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Abstract—Utilizing spread spectrum time domain reflectometry (SSTDR) to detect, locate, and
characterize faults in photovoltaic (PV) systems is examined in this paper. We present a method
to obtain the model parameters that are needed to produce digital twin SSTDR responses for PV
systems. The digital twin SSTDR responses could be used to predict faults within the PV systems.
The model parameters are the reflection and transmission coefficients at each impedance discontinuity
in the PV system along with the propagation coefficients across each PV cable segment. We obtain
model parameter by applying inverse modeling techniques to experimental SSTDR data associated with
PV systems. Our model parameters can be used in any digital twin simulation method for modeling
reflectometry in frequency-dependent and complex loads. For validation, we used the model parameters
in a graph network simulation engine and adapted it to be used for SSTDR digital twin simulations in
PV systems. We produced simulations for 0 to 10PV modules connected in series. We also simulated
SSTDR responses for open circuit disconnections in a PV setup containing 10PV modules in series.
Results show that all but one simulated disconnect locations match experimental disconnection locations
of the same setup with an error of less than 5%.

1. INTRODUCTION

Utility photovoltaic (PV) power systems can be significantly degraded by faults, such as open circuits,
short circuits, module degradation, ground faults, connection corrosion, shading, etc. [1, 2]. Currently,
faults are detected by smart power inverters [3] by comparing the voltage (V), current (I), and power
(W) levels to those expected when the system is healthy. Inverters can detect faults in a string or
combination of strings but cannot localize it further. Hence, manual troubleshooting is often needed [1].
Reflectometry [4] has been proposed as a method to detect, locate, and characterize faults in PV
systems. There are several types of reflectometry, including time domain reflectometry (TDR) [5],
frequency domain reflectometry (FDR) [6], joint time-frequency domain reflectometry [7], noise domain
reflectometry (NDR) [8], chaos reflectometry [9], sequence time domain reflectometry (STDR) [4], and
spread spectrum time domain reflectometry (SSTDR) that have been used in a plethora of system
health monitoring applications [10]. While we will focus on the use of spread spectrum time domain
reflectometry (SSTDR) for energized PV systems, the work in this paper could be readily adapted to
many other reflectometry systems.

One challenge of all reflectometry systems is identifying the fault type and location from
the reflectometry signature, particularly when it includes multiple superimposed reflections and
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transmissions. This is more complicated if the system includes complex impedances, as in PV
systems [11], and/or branched networks [9]. Some algorithms that are used to evaluate the reflectometry
signatures associated with faults in branched networks are neural networks [12], particle swarm
optimization [13], teaching-learning based optimization [14], inverse scattering [15], and others. For
these algorithms, baselining can be used to remove the normal occurring reflections from a healthy
system. If an experimental baseline does not exist, an accurate simulated reflectometry response is
needed. The methods described in this paper could be used to simulate these baseline responses.

Other reflectometry algorithms use simulations or measurements of faulted conditions to create
a dictionary of possible conditions. This dictionary is compared with an unknown measurement to
determine which fault type/location is most probable [16–18]. These types of algorithms work best
when data can be included for every fault type and location possible. Since this would be difficult
to measure, a digital-twin [19–21] simulation that predicts the reflectometry response can be used to
replace the experimental data. The accuracy of this digital twin is critical to the effectiveness of the
fault location algorithm, and the accuracy of the digital twin is impacted by the accuracy of the model
parameters entered into the simulation, such as the characteristic impedance of the transmission line, the
reflectometry test device impedance, the PV module’s and cable connector’s reflection and transmission
coefficients, the reflectometry signal’s velocity of propagation (VOP), and the effective distance of the
PV modules with the connecting cables. It is evident from the literature [6, 19, 20, 22–24] that it is often
difficult to identify correct model parameters to produce accurate digital twin simulations. In some
applications, a vector-network-analyzer (VNA) or an inductor-capacitance-resistance (LCR) meter is
used to measure the frequency-dependent parameters, e.g., the reflection and transmission coefficients.
However, a VNA or an LCR meter typically cannot safely measure on energized system with the voltage
and/or current above a specific threshold [25–27]. Commercial grade PV modules produce a voltage
and current level that is higher than the allowable limit for testing using a VNA or LCR meter. Note
also that PV modules cannot be fully “turned off” for testing. Thus, the use of SSTDR to operate on
energized systems makes it a great candidate for measuring the frequency dependent parameters for PV
modules. In [21], a reflectometry modeling technique was introduced to model reflectometry through
full PV modules. However, due to a lack of accurate reflection and transmission coefficient model
parameters available, the method was validated with discrete resistors and capacitors. Therefore, there
is a need to produce accurate model parameters for PV systems that can be used for fault detection
and classification.

The novelty of this paper is our procedure for calculating frequency-dependent model parameters
and how they can be used for reflectometry modeling. In addition, we demonstrate how to adapt a
simulation engine to emulate PV systems. To validate the accuracy of our model parameters, we used
them to produce SSTDR response simulations for P = 0 to P = 10PV modules connected in series. We
then compared the SSTDR simulations to corresponding experimental SSTDR responses. It is important
to note that a reflectometry signal will experience partial energy reflection and transmission at each
point where there is a change in impedance. Thus, our measurement of accuracy for our simulations
was to evaluate the correlation coefficient, the percent error in the peak location, and the percent error
in the peak amplitude of the first three major reflections of the simulated responses compared to the
corresponding first three major reflections of the experimental response. In our results, the first and
second reflections match well. For further validation, we simulated SSTDR responses for open circuit
disconnections in a PV setup containing 10PV modules in series. When comparing the simulated
disconnect locations to experimental disconnect locations of the same setup, all but one simulated
disconnect location had an error of less than 5%. Our results demonstrate that our extracted model
parameters are sufficiently accurate to model SSTDR propagation through PV modules in series and
predict open circuit disconnection locations. Future work will be evaluating the effectiveness of our
model parameters in simulating more complex faults.

