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Inversion of Electrical and Geometrical Parameters of a Stratified
Medium from Data Derived from the Small Perturbation Method

and the Small Slope Approximation

Nada Djedouani1, Saddek Afifi1, and Richard Dusséaux2, *

Abstract—The goal of the present paper is on retrieving the electrical and geometrical parameters of
a stratified medium with two rough interfaces. The inversion problem is formulated as a cost function
optimization problem, and it is solved using the simulated annealing algorithm. The cost function
consists in the integrated squared deviation between the co-polarized incoherent intensities obtained
from the Small Slope Approximation and those obtained from the Small Perturbation Method. The
inversion scheme is applied to the electrical and geometrical parameters involved into the analytical
expressions of the incoherent intensities given by the SPM. We study the influence of the shape of
the autocorrelation function and the isotropy factor upon the estimation of parameters. We test the
sensitivity of the inversion scheme to noisy synthetic data. The study is applied to snow-covered soils
in L-band. For the configurations under study, we show that the inverse method is efficient for eight-
parameter or ten-parameter predicting problems.

1. INTRODUCTION

Scattering of electromagnetic waves from layered rough surface structures has aroused the interest of
physicists and engineers for many years because of its wide range of applications in remote sensing,
geophysics, or optics. Monostatic and bi-static radars allow the study of these structures by measuring
backscattered and scattered signals. For a layered structure with rough boundaries, the scattered signal
depends on the roughness of each interface and on the thickness and the complex relative permittivity
of each layer. It varies depending on the frequency and polarization of the incident wave and on the
observation and incidence angles.

Electromagnetic modeling is a valuable tool for radar data inversion to intend to characterize the
geometrical and electrical properties of layered structures. The analytical models are based on physical
approximations which reduce the applicability domain [1–3]. Within their domains of applicability,
these models allow a fast analysis of the multilayered structures by means of analytical formulae. The
second class of electromagnetic models relies on numerical methods for solving Maxwell’s equations and
boundary conditions [4–9]. These models are called exact if no physical approximation is made. These
models require Monte-Carlo simulations and do not provide an analytical solution of the scattering
problem and require high computational times. This is a major drawback for the inversion of radar
data.

The estimation of the electrical and geometrical parameters can be obtained from the minimization
of a cost function built from electromagnetic model and experimental data [10–12], and a conventional
minimization approach is applied to find the smallest possible value of the cost function. The main
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disadvantage of an optimization approach is that a rather large number of direct-scattering problems
must be resolved to obtain a satisfactory estimation. As a result, the optimization approach is relatively
time-consuming, and it is therefore preferable to use an analytical model in the cost function. In [13],
the parameters of a stack of two random rough interfaces are estimated from synthetic data that
consist of the backscattered incoherent intensities for multiple polarizations, frequencies, and incidence
and observation zenith angles. The authors use the small perturbation method to solve the direct
problem [14–21]. The inversion problem is expressed as a least square problem, and it is solved
using a simulated annealing algorithm [22–26]. Both rough interfaces are assumed uncorrelated and
the autocorrelation functions, isotropic. Complex dielectric constants of the central and lower layers,
central layer thickness, root-mean-square height, and correlation length of each rough interface are the
unknowns in this inverse scattering problem. The sensitivity of the inversion scheme to noise on the
synthetic data is studied, and the efficiency of the inversion algorithm is shown.

The goal of the present paper is on retrieving the electrical and geometrical parameters of a stratified
medium with two rough interfaces. We use the inversion scheme defined in [13] and study the sensitivity
of the optimization approach to data noise. We consider mono-frequency bi-static radar configurations.
The synthetic data are the co-polarized incoherent intensities obtained from the first-order Small
Slope Approximation (SSA) [27–32]. The SSA has a wider validity domain than that of the Small
Perturbation Method (SPM) and bridges the gap between the SPM and the Kirchhoff Approximation
that is applicable to large radius of curvature compared to the wavelength [33]. The cost function consists
in the integrated squared deviation between the incoherent intensities obtained from the SSA and those
obtained from the SPM. The inversion scheme is applied to the electrical and geometrical parameters
involved into the analytical expressions of the co-polarized incoherent intensities given by the SPM. We
study the influence of the shape of the autocorrelation function upon the estimation of parameters. We
consider bi-exponential and Gaussian functions. We also consider anisotropic correlation functions and
define configurations in order to obtain a satisfactory estimation of all correlations lengths. The study
is applied to snow-covered soils in L-band [34–36].

