058 material with relative permittivity (εr) of 2.2 and loss tangent of 0.0009.

Concerning the fishnet-DGS-based antenna, the bottom view configuration with 12 fishnet unit
cells as 4× 3 array etched in the ground plane is shown Figure 4(b). The bottom view of CCRR-DGS
based antenna structure is illustrated in Figure 4(c) with an array of 3×3 and 6 CCRR unit cells slotted
in the ground plane. The proposed antenna’s overall dimension is 65× 56mm2 with a 50-Ω microstrip
fed line of 5.7× 27mm2 optimized for good impedance matching.

The fabricated versions of both antennas are depicted in Figure 5. The optimization of the initial
values using CST EM simulator software is conducted to match the required initial responses.

(a) (b) (c)

Figure 4. Proposed antennas. (a) Antenna top view. (b) Bottom view of the Fishnet-DGS based
antenna. (c) Bottom view of CCRR-DGS based antenna.

Table 4. Design parameters of the proposed antennas.

Variables La Lb L

Value (mm) 60 39 38

Variables Lf Lg Wg

Value (mm) 27 5 5.7

4. ANN MODELING

Using CST EM simulator software, the overall simulation for different Fishnet/CCSR-DGS positions
in terms of resonance frequencies and reflection coefficients is first conducted. Then, the CST output
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(a) (b) (c)

Figure 5. Fabricated antennas. (a) Top view of the proposed antenna. (b) Bottom view of the CCRR
DGS based antenna. (c) Bottom of the Fishnet DGS based antenna.

results are organized as a dataset and fed into the ANN model. 75% of the datasets are used to train
the ANN model, 10% for validation, and 15% for testing. Lastly, the optimal Fishnet/CCSR-DGS
position is extracted using the trained ANN. Figure 7 illustrates the reflection coefficient for different
Fishnet/CCSR-DGS positions. It is found that the optimum position is at the centre (Xopt = 0 and
Yopt = 0).

In order to validate the proposed ANN model, a comparison between the CST and ANN results
in terms of resonant frequency and reflection coefficients is conducted and reported in Tables 5, 6, 7,
and 8. Furthermore, the mean square errors are also depicted in Table 9 and Table 10. It can be noticed
that the CST and predicted ANN results are very close.

With the aim to analyze the developed ANN over-fitting characteristics, the R-value (Related to
training, validation and testing) is calculated. An R-value close to 1 means that the proposed ANN
model learning and training is conducted perfectly, while an R-value far from 1 means that we have
an over-fitting and by that the ANN model cannot generalize new test data, and it just memorizes
the historic training set. The proposed ANN results show a regression output (R) value of ≈ 0.91 for
the Fishnet-DGS based antenna case and ≈ 0.92 for the CCRR-DGS based antenna case as shown in
Figure 6.

(a) (b)

Figure 6. ANN regression outputs (R) for all training, validation and testing to Fishnet-DGS &
CCRR-DGS based antenna. (a) Fishnet-DGS based antenna. (b) CCRR-DGS based antenna.
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Table 5. A comparison between the CST and predicted ANN resonant frequencies for different
Xpos/Ypos values for the fishnet DGS based antenna.

Input
Targets

(Simulated by CST)

Outputs

(Estimated by ANN)

Xopt

Position

Yopt

Position

Freq 01

(GHz)

Freq 02

(GHz)

Freq 01

(GHz)

Freq 02

(GHz)

Training

Data

01 0 −1 17.82 NA 17.80 NA

02 0 −7 17.67 NA 17.65 NA

. . .

. . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

74 2 2 16.125 17.75 16.128 17.76

75 2 −1 17.75 NA 17.76 NA

Validation

Data

76 3 −7 18.60 NA 18.61 NA

77 4 −1 17.125 NA 17.13 NA

. . .

. . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

89 4 −10 16.9 NA 16.88 NA

90 −1 2 16.9 17.2 16.89 17.21

Testing

Data

91 −2 2 17.88 18.30 17.87 18.32

92 −4 2 17.82 18.21 17.81 18.22

. . .

. . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

99 0 0 16.6 17.7 16.598 17.705

100 −4 −1 17.85 NA 17.84 NA

(a) (b)

Figure 7. Reflection coefficients for different Fishnet/CCRR-DGS positions. (a) Fishnet-DGS based
antenna. (b) CCRR-DGS based antenna.

5. RESULTS AND DISCUSSIONS

5.1. Proposed Fishnet-DGS Based Antenna Results

Figure 8 illustrates the simulated and measured return losses of the fishnet-based antenna. It is observed
that the proposed antenna with fishnet MMs operates at both frequencies of 16.6GHz and 17.7GHz
with acceptable return losses. The gain and directivity usually show the efficiency of the antenna and



214 Nakmouche et al.

Table 6. A comparison between the CST and predicted ANN resonant frequencies for different
Xpos/Ypos values for the CCSR antenna.

Input
Targets

(Simulated by CST)

Outputs

(Estimated by ANN)

Xopt

Position

Yopt

Position

Freq 01

(GHz)

Freq 02

(GHz)

Freq 01

(GHz)

Freq 02

(GHz)

Training

Data

01 0 −1 17.34 16.96 17.338 16.95

02 0 −3 17.3 18.85 17.29 18.86

. . .

. . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

74 1 −1 17.15 17.65 17.12 17.63

75 2 −5 16.86 NA 16.859 NA

Validation

Data

76 3 −11 17.25 NA 17.23 NA

77 5 −1 17.65 NA 17.64 NA

. . .

. . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

89 4 −7 17.02 NA 17.02 NA

90 3 −11 16.98 NA 16.98 NA

Testing

Data

91 5 −3 17.25 NA 17.25 NA

92 −1 −1 16.90 17.17 16.90 17.17

. . .

. . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

99 0 0 17.3 17.8 17.29 17.79

100 −4 −3 17.26 NA 17.26 NA

Table 7. Mean square errors for fishnet & CCSR-DGS based antenna.

Design

Parameters

Mean Square Error (MSE)

Fishnet DGS Antenna CCSR DGS Antenna

Freq 01 (GHz) Freq 02 (GHz) Freq 01 (GHz) Freq 02 (GHz)

Optimal X & Y Position 1.53× 10−04 6.04× 10−05 1.33× 10−04 5.03× 10−05

Figure 8. Simulated and measured S11 values of the proposed antenna with fishnet unit cell.
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(a) (b)

Figure 9. Simulated & measured gain & efficiency of the proposed antenna with H-slotted DGS. (a)
Gain. (b) Efficiency.

(a) (b)

Figure 10. Simulated and measured radiation patterns of the antenna with fishnet unit cell in E-plane
at (a) 16.6GHz and (b) 17.7GHz.

its directional capabilities, and for the current design, the obtained gains are 6 dB and 9 dB at 16.6GHz
and 17.7GHz, respectively as shown in Figure 9(a). On the other hand, there is a fair agreement
between the measured and simulated return losses of the antenna. The antenna’s efficiencies are 95%
and 96% at 16.6GHz and 17.7GHz, respectively as illustrated in Figure 9(b). The plots of the radiation
patterns in E-plane (Y Z-plane) are presented in Figure 10 for the frequencies 16.6GHz and 17.7GHz.
The proposed antenna achieves broadside radiation patterns with high front-to-back ratio.

Figure 11. Simulated S11 of the proposed antenna with CCRR unit cell.
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5.2. Proposed CCRR-DGS Based Antenna Results

A dual-band antenna is designed and analysed based on CCRR-DGS. The simulated and measured S11

results are plotted in Figure 11. The proposed antenna operates at two resonance frequencies, 17.3GHz
and 17.8GHz, respectively. The obtained measurements show good matching between the simulated
and measured results.

The antenna gain is 8 dB at 17.3GHz band frequency. At 17.8GHz band frequency, we notice a
gain of 8.5 dB with radiation efficiencies of 87% and 85% at both resonance frequencies as shown in
Figure 12. The radiation patterns in E-plane (Y Z-plane) are shown in Figures 13. Radiation patterns
are uniform and stable in nature with high front-to-back ratio.

(a) (b)

Figure 12. Simulated & measured gain & efficiency of the proposed antenna with H-slotted DGS. (a)
Gain. (b) Efficiency.

Figure 13. Simulated and measured radiation patterns of the antenna with CCRR unit cell in E-plane
at (a) 17.3GHz and (b) 17.8GHz.

Due to the SMA connectors and the environment in which the measurements are conducted, a
noise and some mismatching between simulation and measurement results can be noticed but can still
be neglected and acceptable as an experimental validation since the other parameters such as reflection
coefficient, realized gain, and radiation efficiency are quite stable.

A comparison between the two proposed antennas and similar studies published in the literature
is presented in Table 8. Based on the three main parameters: the operating frequency, gain, and
antenna efficiency, one can notice that the fishnet-based and CCRR-based antennas have better gain
and efficiency in comparison with other studies.
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Table 8. Comparison of the proposed antenna with previous work.

Comparison

Parameter

Operating

Frequency

(GHz)

Gain

(dB)

Radiation

Efficiency

[3]
13.0

18.1

2.03

3.65

78.4%

82.3%

[4]
15.15

18.2

3.37

3.32

81.9%

82.5%

[5]
12.38

14.40

1.6

4.2

69%

80%

[6]
12.94

19.04

3.1

4.13

75.3%

86.4%

[37]
9.85

14

6.62

6.44
Not Mentioned

[38]
9.55

10.35

6

6.6
Not Mentioned

Fishnet Based Antenna
16.6

17.7
≈ 8 > 95%

CCRR Based antenna
17.3

17.8

≈ 7.5

≈ 8
> 80%

6. CONCLUSION

A new state-of-art technique based on ANN-ML technique is proposed for overcoming the lack of solid
and standard formulations for the computation of DGS position in terms of a targeted resonances
frequency. As a proof of concept and to test the performance of our approach, the algorithm is applied
for the determination of the CCRR and Fishnet-DGS’s optimal positions in terms of a targeted resonance
frequency for Ku-band applications such as radar and satellite communication.

The performance of proposed Fishnet-DGS based antenna shows a dual band response with good
enhancement in gain and in its radiation efficiencies as well. The proposed fishnet-DGS based antenna
resonates at center frequencies of 17.87GHz (with a gain of 4.74 dB) and 18.38GHz (with a gain of
5.95 dB is observed). Meanwhile, the CCRR-DGS based antenna’s gain is 6.49 dB at 16.91GHz center
frequency, and at 17.32GHz center frequency, a gain of 7.55 dB is noticed. Both configurations show a
high radiation efficiency of about 90%. There is a fair agreement between the measured and simulated
results which act as a proof of concept that the proposed ANN-ML techniques can be employed for the
determination of the optimal positions for CCRR and Fishnet thereby attaining any target dual-bands
in the Ku-band with good accuracy of about 98% and a save of 99% in the overall computational time.
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