Section 2 of this paper gives a brief background on SSTDR and defines the full PV system.
Section 3 explains our methods of building the model parameters used to construct the digital twin
SSTDR response. Section 4 gives a brief description of how we adapt the directional graph network
model introduced in [28] to be used in PV systems. Section 5 gives two different sets of validations
for our digital twin simulation and compares the simulated results to corresponding experimental data.
Section 6 discusses our conclusion and future work.
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2. METHODOLOGY: SSTDR DIGITAL TWIN

2.1. Defining the PV System

The test system used in this paper is shown in Fig. 1. The SSTDR test device transmits and receives a
PN coded voltage signal differentially across both the positive and negative leads which are connected to
a two wire transmission line (PV leader cable) and PV modules, all connected with 4mm manufacturer
multi-contact (MC4) connectors. The SSTDR signal partially reflects at and transmits through each
impedance discontinuity/interface [4]. An accurate digital twin response models the superposition of
all reflections and the propagation delays through each cable and module. Each interface marked as a
vertical blue dashed line produces both a signal reflection and signal transmission. We use blue rebound
arrows to indicate a reflection at the interface and a green straight arrow to indicate a transmission.
The reflection arrows are only shown on the top lead, and the transmission arrows are shown on the
bottom lead for illustrative purposes. The vertical line that goes through both the top and bottom leads
is representative of a single interface that exhibits both signal reflection and transmission. Furthermore,
each parallel pair of PV modules is modeled as a single interface with a propagation delay (labeled with
red θs). MC4 connectors are modeled as interfaces with no delay. Each impedance, and therefore each
reflection and transmission coefficient, is assumed to be frequency dependent. In the next section, we
explain how we experimentally extract the parameters for each component, which will then be combined
in simulation to produce the digital twin of the PV system.

Figure 1. PV system simulation. Impedance discontinuity interfaces are shown as dashed blue lines.
The reflection coefficients are labeled with blue rebound arrows, and the transmission coefficients with
green directional arrows. Propagation delays are marked with red θs. MC4 connectors are shown as
small blue boxes, and modules are larger black boxes. A 2-wire transmission line is excited differentially
by a voltage source.

2.2. SSTDR Background

In reflectometry, signals are launched from a test device, and the reflections that occur at impedance
discontinuities are measured to characterize the system [29]. In spread spectrum time domain
reflectometry (SSTDR), the launched signal is a square-wave-modulated pseudo-random noise (PN)
code sequence. The reflected signal is cross-correlated with shifted copies of the incident signal to
produce the SSTDR response. This contains information about the impedance discontinuities, e.g.,
distances, complex load impedances, and characterization of faults [4].

For any reflectometry system, including SSTDR, the reflection coefficient Γ(ω) at interfaces between
two impedances, Z1 and Z2, is a ratio of reflected (Vref) to incident (Vinc) signals

Γ (ω) =
Vref

Vinc
=

Z2(ω)− Z1(ω)

Z2(ω) + Z1(ω)
(1)
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The transmission coefficient T (ω) describes the transmitted signal (Vtrans)

T (ω) =
Vtrans

Vinc
= 1 + Γ(ω) =

2Z2(ω)

Z2(ω) + Z1(ω)
(2)

The SSTDR response shape is dependent on the reflection coefficient value associated with the
impedance discontinuities in the system [30]. If Z2 is an open circuit (OC) (load impedance is infinite
Ω), Γ(ω) is equal to +1, and the SSTDR response shape is a sinc-like SSTDR response. Conversely,
if Z2 is a short circuit (SC) (load impedance is 0Ω), Γ(ω) is equal to −1, and the SSTDR response
shape is an inverted sinc-like SSTDR response. When Z2 equals Z1 (the load is matched to the line),
Γ(ω) is equal to 0, and the SSTDR response has no reflection. For resistive loads, the SSTDR sinc-like
shape is maintained, but the amplitude ranges from an SC response for smaller impedances to an OC
response for larger impedances. Complex loads that contain capacitive or inductive elements introduce
a frequency-dependent phase shift to the sinc-like SSTDR response [16, 27].

In this paper, we will find the impedances, and hence reflection and transmission coefficients, for
transmission lines, connectors, and PV modules through theoretical analysis and measurement. We will
then use these reflection and transmission coefficients to model the complex reflections and transmissions
across multiple PV modules connected by transmission lines.

3. BUILDING THE MODEL PARAMETERS

This section explains how we analytically and experimentally extract the model parameters needed to
model the SSTDR response of the PV system in Fig. 1. The model parameters are the reflection
coefficient at the SSTDR test device ΓSSTDR(ω), the forward and backward reflection coefficients
ΓMC4(ω) and transmission coefficients TMC4(ω) at the MC4 connectors, the forward and backward
reflection coefficients ΓPV(ω) and the transmission coefficients TPV(ω) for in-line PV modules, the
forward and backward propagation coefficients across each ith PV cable segment θi(ω), and the reflection
coefficient at the end of the transmission line. The reflections at the end of the transmission line can have
an open circuit load ΓOCend(ω), a short circuit load ΓSCend(ω), or a PV module load ΓPVend(ω). The
accuracy of these reflection and transmission coefficients is critical to the accuracy of the digital twin
simulation [31]. This section describes how we obtained these reflection and transmission coefficients.

3.1. Reflection Coefficient at the SSTDR Test Device

In this subsection, we explain how to experimentally extract ΓSSTDR(ω), the reflection coefficient
between the ARNOLD SSTDR test device from LiveWire Innovation [32] and the PV leader cable.
The reflection coefficient of the test device is

ΓSSTDR (ω) =
ZSSTDR (ω)− Z0 (ω)

ZSSTDR (ω) + Z0 (ω)
(3)

where ZSSTDR(ω) is the impedance of the SSTDR test device, and Z0(ω) is the characteristic impedance
of the PV cable. We found ZSSTDR(ω) to be characterized by a resistance of 68Ω in series with a
capacitance of 270 pF. We first found the 68Ω resistance [32, 33] by connecting a potentiometer directly
to the SSTDR box and adjusting it whilst taking SSTDR measurements at each step and noting
the potentiometer impedance that produced the minimum reflection response (effectively producing
a matched load). We found that 68Ω matched best with the test device impedance. We then simulated
and measured an SSTDR response for a 15.24m (50 ft) leader cable with an open circuit at the end.
When comparing the simulated SSTDR response (with ZSSTDR(ω) = 68Ω, shown by the green dotted
line in Fig. 12(a)) with the experimental SSTDR response (Fig. 12(a) black line), the measured reflection
seen at the load had capacitive features that our simulation did not (i.e., the right most peak of the
reflection had a greater amplitude than the left most peak [30]). We found that adding a 270 pF capacitor
in series with the 68 ohms for ZSSTDR(ω) provided the best match between simulated (blue dashed line
in Fig. 12(a)) and experimental responses. Therefore, we set ZSSTDR(ω) = 68Ω + 1

jω (270 pF), where ω

are the angular frequencies in the SSTDR response, for all future simulations.
For our PV strings, the transmission line used was a 10AWG standard PV system cable with a

cross-linked polyethylene (XLPE) insulation. The cable parameters to calculate the theoretical value
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Table 1. PV cable parameters [16, 33].