This paper is organized as follows. In Section 2, we present the statistical properties of the three
dimensional layered structure under consideration and define the interface spectra for Gaussian and bi-
exponential correlation functions, with or without anisotropy. In Section 3, we give expressions for the
co-polarized incoherent intensities within the framework of the SPM and SSA. Section 4 introduces the
inverse problem and cost function. Section 5 is devoted to the study of inversion scheme for snow-covered
soils, and the resistance of the inversion algorithm to noise of synthetic data is analyzed.

2. GEOMETRY OF THE PROBLEM

As shown in Fig. 1, we consider a geometric problem where two rough interfaces separate three regions.

Figure 1. Structure with two nonparallel interfaces.
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Region 1 is assumed to be air (assimilated to vacuum). The bottom region is a half-space. The
average thickness of region 2 is denoted by u0. The two boundaries are located at the heights z = a1(x, y)
and z = a2(x, y)−u0. The non-parallel interfaces are randomly deformed over an area L×L. They are
realizations of second order stationary, uncorrelated, and centered Gaussian stochastic processes. Each
process is characterized by a statistical autocorrelation function Rii(x, y) given by Eq. (1).

Rii(x, y) = σ2
ai exp

−(√x2

l2xi
+

y2

l2yi

)2re
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The quantity re designates the roughness exponent. The autocorrelation function is a Gaussian function
when re = 1 and a bi-exponential one when re = 0.5. The quantity σai is the standard deviation of
the i-th interface heights. There are two correlation lengths, lxi and lyi. The i-th interface is isotropic

if lxi = lyi and anisotropic if lxi ̸= lyi. The roughness spectrum R̂ii(α, β) is expressed in the following
form:
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)3/2 when re = 0.5 (3)

Throughout the paper, a function with an exponent “∧” denotes the Fourier transform of the function.
The quantities α and β are the wave numbers resulting from the 2D Fourier transform of the
autocorrelation function.

3. DIRECT MODELS FOR THE INCOHERENT INTENSITY

A monochromatic h- or v-polarized plane wave of wavelength λ impinges on the structure. The
incident wave vector k0(α0, β0,−γ0) is defined by the zenith angle θ0 and the azimuth angle φ0 (Fig. 1)
with α0 = k1 sin θ0 cosφ0, β0 = k1 sin θ0 sinφ0 and γ0 = k1 cos θ0. Each region (m) is an isotropic,
homogenous medium characterized by its complex relative permittivity εrm and the wave number
km =

√
εrmk0 where k0 is the vacuum wave number (k1 = k0).

For an observation direction defined by angles θ and φ (see Fig. 1), the SPM gives the first-order
amplitudes of the co- and cross-polarized contributions of the field scattered in the far-field zone of the
vacuum as follows [20]:

A
(1)
(ba)(θ, φ) =

2∑
i=1

Ki,(ba)(α, β)âi(α− α0, β − β0) (4)

The subscript (a) denotes the incident wave polarization (h or v), and the subscript (b) is the scattered
wave polarization (h or v). Here, the propagation constants α and β of the scattered wave are defined
from the zenith angle θ and azimuth angle φ with α = k1 sin θ cosφ and β = k1 sin θ sinφ. The first-
order scattered amplitudes are expressed as linear combinations of the Fourier transforms âi(α, β) of the
rough interface height profiles ai(x, y). The linear combination weights are the first-order SPM kernels.
As shown in Appendix A, these kernels depend on the relative permittivity values, the thickness u0 of
the central layer, and the incidence and observation angles.

Within the framework of the first-order SPM and when L → +∞, the incoherent intensity
ISPM
f(ba) (θ, φ) is expressed as a linear combination of the spectra of the two rough interfaces [20]:

ISPM
f,(ba)(θ, φ) =

cos2 θ

λ2 cos θ0

2∑
i=1

∣∣Ki(ba)

∣∣2 R̂ii(α− α0, β − β0) (5)
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Using the first order-SPM kernels, the functional form of first-order SSA model can be obtained [27–
31], and the incoherent intensities derived from the SSA approach are found as follows:

ISSAf,(ba)(θ, φ) =
cos2 θ

λ2k21 cos θ0(cos θ + cos θ0)2

2∑
i=1

|Ki,(ba)|2 exp[−σ2
aik

2
1(cos θ + cos θ0)