Symbol Description Value

dc Conductor Diameter 2.94mm, 10AWG

σc Copper Conductance 5.98 ∗ 107 S/m
tan δXLPE Loss tangent (min, avg, max) 3× 10−4, 3.5× 10−4, 4× 10−4

µrXLPE Relative Magnetic Permeability 0.999994

tin XLPE insulation thickness 3.375mm

Dc
Distance between conductors

(min, avg, max)
0.00675m, 0.011m, 0.0153m

εrXLPE Electric Permittivity (min, avg, max) 2.2, 2.3, 2.4

Zo
Theoretical Characteristic Impedance

(min, avg, max)
119.1Ω, 178.5Ω, 219.5Ω

VOP Velocity of Propagation 0.721× speed of light

for Z0(ω) are given in Table 1. Using these theoretical parameters and a twin-lead RLGC model [29],
the range of possible Z0(ω) was determined to be from 119.1Ω to 219.5Ω. The twin-lead model was
chosen since the PV leader cable was two cables taped together and resembled a twin-lead transmission
line. The distance between the conductors Dc is defined in Table 1. Both conductors that are taped
together have the same length.

Given the expected uncertainty in the theoretical values for Z0(ω), we next measured Z0(ω). We
first measured the SSTDR response of a 15.24m (50 ft) PV leader cable with an open circuit load. The
peak value at the open circuit represents a reflection coefficient of 1 (the maximum reflection coefficient
possible) and is used to normalize all other measurements. We then measured the SSTDR response
of the PV cable connected to a resistive load of ZL = 295Ω. Fig. 2 shows the normalized SSTDR
responses for both measurements. We up-sampled the SSTDR response by a factor of 10 for both
measurements using spline interpolation [33] and normalized the amplitudes by dividing both data sets
by the maximum value in the open circuit data, giving

Γres (ω) =
Respeak
OCpeak

=
0.2855

0.7401
= 0.3887. (4)

Then the characteristic impedance Z0(ω) is found from Eq. (1):

Z0 (ω) =
ZL (1− Γres)

(1 + Γres)
=

295 (1− 0.3887)

(1 + 0.3887)
≈ 130Ω. (5)

The value of Z0(ω) was determined to be weakly frequency dependent with approximately 0.03% change
across the entire frequency bandwidth of the SSTDR signal [34]. For simplicity we modeled Z0(ω) to
be the same across all frequencies. This is the value used for all future simulations.

Figure 2. SSTDR response data used to measure Z0. The open circuit data is solid, and the resistor
data is dashed.
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3.2. Propagation Coefficients for PV Cable

Each transmission line segment in Fig. 1 is represented by the transmission line’s complex propagation
coefficient γ(ω), which is defined according to the classic RLGC model for a transmission line [29]

γ (ω) =
√

(R+ jωL)(jωC +G) (6)

The parameters used to obtain the RLGC values for the PV cable are found from its twin-lead model, as
described in Table 1, and substituted into the twin-lead RLGC model equations in [29]. The imaginary
part of the propagation coefficient defines the frequency-dependent phase delay, and the real part defines
the frequency-dependent attenuation. The frequency dependent propagation delay for each transmission
line segment in Fig. 1 is defined by

θ (ω) = e−γ(ω)(∆d). (7)

where ∆d is the length of each respective segment. For the leader cable segment, ∆d is 15.24m (50 ft),
from physically measuring the cable. For the PV module and connecting cables segment, ∆d is calculated
in Subsection 3.7 of this section.

3.3. Reflection and Transmission Coefficients at MC4 Connectors or Damaged Wiring

In this subsection, we explain how to experimentally extract the reflection and transmission coefficients,
ΓMC4(ω) and TMC4(ω), for the MC4 connectors or partially damaged wiring. We consider three
conditions: a well-connected MC4 connector or wire, a disconnected connector or broken wire, and
a partially disconnected connector (such as from corrosion) or partially damaged wire. When the MC4
connector or wire is in good condition and properly connected (Fig. 3(a)), our experimental SSTDR
measurements showed that the reflections were extremely small. Thus, we model its impedance as an
ideal connection with full transmission (TMC4(ω) ≈ 1) and no reflection (ΓMC4(ω) ≈ 0) at all frequencies.

(a) (b) (c)

(d) (e)

Figure 3. MC4 or cable connection/disconnection scenarios. (a) is for good connection on both lines,
(b) is for full disconnection on both lines, (c) is full disconnection on one line and good connection on
second line, (d) is a partial disconnection on one line and a good connection on second line, (e) is a
partial disconnection on both lines.

If an MC4 connector is disconnected, or a wire is broken (Fig. 3(b) or Fig. 3(c)), our experimental
SSTDR measurements showed a full reflection. Thus, we model the connection as an open circuit with
ΓMC4(ω) = 1 and TMC4(ω) = 0 for all frequencies. When there is a partial disconnection, such as from
corrosion, on one of the two lines (Fig. 3(d)), we model the connection as an asymmetric frequency-
dependent in-line impedance Zi(ω) with reflection coefficient [35]

ΓMC4Asym(ω) =
Zi(ω)

Zi(ω) + 2Z0(ω)
(8a)

and the transmission coefficient [35]

TMC4Asym(ω) =
2Z0(ω)

Zi(ω) + 2Z0(ω)
(9a)

where Z0(ω) = 130Ω is the characteristic impedance of the PV cable. When there is a symmetric
partial disconnection (Fig. 3(e)), we can model the connection as a symmetric frequency-dependent
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in-line impedance Zi(ω) with reflection coefficient [35]

ΓMC4Sym (ω) =
Zi(ω)

Zi(ω) + Z0(ω)
(8b)

and the transmission coefficient [35]

TMC4Sym(ω) =
Z0(ω)

Zi(ω) + Z0(ω)
(9b)

The symmetric and asymmetric reflection and transmission coefficient just described were tested
experimentally using series connected resistors and capacitors in [35]. To model the in-line impedance
of the damage Zi(ω) we used experimental SSTDR measurements of partially damaged PV cable shown
in Fig. 4. Damage was created with a single razor cut (Fig. 4(a)), progressing until all the conductor
strands are cut but are held together to maintain some electrical contact (Fig. 4(h)).

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4. Cable with incremental damage SSTDR measurements were taken for each of the cases (a)
through (h).

SSTDR measurements were taken for each scenario in Figs. 4(a) through (h). The SSTDR was
connected to 42.44m (139.25Ft) of 10AWG multiconductor cross-linked polyethylene (XLPE) type
PV cable with the damage from Fig. 4 induced in-line at 35.36m (116Ft) and five 100W Renogy PV
modules connected at the end of the cable. The reflection coefficients, shown in Fig. 5, were calculated
by dividing the peak of the reflection at the inserted fault by the peak of the reflection of an open
circuit at the same location (as in the calculation for Z0). We can compare these reflection coefficients
to those obtained for series connected impedances. For simplicity of measurements and calculation, we
chose to have our inserted impedances be resistors with respective resistances of 5Ω, 10Ω, and 20Ω.
Thus, we model Zi(ω) as being purely real. The corresponding reflection coefficients values are shown as
horizontal dashed lines on Fig. 5. The bulk of the reflection coefficients for the partial disconnections (a)
through (h) lies in the range of the reflection coefficient for the 5Ω to 10Ω series resistances.

Figure 5. Reflection coefficients from all measured partial disconnects compared to reflection
coefficients from resistances. Measured partial disconnects are comparable to resistances of 5 to 10Ohms.

These results enable us to model partial disconnections as in-line impedances Zi(ω). For the average
of the series resistance Zi(ω) ≈ 7.5Ω, the associated reflection coefficient from Eq. (8a) is 0.028, and
the transmission coefficient from Eq. (9a) is 0.972. For a similar 7.5Ω symmetric fault (Fig. 3(e)), the
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reflection coefficient from Eq. (8b) is 0.055, and the transmission coefficient from Eq. (9b) is 0.945. Note
that these values can be used to model the impedance of either an MC4 connector or damage in the
wiring.

3.4. Reflection Coefficient for PV Module Load

The PV system in Fig. 1 has two configurations. In this subsection, we will discuss the configuration
in which there is a PV module at the end of the line (at the load) and how to experimentally extract
ΓPVend(ω), its reflection coefficient. Currently, there exists a method for estimating the impedance of a
PV module in [31] based on the analytical impedance model of individual solar cells from [36]. For a
small number of solar cells connected in series, the analytical impedance model of cells gives accurate
impedances and accurate SSTDR responses [37]. However, for 60-cell PV modules, the simulations did
not match with experimental data. The disparity in the simulation and experimental responses is likely
due to other components within the PV module that are not explicitly modelled (e.g., junction box,
bypass diodes, bus bars, encapsulant on the top and bottom of the solar cells, the back sheet, glass,
and surrounding frame) [38]. Modeling all these individually would be difficult. Therefore, we instead
experimentally extract the reflection and transmission coefficient from measured SSTDR data.

The reflection coefficient ΓPVend(ω) is extracted from measurements of a transmission line
terminated by an open circuit (OC), a short circuit (SC), and the PV module, as shown in Fig. 6. The
time-domain responses of the OC and SC are shown in Fig. 7(a) and the response with the PV module
in Fig. 7(b). We normalize each signal by dividing by the maximum value (located at distance = 0m) in
the open circuit response sOC(t) (blue dashed line in Fig. 7(a)). We then remove the reflection between
the SSTDR and cable (at time t = 0) and isolate the SSTDR signal at the load by computing

s (t) =
sOC (t)− sSC (t)

2
, (10)

(a) (b) (c)

Figure 6. Experimental setups used to extract the reflection coefficient for an end-terminated module.
(a) Open circuit load, (b) short circuit load, and end-terminated module load.

(a) (b)

Figure 7. (a) SSTDR response for OC data sOC(t) (blue dashed), SC data sSC(t) (red dotted), and
incident signal s(t) (black solid). Also shows time gated window for s(t). (b) SSTDR response to
calculate end module reflection coefficient which is the data for end connected module sPVend(t) with
time gate window and letters A, B, and C to illustrate how the time gate window is identified.
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where sOC(t) (blue dashed line in Fig. 7(a)) is the OC response (including the reflection at the SSTDR),
and sSC(t) (red dotted line) is the short circuit response (also including the reflection at the SSTDR).
The signal s(t) from Eq. (10) removes the reflection at the SSTDR and retains the shape and magnitude
of the SSTDR response at the OC/SC location. This includes any frequency-dependent attenuation
or dispersion that occurs in the cable. We will use this signature as the incident signal s(t) in our
simulation model. The leader cable is included in the measurement to retain the complete reflection
signature from the PV module. Without the PV leader cable, the reflection signature from the PV
module would experience interference from the reflection response at the SSTDR test device.

Next, the SSTDR reflection with a PV module load sPVend(t), shown in Fig. 6(c), is measured, and
the results are shown in Fig. 7(b). We then time gate [39] both s(t) and sPVend(t) to isolate the portion
of the signal that encodes the impedance at the end of the cable. The time gate window (the box shown
in Fig. 7(b)) can be selected several ways. A Hilbert transform was used in [21], but we will select a
computationally simpler strategy. We determine the time gate window by identifying the point of the
reflection with the greatest magnitude (marked “A” in Fig. 7(b)). Then we expand the window in the
left and right directions until the derivative of the data switches signs twice (marked “B” in Fig. 7(b)).
We continue to expand the window until the data reaches a value equal to the average of the signal
+/− 0.01 (marked “C” in Fig. 7(b)).

The time gated responses for both s(t) and sPVend(t) were then shifted so that their “center of
mass” is at time = 0, or distance = 0meters. We define the center of mass c as

c =

N−1∑
i=1

i |x (ti)|

N−1∑
i=1

|x (ti)|
(11)

where x(ti) is a generalized expression to define the amplitude of the measured signal at the ith time
sample index; i is the sample index; and N is the number of samples in the measured signal. We
refer to this as the “center of mass” as it is the same expression used to calculate the center of a
mass distribution. It can also be considered an expected value, where the absolute value of the signal
is a probability distribution. By shifting the signal, we remove propagation delays and minimize the
frequency-domain phase.