2]Pi (6)

with

Pi =
+∞∑
q=1

k2q1 (cos θ + cos θ0)
2q

q!
R̂ii,q(α− α0, β − β0) (7)

where Rii,q(x, y) = Rq
ii(x, y). As shown in Eqs. (6) and (7), the incoherent intensity depends on the rms-

heights and on the Fourier transforms of the autocorrelation functions to the power q. For the Gaussian
case, the Fourier transforms R̂ii,q are obtained by replacing (lxi, lyi) by (lxi, lyi)/

√
q into Eq. (2), and

for the bi-exponential case, by (lxi, lyi)/q into Eq. (3), respectively.
For low roughness interfaces, the second-order approximation of ISSAf,(ba)(θ, φ) is equal to ISPM

f(ba) (θ, φ).

The first-order SPM can be used if the rms-heights of rough surfaces are small compared to the incident
wavelength and if the gradients of the surface heights are small compared to 1 [1, 2]. The SSA has a wider
validity domain of the SPM and bridges the gap between the SPM and the Kirchhoff Approximation.
In [29], we showed that the differences between the backscattered incoherent intensities obtained from
the SPM and SSA models increase when increasing the interface roughness and decrease when increasing
the incidence angle and that the SSA model can describe the coherent and incoherent intensities for
heights twice higher than those obtained by the SPM.

4. INVERSE PROBLEM

4.1. The Cost Function

Our main aim is on retrieving the electrical and geometrical parameters of a stratified medium with two
rough interfaces. Complex dielectric constants of the central and lower regions, central layer thickness,
root-mean-square height, and correlation lengths of each rough interface are the unknowns in this inverse
scattering problem. For the inverse problem, we use synthetic data that are the incoherent intensities
obtained from the first-order SSA model, and we use a cost function that consists in the integrated
squared deviation between the synthetic data and the incoherent intensities derived from the SPM.
We consider mono-frequency bi-static radar configurations. The incoherent intensities are obtained
in the incidence plane for several angles of incidence and observation. The cross-polarized incoherent
intensities derived from the first-order SPM and first-order SSA vanish in the incidence plane. As a
result, we only consider the co-polarized components in the cost function:

fc(x)=
1

Nθ0Nθ

√√√√√Nθ0∑
i=1

Nθ∑
j=1

ISPM
f,(hh)(x, θ0i, θj)−I

(SSA)
f,(hh) (θ0i, θj)

ISSAf,(hh)(θ0i, θj)

2

+

ISPM
f,(vv)(x, θ0i, θj)−I

(SSA)
f,(vv) (θ0i, θj)

ISSAf,(vv)(θ0i, θj)

2
(8)

where Nθ0 and Nθ are the numbers of incidence and observation angles, respectively. The vector x
contains the unknowns of the inverse problem. In Section 5, we consider snow-covered soils. At L-band
frequencies (1–2GHz), losses in dry snow are known to be very low (ε′r2 = Re(εr2) ≫ ε′′r2 = Im(εr2) ≈
order of 10−4) [35]. As a result, the snow cover is assumed to be a lossless dielectric. For isotropic
rough interfaces, the number N of unknowns is equal to 8: ε′r2, ε

′
r3, ε

′′
r3, u0, l1, σa1 , l2 and σa2 where

l1 = lx1 = ly1 and l2 = lx2 = ly2. For anisotropic rough interfaces, N = 10 because each autocorrelation
function is characterized by two correlation lengths, lx1 and ly1 for the air-snow interface and lx2 and
ly2 for the snow-soil interface.

4.2. Inversion with a Simulated Annealing Algorithm

The estimation of the electrical and geometrical parameters is obtained from the minimization of the
cost function given by Eq. (8). As in [13], the inversion problem is solved using a simulated annealing
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(SA) algorithm [22–25]. SA algorithm is one of the most known heuristic methods for solving the
optimization problems. The SA algorithm was proposed by Kirkpatrick et al. who were inspired by the
metalworking annealing procedure and successfully used in optimization [23, 24]. In general manner, SA
algorithm adopts an iterative procedure according to the variable temperature parameter which imitates
the annealing transaction of the metal working [23]. The simulated annealing algorithm that we used
was developed by Corana et al. [25]. The iteration procedures of simulated annealing algorithms are
described in detail in [13] and [23]. The summary of the procedure is illustrated by Appendix B. We
recall below the main lines of the process.