The reflection coefficient ΓPVend(ω) is then calculated using division in frequency (deconvolution in
time) as

ΓPVend (ω) =
SPVend (ω)

S (ω) + σ
(12)

where S(ω) and SPVend(ω) are computed by converting the time gated and shifted responses of s(t)
and sPVend(t) to the frequency domain by applying the Fourier transform. The regularization factor
σ = 0.202 was added in the denominator to prevent the possible division by zero (or close to zero) for all
frequencies in the SSTDR response. The σ value is approximately one tenth of the maximum amplitude
of S(ω). The value σ = 0.202 was found empirically to provide the best match validation between
simulated and measured results, which we explain in more detail in Section 5. If σ is too low, the
simulated data has high frequency ringing. If σ is too high, the simulation is strongly attenuated. The
resulting reflection coefficient is directly in our future simulations, and the impedance can be extracted
from Eq. (5). The data signals Fig. 7(a) and Fig. 7(b) are the true signals that that are received and
processed using the SSTDR test device. We chose to leave the sampling rate the same and not up-
sample them so that we would not introduce approximation error in the newly added sample points
which would translate to error in the respective frequency response points in the calculated reflection
coefficient. In Section 4, the results and validation, we up-sampled the digital twin SSTDR response
data only after the signal was built first using the true SSTDR sampling rate for each of the respective
parameters that are needed to build the digital twin.

3.5. Reflection Coefficients for In-Line PV Modules

In this subsection, we explain how to experimentally extract the reflection coefficient ΓPV(ω) for a pair
of parallel in-line PV modules by isolating the reflection from a single module pair. In theory, this
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(a) (b)

Figure 8. Experimental setups used to extract the in-line reflection, transmission, and propagation
coefficients. The data sets are (a) S2OC(t), and (b) S2SC(t).

(a) (b)

Figure 9. (a) SSTDR response to measure in-line reflection coefficient which includes data for in-line
connected modules with OC end (blue dashed), SC end (red dotted), and isolated module reflection
(black solid) with time gate window illustrated. (b) SSTDR response to measure in-line transmission
coefficient which includes data for in-line connected modules with OC end (blue dashed), SC end (red
dotted), and isolated module transmission (black solid) with time gate window illustrated.

could be accomplished by terminating the transmission line with a matched load and time gating to
evaluate the reflection from the module pair. However, we performed a simple set of experiments for
an OC end and SC end to extract both the reflection and transmission coefficient (from Subsection 3.6)
from roughly the same experimental setup. Specifically, we find ΓPV(ω) from two SSTDR experiments,
shown in Fig. 8 with SSTDR responses shown in Fig. 9(a), to remove signals that transmit through the
panels and isolate signals that reflect from the panels. For both Fig. 8 and Fig. 10, the cables (15.24m,
12.2m, and 7.6m) are two 10 AWG cables taped together to resemble a twin-lead transmission line.
The distance between the cables Dc is 0.011m as described in Table 1.

Similar to Eq. (13), we remove the transmitted components by adding the open-circuit sPVOC(t)
(shown as a blue dashed line in Fig. 9) and short-circuit sPVSC(t) (shown as a red dotted line in Fig. 9)
responses and dividing by 2 to get sRPV(t) (shown as black solid line in Fig. 9(a)), defined by

sRPV (t) =
sPVOC (t) + sPVSC (t)

2
. (13)

(a) (b)

Figure 10. Experimental setups with no PV modules which are compared to setups with modules to
measure the effective distance ∆d through the PV modules.
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This removes transmitted components that reflect at the OC/SC loads, since the short-circuit and open
circuit have equal and opposite reflection coefficients. The reflections from the solar panels remain
unchanged in the two signals. We then time gate sRPV(t) in the same manner described in Subsection
3.4 and convert the time gated and shifted signal into the frequency domain SRPV(ω) with the Fourier
transform. The in-line module reflection coefficient is then computed as

ΓPV (ω) =
SRPV (ω)

S (ω) + σ
(14)

where S(ω) and σ are the same as in Eq. (15).

3.6. Transmission Coefficients for In-Line PV Modules

In this subsection, we explain how to experimentally extract the transmission coefficient TPV(ω) for a
pair of in-line PV modules. Like finding the in-line reflection coefficient ΓPV(ω), we find TPV(ω) by
collecting the SSTDR reflection responses from the setups shown in Fig. 8. However, the goal is to now
isolate signals that transmit through the modules sTPV(t). Therefore, we subtract sPVSC(t) (shown as
a red dotted line in Fig. 9) from sPVOC(t) (shown as a blue dashed line in Fig. 9) and divide by 2 to
get sTPV(t) (shown as the black solid line in Fig. 9(b)) as

sTPV (t) =
sPVOC (t)− sPVSC (t)

2
. (15)

The subtraction removes reflections from the panels and isolates signals transmitted through the panels.
We then time gate sTPV(t) in the same manner as described in Subsection 3.4 and convert the time gated
and shifted signal into the frequency domain STPV(ω) with the Fourier transform. The transmission
coefficient TPV(ω) is then calculated as

TPV (ω) =

√
STPV (ω)

S (ω) + σ
, (16)

where S(ω) and σ are the same as in Eqs. (12) and (14). We apply the square root in the solution to
account for the SSTDR signal transmitting through the modules twice (forward and backward). The
transmission coefficient is assumed to be the same for waves traveling in both the forward and reverse
directions. Similar to the data shown in Fig. 7(a) and Fig. 7(b), we chose to leave the sampling rate
for the data shown in Fig. 9(a) and Fig. 9(b) to be the true sampling rate of the collected SSTDR data
(96MHz) for more accurate parameters that would not add approximation error in the transmission
coefficient.

3.7. Propagation Coefficients for In-Line PV Modules

In this subsection, we explain how to experimentally extract the propagation coefficient for a pair of
in-line PV modules. Unlike a resistor, capacitor, or small number of solar cells, a PV module cannot
be modeled as infinitesimally small interface in the transmission line. Therefore, we must identify the
effective electrical length of the module ∆dPV. We do this by finding the time difference between SSTDR
signals with and without the PV modules in the transmission line and converting that to distance using
the average velocity of propagation (VoP). Fig. 10 illustrates the transmission line without PV modules,
and Fig. 8 illustrates the transmission line with PV modules. For both scenarios, we isolate the signals
that transmit through the transmission line by taking measurements with both an open and a short
circuits, added and divided by 2. The resulting data with the PV modules sTPV(t) and without the
PV modules sT (t) are shown in Fig. 11. The time difference is computed by determining the center
of mass of sT (t) and sTPV(t) and computing their difference ∆dPV+cables ≈ 10.14m (33.26 ft). This is
the effective length of the PV module plus its built-in cabling. Starting with this value, we manually
adjusted this length in the simulation and found empirically that ∆dPV+cables ≈ 11.47m (37.64 ft) gave
the best match with experimental data. Furthermore, by separating ∆dPV+cables ≈ 11.47m (37.64 ft)
into ∆dPV = 6.72m (22.04 ft) and ∆dcables ∼ 2.37m (7.8 ft), which is added to the other cable lengths,
we empirically found the best comparison between simulations and measurements. This difference
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Figure 11. SSTDR response data to measure effective length of modules with connected cables, which
includes the response for no modules (blue dashed) and the response with modules (black solid) and
the associated center of mass for the data and the difference.