First, a set ofNr vectors x is defined, and the maximum fc,max of the cost function and the minimum

fc,min are calculated. The initial temperature T0 is estimated from this set as the ratio
fc,max−fc,min

Nr
(and

T = T0). An initial step length vector v0 is also evaluated as the difference between the lower and upper
bounds of x (xLB and xUB). Secondly, a random vector x0 is selected in the feasible region defined by
xLB and xUB, and its cost function fc(x0) is evaluated.

The SA algorithm is a three steps process: perturb the solution, evaluate the quality of the solution,
and accept the solution if it is better than the new one. The iteration is given as:

xnew(m) = xold(m) + rv(m) (9)

where 1 ≤ m ≤ N . The quantity r is a random number in the range [−1, 1]. If this point is outside
the study region, the m-th component of x is adjusted to be there. A new cost function value fc(xnew)
is then evaluated. If fc(xnew) ≤ fc(xold), xold is replaced by xnew and fc(xnew) is the new minimum.

If fc(xnew) > fc(xold), the probability p = e−(fc(xnew)−fc(xold))/T is evaluated, and a random number
p′ ∈ [0, 1] is generated. If p′ < p, the point of the new step is accepted. Otherwise, it is rejected. This
process is for the purpose of reducing the possibility of getting stuck in a local solution, and it is referred
to as the Metropolis criterion [13]. The best set of inversion parameters is saved as xopt. NT loops with
the same temperature T are repeated. Each loop consists of NS cycles where the step length v(n) is
adjusted according to the adjustment rule of the Corana algorithm,

vnew(m) =



(
1 +

n(m)/Ns − 0.6

0.2

)
vold(m), if n(m) > 0.6Ns(

1 +
0.4− n(m)/Ns

0.2

)−1

vold(m), if n(m) < 0.4Ns

vold(m), else

(10)

where 1 ≤ m ≤ N , and n(m) is the number of accepted moves along the m-th coordinate according
to the conditions fc(xnew) ≤ fc(xold) or p

′ < p. The temperature is then iterated by a reducing factor
RT with 0 < RT < 1, and the temperature T is replaced by exp(−RTT ) in the next iteration of the
temperature loop, starting from the current optimum vector.

The process is stopped when the value of the cost function becomes less than a limit value feps, or
when the algorithm converges towards the local minima a certain number of times with a temperature
which reaches the minimum Tmin = fopt · 10−3, or even after a given number Ni of iterations for reasons
of computation time.

4.3. SA Algorithm with Noisy Data

The synthetic data are the co-polarized incoherent intensities derived from the SSA. The sensitivity of
the inversion scheme to noise on the synthetic data is studied in Section 5. The noise on the reference
intensities is assumed to be additive. In small-signal regime, the noisy intensity is modeled as follows:

I
(NSSA)
(aa) (θ0i, θj) = I

(SSA)
(aa) (θ0i, θj) +G

(
0, σ2

G

)
(11)

The noise G(0, σ2
G) is assumed to have a Gaussian distribution with zero mean and standard deviation

σG, and we assume that the standard deviation is proportional to the intensity [13]. Knowing that
G(0, σ2

G) = σ2
GG(0, 1),

I
(NSSA)
(aa) (θ0i, θj) = (1 + r0G(0, 1)) I

(SSA)
(aa) (θ0i, θj) (12)
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where G(0, 1) is a random number with a standard Gaussian distribution, and r0 is a coefficient of
proportionality. We consider several values of r0, namely: 0.01, 0.025, 0.05, and 0.1. These values
correspond to signal to noise ratios (SNRs) of 20, 16, 13, and 10 dB, respectively.

For a set of known parameters x(m) and for each value of r0, the SA algorithm is run Nn times, and
the mean value mxm and standard deviation σxm are derived from the Nn optimized values xopt,j(m)
with:

mxm =
1

Nn

Nn∑
j=1

xopt,j(m) (13)

σxm =
1

Nn

Nn∑
j=1

(xopt,j(m)−mxm)
2 (14)

To study the sensitivity of the inversion scheme to noise, we define the relative errors εxm between the
mean value mxm and the true value of x(m), and the ratio ρxm of the standard deviation σxm to the
true value of the m-th parameter.