(1.34m (4.38 ft)) could arise from a few sources, such as the limited sampling rate of the SSTDR signal
or the fact that the center of mass may be an imperfect measure of propagation time.

The propagation (phase) delay through the PV modules is then added to the transmission coefficient
as

TPV+Delay (ω) = TPV (ω) e−
jω∆dPV+cables

VoP (17)

where VoP is the velocity of propagation (m/s) of the SSTDR signal through the PV modules and
connecting cables. The distance ∆dPV+cables is the calculated effective length given the time delay for
the incident signal to arrive back to the SSTDR test device and a chosen VoP of the signal. For the
VoP, we chose to use the measured VoP [33] through a PV cable of 0.721c where c ≈ 3× 108m/s (the
speed of light in a vacuum). Since we are measuring the effective length and not necessarily the true
length, we can use the same VoP for the PV modules and the connecting cables.

4. SIMULATING THE FULL SYSTEM

The previous section explained how to extract frequency-dependent reflection coefficients, transmission
coefficients, and propagation coefficients associated with each interface in a PV system, namely
ΓSSTDR(ω), ΓMC4(ω), TMC4(ω), ΓPVend(ω), ΓPV(ω), TPV(ω), θi(ω), ΓSC(ω), and ΓOC(ω). It is important
to note that the light intensity/illumination does affect the impedance slightly as demonstrated in [17]
where there was a change in the SSTDR responses associated with day and night measurements. Thus,
for the best accuracy, the model parameters should be extracted from PV modules that have similar light
intensity/illumination to the PV systems in the field being evaluated. In this section, we briefly describe
our method to simulate a digital twin SSTDR response through a PV system by incorporating these
model parameters into a fast graph network simulation technique [28] that can emulate one-dimensional
wave propagation through multi-segment transmission lines. Our simulations were produced using
Matlab 2018TM.

We will summarize the simulation engine here. Additional details are in [28]. The engine models
a transmission line as a graph. In the graph, the nodes represent frequency domain voltages, and
the weights for the edges/connections in the graph are transfer functions, i.e., our calculated model
parameters. To produce a simulation, we compute the infinite sum of multiplications between powers
of the graph’s adjacency matrix A and initial voltage conditions vector v(0) for each node within the
graph network. This is expressed as

V (ω) =

∞∑
k=1

Ai (ω)v(0)(ω) (18)

The infinite sum is then simplified using the Neumann series and matrix inverse as in [28]

V (ω) = [I−A (ω)]−1 v(0)(ω) (19)
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where I is the identity matrix. V(ω) contains the frequency response of the superposition of all voltages
reaching every node within the graph. The frequency response is made up of Q frequency bins from the
fast Fourier transform of the SSTDR response and is dependent on the SSTDR modulation frequency
fm and the sampling frequency fs. The initial condition vector v(0)(ω) only contains values at one node,
representing the SSTDR device. For this paper, the initial conditions across frequency are modeled after
the output of an Arnold SSTDR device from LiveWire Innovation, which transmits a PN code where the
chip rate and the modulation frequency fm = 24MHz, and the sampling rate fs is 96MHz (4fm) [21].
Therefore, the frequency range of the SSTDR is from −48MHz to +48MHz. We use a 1,024-point
FFT, which makes our frequency resolution ∆f = (2)(48MHz)/1, 204 = 46.87 kHz.

After V(ω) is calculated for these Q frequencies, the time domain response V(t) is computed from
the column wise inverse fast Fourier transform of V(ω). The columns of V(t) contain the SSTDR
time domain responses arriving at the nodes. Since both node 1 and node N/2 + 1 are located at
the SSTDR device, the final SSTDR time domain response is calculated by adding the column 1 data
with the column N/2 + 1 data in V(t). We validated our model parameters using this graph network
technique because of its computational efficiency and ability to model reflectometry through frequency-
dependent loads. Note that our model parameters could be used in any simulation engine that is able to
model reflectometry through frequency-dependent loads, e.g., finite difference time domain (FDTD) [40],
((FD)2TD) [41], and the systematic solution procedure (SSP) [21]. In the next section, we validate our
digital twin SSTDR response by comparing the SSTDR simulations to experimental SSTDR responses
for various PV setups. These methods could also be adapted for other types of reflectometry signatures.

5. VALIDATION AND RESULTS

In this section, we validate our digital twin by evaluating the SSTDR responses for P connected modules
in series (for P = 0 to 10) and for disconnections of the MC4 connectors between them. Our real
measurements were taken using an ARNOLD SSTDR test device from LiveWire Innovation [32] set to
a 24MHz modulation frequency. The PV cables used are characterized using the parameters in Table 1.
For the PV modules, we used 60-cell modules with parameters described in [37].

5.1. SSTDR Response Validation for PV Modules Connected in Series

First, we validate the SSTDR response simulation versus experimental SSTDR responses for PV modules
connected in series. The experimental setup is shown in Fig. 1 for P modules. The simulated and
experimental SSTDR responses are shown in Fig. 12(a) through (h) for P = 0, 1, 2, 3, 4, 6, 8, 10,
respectively. The validation was done separately for each of the three main time gated reflections
(labeled “r1”, “r2”, and “r3” in Fig. 12). The time gate window was determined for the first reflection,
as described in Section 3. The second and third reflection windows were identified by using the same gate
width and setting the centers of the windows (marked “C2” and “C3” in Fig. 12) to be an equal distance
from all center points. For example, the distance from 0m (marked “C0” in Fig. 12(a) through (h)) to
the first reflection center (marked “C1” in Fig. 12) equals the distance from the first reflection center to
the second reflection center (“C2” in Fig. 12), which also equals the distance from the second reflection
center to the third reflection center (“C3” in Fig. 12).

(a)
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(c)

(d)

(e)

(f)

(b)
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(h)

(g)

Figure 12. Experimental (solid) and simulated (dashed) SSTDR responses for PV modules connected
in series. Plot (a), (b), (c), (d), (e), (f), (g), and (h) are 0 modules, 1 module, 2 modules, 3 modules, 4
modules, 6 modules, 8 modules, & 10 modules, respectively-0.