5. INVERSION RESULTS

5.1. Inversion Parameters

For isotropic rough interfaces, the number N of unknowns is equal to 8 and for anisotropic rough
interfaces, equal to 10. Table 1 gives the electrical and geometrical parameters, the true values of these
parameters, and the lower and upper bounds of x (xLB and xUB) for the isotropic configurations and
Table 2, for anisotropic ones. In fact, for the anisotropic configurations, the lower rough interface is
isotropic, but we do not make the assumption a priori that this interface is isotropic.

Table 1. True values of the electrical and geometrical parameters, lower and upper bounds of the
parameter vector for the isotropic configurations. The geometrical parameters (4 ≤ m ≤ 8) are expressed
in cm.

Parameters ε′r1 ε′r2 ε′′r2 u0 l1 σa1 l2 σa2
m 1 2 3 4 5 6 7 8

xLB (m) 1.5 10 1.00 0 2 0 5 0

xUB (m) 4.0 25 5 30 10 2 20 2

True values 3 20 2.55 10 6 0.5 9 0.7

Table 2. True values of the electrical and geometrical parameters, lower and upper bounds of the
parameter vector for the anisotropic configurations. The geometrical parameters (4 ≤ m ≤ 10) are
expressed in cm.

Parameters ε′r1 ε′r2 ε′′r2 u0 lx1 ly1 σa1 lx2 ly2 σa2
m 1 2 3 4 5 6 7 8 9 10

xLB(m) 1.5 10 1.00 0 2 8 0 5 5 0

xUB(m) 4.0 25 5 30 10 16 2 20 20 2

True values 3 20.5 2.55 10 6 12 0.5 9 9 0.7

The values of NS , NT , and RT used in this study are those recommended by Corana et al. [25],
i.e., 20, 100, and 0.85, respectively. The value of T0 is obtained by taking Nr = 2000. The number of
iterations Ni, the limit feps of the cost function, and the final temperature Tfin are empirically derived.
We take feps = 5 × 10−5, Tfin = 10−5, and Ni = 200. The mean value mxm , standard deviation
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σxm , relative errors εxm between the mean value mxm and the ratio ρxm are derived from a set of Nn

estimated vectors xopt with Nn = 40.

5.2. Isotropic Configurations — An Eight-Parameter Problem

We consider a snow-covered soil illuminated by an h- or v-polarized plane wave of wavelength λ = 30 cm.
The rough interfaces are characterized by Gaussian or bi-exponential correlation functions. The true
values of electrical and geometrical parameters are given in Table 1. We must deal with an 8-parameter
inversion problem. We consider four configurations. The synthetic co-polarized intensities are obtained
with the SSA model in the incidence plane φ = φ0 = 0◦.

• For configurations C1, the autocorrelation function is Gaussian. We choose the incidence angles to
be θ0 = 30◦ and θ0 = 60◦ and the observation angles θ ranging from −60◦ to +60◦ in steps of 15◦.
We therefore seek to estimate 8 parameters from a cost function that uses 18 incoherent intensity
values.

• For the configurations C2, the autocorrelation function is also Gaussian, but the incidence angle
θ0 varies from 15◦ to 60◦ in steps of 15◦ and the observation angle θ, from −60◦ to +60◦. We want
to estimate 8 parameters from a cost function that uses 36 incoherent intensity values.

• For configurations C3 and C4, the autocorrelation function is a bi-exponential function, and the
incidence and observation angles are those of configurations C1 and C2.

We analyze the sensitivity of the inversion algorithm to noise with r0 equal to 0.01, 0.025, 0.05, and
0.1. For a given value of r0, the SA algorithm is used 40 times to estimate the 8 parameters with 40
different sets of 18 or 36 incoherent intensities obtained from the SSA model.

Figures 2 and 3 show the relative errors εxm (in percent) as a function of r0. The inversion problem
is fully optimized when the optimized value of each parameter is equal to its actual value. But in this
case, the values of the intensities derived from the SSA method are different from those obtained from
the SPM, and therefore in the absence of noise (r0 = 0), the relative errors are not equal to zero. Except

Figure 2. Relative errors (in percent) on the electrical parameters and the snow-cover thickness —
Isotropic configurations.
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Figure 3. Relative errors (in percent) on the roughness parameters — Isotropic configurations.

for the imaginary part of the complex permittivity of the soil, we find that the relative errors made are
low when r0 = 0.