We chose three metrics to validate the simulations in the three time-gated windows. The first
metric was the normalized correlation coefficient r, of the simulated and experimental data, defined as

r =

N∑
i=1

xsim (ti)xexp (ti)√
N∑
i=1

|xsim (ti)|2
√

N∑
i=1

|xexp (ti)|2
(20)

where xsim(t) and xexp(t) represent the simulated and experimental data, respectively. The correlation
coefficient measures how similar the shapes of the signals are and gives a value between −1 (representing
the same shape but negated) and 1 (representing the same shape). The shape of the SSTDR response
has been used to determine the amount of capacitance, and/or inductance associated with a load [11],
so this metric is a good measure of how well the digital twin matches the impedance of the system.
The second and third metrics are the percent errors of the peak amplitudes and locations associated
with the reflection envelopes for both the simulated and experimental SSTDR data, respectively. In
reflectometry, the reflection peak amplitudes measure both the amount of signal attenuation from a
lossy transmission line and the ratio of a load resistance compared to the characteristic impedance
of the transmission line [29]. The reflection peak locations are used to measure the physical distance
to impedance discontinuities [4]. In our analysis, the reflection envelopes were determined using the
envelope of the signal, computed from the absolute value of the analytic signal [21], of each time-gated
window. The three metrics for all three reflections are calculated, and the results are given in Table 2.

From Table 2, the simulated first reflection for 0, 1, 2, 3, 4, 6, 8, and 10PV modules connected in
series matches well with experimental data in terms of all three metrics. The correlation coefficient is
above 0.9; the percent error for the envelope peak location is less than 5%; and the percent error for the
envelope peak amplitude is less than 10%. For the second reflection, the simulated SSTDR responses for
0, 1, 2, 4, 6, 8, and 10 (not 3) PV modules in series matches moderately well in terms of the correlation
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Table 2. Validation results for simulated SSTDR data.

1st Reflection 2nd Reflection 3rd Reflection

PPV
Corr

(c)

Err %

Pk Loc.

Err

Pk Amp.

Corr

(c)

Err %

Peak Loc.

Err %

Pk Amp.

Corr

(c)

Err %

Peak Loc.

Err %

Pk Amp.

0 0.98 1.48 1.01 0.87 0.00 7.66 0.29 2.70 5.39

1 0.98 2.08 5.09 0.83 1.70 24.80 0.35 16.93 29.46

2 0.94 3.42 8.37 0.53 1.32 35.43 0.28 0.0 15.27

3 0.95 0.66 10.06 0.02 3.63 53.70 0.76 9.62 26.48

4 0.96 0.66 8.86 0.52 6.19 31.97 0.84 25.0 82.51

6 0.96 0.0 6.73 0.47 4.44 98.94 0.42 0.0 8.32

8 0.97 0.0 6.81 0.37 0.66 131.0 0.38 27.9 45.1

10 0.96 0.0 6.77 0.47 0.32 79.47 0.68 28.35 51.35

coefficient and the envelope peak location, but not as well on the envelope peak amplitude. The error
for the amplitude peaks could be improved by improving the model of the transmission line impedance,
so the attenuation factor is more accurate. For the third reflection, the simulated SSTDR responses
partially match experimental data in terms of the correlation coefficient for 0, 1, 2, 3, 4, 6, 8, and 10PV
modules connected in series. Based on these results, our digital twin simulations of SSTDR propagation
through solar modules are reliable for the first and second reflections but not as accurate for the third
SSTDR reflection.

5.2. Validation for Simulation of Partial Disconnects

We further validate our digital twin method by simulating SSTDR responses resulting from full open
MC4 disconnections (illustrated in Fig. 3(c)) on the top lead located between each pair of modules in an
experimental setup of 10 modules connected in series (locations marked with Xi in Fig. 13). The goal is
to be able to identify where the MC4 disconnections are located from the simulated SSTDR responses.
We will use the digital twin and an algorithm based on the peaks seen in the responses to determine the
location of disconnections within this system. Other methods to do this include identifying the point at
which the baselined Xi disconnection data diverged from the zero line data with approximately a 1%
change [42], but we have chosen this method for its computational simplicity.

Figure 13. Experimental setup with 10 modules connected in series illustrating the MC4 disconnect
locations marked Xi.

Before showing our simulations, it is useful to show the experimental SSTDR responses of the open
circuit disconnections and then explain how one would interpret the data to locate each disconnection
from experimental data. Fig. 14 shows the experimental MC4 disconnection data for each Xi MC4
connector, where 1 ≤ i ≤ 6. Each Xi disconnection data was formulated by subtracting the baseline
data (10 module setup with no disconnections) from the data associated with the experimental setup
consisting of 10 modules connected in series and disconnecting the Xi MC4 connector for 1 ≤ i ≤ 6.
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Figure 14. Experimental SSTDR responses for MC4 disconnections X1 through X6 showing the OC
location alternating from maximum peak to minimum trough of data.

The first open circuit disconnection point X1 located at 16m is easily identified by the maximum.
To observe all the Xi disconnection data at approximately the same amplitude, we scaled the X1 data
to be roughly the same amplitude as the remaining SSTDR responses. The disconnection points X2,
X3, X4, X5, and X6 are identified next. To locate open circuit faults, maximum peak locations are
typically identified [4]. We interpret the open circuit locations differently here. For example, the point
X2 is identified as the minimum valued trough of the X2 disconnection data, and X3 point is identified
as the maximum valued peak of the X3 data. Hence, the Xi points for 1 ≤ i ≤ 6 alternate from being
the maximum valued peak to the minimum valued trough until the X6 OC location is reached. It
is important to also note that the effective distance between each Xi location and its neighboring Xi
locations is approximately 11.47m, which is the measured effective length of a module and its connecting
cables, as calculated in Section 3. To illustrate this more fully, Table 3 shows the location of each Xi

using the measured effective distance, the corresponding maximum peaks and minimum troughs where
we interpret the MC4 disconnection locations and the error percentage.

Table 3. Validation results for simulated SSTDR data.