For all values of r0, these errors are less than 10 per cent for the snow permittivity, for the real part
of the soil permittivity, for the roughness parameters of the snow/soil interface, and for the correlation
length of the air/snow interface. For configurations C1 and C3, the relative errors made on the rms-
height of the air/snow interface are greater than 10% for r0 ≥ 0.05, and for configurations C1, the
relative error made on the thickness of the layer of snow is greater than 10% when r0 = 0.1. The
estimation technique is biased, but committed relative errors are less than 10% in 82.5% of treated
cases for configurations C1, 87.50% for C2 and C3, 90% for C4. In light of the results presented, we
can conclude that the noise resistance of the inversion scheme is good on average.

The highest relative error is made on the parameter x3 that is the imaginary part ε′′r2. We can
nevertheless see that the error decreases when r0 increases from 0 to 0.05 and then increases when r0 is
greater than 0.05. For all configurations, the relative error on this parameter is minimal at r0 = 0.05.
This behavior is also observed (less markedly) for parameter x4 which corresponds to the thickness of
the snow cover. In the presence of a noise defined by r0 = 0.025 or 0.05, the relative error made on
each of the parameters is less than 10%. The intensities obtained with the SPM used with the actual
values of parameters underestimate the values obtained with the SSA method. For certain values of
the signal-to-noise ratio, the additive noise reduces the quadric distance between the intensity curves
obtained with the two analytical models and allows better results to be obtained. For r0 = 0.05, the
noise has a beneficial effect for the determination of the parameters.

Increasing the number of data (from 18 to 36) does not significantly reduce errors. The errors
made for configurations C1 and C3 are greater than those made for configurations C2 and C4, in 50%
of treated cases. In 70% of treated cases, the errors obtained with the bi-exponential function (C3 and
C4 configurations) are larger than those obtained with the Gaussian one (Configurations C1 and C2).

Figures 4 and 5 show the ratios ρxm as a function of r0. These ratios increase with r0 because of
the greater variability of inverse problem results when the signal-to-noise ratio decreases. Increasing the
number of data (from 18 to 36) does reduce the variability. The ratio values obtained for configurations
C1 and C3 are greater than those made for configurations C2 and C4 in 80% of treated cases.
Performance depends on the shape of the correlation function. It is better in the case of the Gaussian
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Figure 4. Ratios ρxm for the electrical parameters and the snow-cover thickness — Isotropic
configurations.

Figure 5. Ratios ρxm for the roughness parameters – Isotropic configurations.

function. In 80% of treated cases, the ratios obtained with the bi-exponential function (C3 and C4
configurations) are larger than those obtained with the Gaussian one (Configurations C1 and C2). When
r0 ≤ 0.025, the ratio ρxm is less than 10% for five of the eight parameters: for the snow permittivity,
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for the real part of the soil permittivity, and for the roughness parameters of the snow/soil interface.
The variability is greater on the roughness parameters of the air/snow interface. The values of ρx5 and
ρx6 are lower than 10% for r0 = 0.01.

5.3. Anisotropic Configurations — A Ten-Parameter Problem

The autocorrelation function of the air/snow interface is anisotropic. The correlation length lx1 is equal
to 6 cm and the correlation length ly1 to 12 cm. The values of the electric parameters and those of the
other geometrical parameters are unchanged compared to the isotropic configurations. Nevertheless,
we do not make the assumption a priori that the snow/soil interface is isotropic. We must deal with
a 10-parameter inversion problem. First, we have analyzed configurations C2 and C4 for which the
autocorrelation function is a Gaussian function and a bi-exponential function, respectively, for which
the incidence angle θ0 varies from 15◦ to 60◦ in steps of 15◦, observation angle θ, from −60◦ to +60◦,
and φ = φ0 = 0◦. The inversion algorithm does not allow the two correlation lengths of the snow/soil
interface to be determined. To determine the two correlation lengths of this isotropic interface, we must
take into account information in several incidence planes φ = φ0, i.e., for several values of azimuth
angles φ0. We then consider two new configurations.

• For configurations C5, the autocorrelation function is Gaussian. The co-polarized incoherent
intensity values are obtained in the incidence plane φ = φ0 = 15◦ under the incidence angles
θ0 = 15◦ and also, in the incidence plane φ = φ0 = 45◦ under the incidence angles θ0 = 30◦ and
θ0 = 60◦. The observation angles θ range from −60◦ to +60◦ in steps of 15◦. We therefore seek to
estimate 10 parameters from a cost function that uses 36 incoherent intensity values.

• For configurations C6, the autocorrelation function is a bi-exponential function, and the angles are
those of configurations C5.