MC4 OC

Disconnection

Effective Distance

∆d (m)

Experimental Data Peak

or Trough Location (m)

Peak

or Trough

Percent

Error %

X1 15.2 16.2 Peak 6.4

X2 26.7 26.7 Trough 0.7

X3 38.2 37.7 Peak 0.2

X4 49.7 50.4 Trough 2.6

X5 61.1 60.6 Peak 0.4

X6 72.6 78.3 Trough 8.9

The justification for why we interpret the Xi points as alternating between the maximum peak and
the minimum trough for an open circuit load is described by the effects of the PV module transmission
coefficient TPV(ω) on the incident SSTDR signal X(ω) for each Xi SSTDR response. For the X1 data,
a simplified (neglecting multi-path reflections) SSTDR response X ′

1(ω) is calculated as

X ′
1(ω) = X(ω)Γ (ω)OC1 (21)

where Γ(ω)OC1 is the reflection coefficient for the first MC4 disconnection (ΓMC4(ω) = 1). For the X2

data, the SSTDR response is calculated as

X ′
2 (ω) = X (ω) [TPV (ω)]2 Γ (ω)OC2 (22)

where Γ(ω)OC2 = 1. X3 through X6 responses are calculated as

X ′
3 (ω) = X (ω) [TPV (ω)]4 Γ (ω)OC3 (23)
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X ′
4 (ω) = X (ω) [TPV (ω)]6 Γ (ω)OC4 (24)

X ′
5 (ω) = X (ω) [TPV (ω)]8 Γ (ω)OC5 (25)

X ′
6 (ω) = X (ω) [TPV (ω)]10 Γ (ω)OC6 (26)

where Γ(ω)OC = 1. Note that for X2, X3, X4, X5, and X6 responses, the transmission coefficient power
doubles the number of module pairs because the signal travels through the modules and back to the
SSTDR device.

The shape of the signal and whether the maximum magnitude of the data is a peak or a trough
is largely affected by the transmission coefficient of the module. To illustrate how the transmission
coefficient powers affect the incident SSTDR signal, we have plotted the inverse Fourier transform of
each X ′

i(ω) in Fig. 15. The squared transmission coefficient introduces an overall phase shift of 180
degrees, which flips the signal from a maximum valued peak to a minimum valued trough. This implies
that a single transmission coefficient performs a 90 degree shift on the data. For the data in Fig. 15,
the exact positions of the peaks are not important. We show this data to solely show that SSTDR
responses are flipping as the SSTDR signal propagates through a PV module.

Figure 15. Simplified simulated X1 through X6 responses to illustrate the effect of TPV(ω) in flipping
the response.

We used the experimentally extracted transmission coefficient of the module TPV(ω) described in
Section 3 to see all the maximum magnitude peaks and troughs for the Xi responses on the same plot,
and we have normalized each data set by being divided by L2 norm of itself as

Xi (ω) =
Xi (ω)

Q∑
q=1

|Xi (ωq)|2
(27)

for Q different frequencies. Each of the i data sets in Fig. 15 has also been shifted to the right so
that each i data set has a spacing of 2 samples from the i − 1 and i + 1 data set so that we can
distinguish the data set’s point of maximum magnitude (whether it is a peak or trough). Without
this manual shift in the data, all the maximum magnitude peaks and troughs would be at the same
location, making it difficult to distinguish between the respective data sets. Therefore, because of the
transmission coefficient, the open circuit response that would normally have a maximum magnitude
peak can be flipped up-side-down to be a minimum valued trough, similar to a traditional short circuit
load response [33].

The simulated SSTDR responses of the corresponding X1, X2, X3, X4, X5, and X6 after baseline
subtraction are shown in Fig. 16. The simulations show a similar alternating sign pattern to the
experimental data.

The metric to validate our simulated SSTDR disconnection responses is the percent error between
simulated and experimental data open circuit locations. The simulated and experimental open circuit
locations and the percent error are listed in Table 4. All the simulated disconnect locations, except for
X4, have an error of less than 5%. Although the expected minimum valued trough location of the X4

data has an 18.5% error, we note that the second least minimum valued trough, which we denote as X ′
4

in Fig. 16, is located at 49.79m and has an error of 1.2 %. We also note that the error in the X4 OC
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Figure 16. Simplified simulated X1 through X6 responses to illustrate the effect of TPV(ω) in flipping
the response.

location is likely not because of differences in the PV modules. In [43], the variability in SSTDR data
was quantified for various parameters, e.g., switching out PV modules. It was found that the greatest
change was in the reflection coefficient amplitude not in peak location. Thus, the ordering of the specific
PV modules would not affect the open circuit locations with as much error that is shown in Table 4.

Table 4. Results for simulated vs experimental MC4 disconnection distance to trough with greatest
magnitude.

Sim MC4 OC

Disconnection

Sim

Data (m)

Exp

Data (m)

Error Exp

vs Sim (%)

X1 16.1 16.2 0.6

X2 27.2 26.7 1.9

X3 38.4 37.7 1.9

X4 59.7 50.4 18.5

X5 60.4 60.6 0.3

X6 81.9 78.3 4.6

Overall, we have measured how well we can simulate SSTDR propagation through N connected
modules in series and compared the first three major reflections and have measured how well we can
simulate open circuit SSTDR responses.

6. CONCLUSION

We developed a method to extract accurate model parameters from experimental SSTDR data to
produce a digital twin SSTDR response that can be used for fault detection and classification in
PV systems. The novelty of this paper is our procedure for calculating frequency-dependent model
parameters for accurate modeling, our adapted fast graph simulation engine for complex multi-
dimensional PV systems, and our demonstration that these systems can accurately predict fault behavior
in PV systems. This modeling method could produce an accurate SSTDR response. Using the extracted
model parameters, we chose to use a computationally efficient graph network engine to produce the
digital twin SSTDR responses, although the model parameters we extracted could be used in any
reflectometry modeling method. We demonstrated the accuracy of the model parameters to simulate
the SSTDR responses for P = 0 to P = 10PV modules connected in series compared to experimental
data. The modules are connected in pairs so that for every module connected on the top lead, there
is also one on the bottom lead (as per Fig. 1). An odd number of modules are still connected by
having a single module on the end where both the top and bottom leads join (Fig. 1). The simulated
data matched well with the experimental data for the first two reflections. In addition, we were able
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to simulate open circuit disconnections at the MC4 locations in a PV system with 10 PV modules
connected in series. All but one disconnect location had an error of less than 5% compared to the
corresponding experimental disconnection locations.

To improve the simulations, one could explore using optimization and regression models to improve
each model parameter. One could use different modulation frequencies for the SSTDR signal. This paper
focused on simulations for 24MHz modulated SSTDR simulations. One could also apply regression to
fit frequency dependent reflection and transmission coefficients in the graph network.
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