Figures 6 and 7 show the relative errors εxm (in percent) as a function of r0. As for isotropic cases
and except for the imaginary part of the complex permittivity of the soil, the relative errors made are

Figure 6. Relative errors (in percent) on the electrical parameters and the snow-cover thickness —
Anisotropic configurations.
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Figure 7. Relative errors (in percent) on the roughness parameters — Anisotropic configurations.

small when r0 = 0. For parameters x3 and x4, the relative errors decrease when r0 increases from 0 to
0.05 and then increase when r0 is greater than 0.05. In the presence of a noise defined by r0 = 0.05,
the relative error made on each of the parameters is less than 10%, and the noise with r0 = 0.05 has a
beneficial effect upon the inversion problem.

For all values of r0, these errors are less than 10 per cent for the snow permittivity, for the real part
of the soil permittivity, for the snow-cover thickness, and for the roughness parameters of the snow/soil
interface. For configurations C5, the relative error made on the rms-height of the air/snow interface is
greater than 10% when r0 > 0.05 and for configurations C6, and the relative error is always less than
10%. For both the configurations C5 and C6, the relative error made on the correlation length along
the Oy axis is less than 10%. The error on the correlation length lx is greater than 10% when r0 > 0.05.
The estimation technique is biased, but committed relative errors are less than 10% in 84% of treated
C5-cases and in 90% of C6-cases. As previously shown, in light of the results presented, we can conclude
that the noise resistance of the inversion scheme is good on average. In 72% of treated cases, the errors
obtained with the bi-exponential function (C6 configurations) are larger than those obtained with the
Gaussian one (Configurations C5).

Table 3 gives the mean value for the four correlation lengths in the case of Gaussian autocorrelation
functions. Table 4 gives results in the bi-exponential case. The biases on the correlation lengths are

Table 3. Mean values of correlation lengths estimated over 40 realizations. Anisotropic configurations
— Gaussian case (C5).

r0 0 0.01 0.025 0.05 0.1

mlx1 in cm 6.08 6.09 6.18 5.77 5.15

mly1 in cm 11.7 11.7 11.9 11.5 11.6

mlx2 in cm 8.96 8.96 8.96 8.96 8.97

mly2 in cm 8.97 8.97 8.97 8.98 8.88
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Table 4. Mean values of correlation lengths estimated over 40 realizations. Anisotropic configurations
— Bi-exponential case (C6).

r0 0 0.01 0.025 0.05 0.1

mlx1 in cm 6.20 6.18 6.05 6.22 6.71

mly1 in cm 11.45 11.6 11.8 11.8 11.9

mlx2 in cm 8.91 8.91 8.93 8.91 8.86

mly2 in cm 8.93 8.93 8.91 8.91 8.99

low. We find in particular the two correlation lengths of the second interface which is isotropic. These
correlation lengths are almost equal whatever the SNR value is.

Figures 8 and 9 show the ratios ρxm as a function of r0. These ratios increase with r0 because of
the greater variability of inverse problem results when the signal-to-noise ratio decreases. These ratios
are less than 10% in 68% of the cases treated for all the C5 and C6 configurations. When r0 ≤ 0.025,
the ratio ρxm of the standard deviation σxm to the true value of the m-th parameter are less than 10%
for six of the ten parameters: for the snow permittivity, for the real part of the soil permittivity, for
the roughness parameters of the snow/soil interface, and for the rms-height of the air/snow interface.
The variability is greater on both the correlation lengths of the upper interface. The values of ρx5 and
ρx6 are lower than 10% for r0 = 0.01. As previously shown, performance depends on the shape of the
correlation function. They are better in the case of Gaussian functions. In 76% of treated cases, the
ratios obtained with the bi-exponential function (Configurations C6) are larger than those obtained
with the Gaussian one (C5). In view of the results presented, we obtain performances similar to those
obtained with the isotropic configurations, but the inversion requires to have data in several planes of
incidence.

Figure 8. Ratios ρxm for the electrical parameters and the snow-cover thickness — Anisotropic
configurations.
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Figure 9. Ratios ρxm for the roughness parameters — Anisotropic configurations.

5.4. Snow Cover Thickness Estimation

Figure 10 shows the optimized value of the snow cover thickness as a function of the true value in the case
of Gaussian autocorrelation function. Figure 11 shows the curves with the bi-exponential function. The
true value of the thickness varies from 5 cm to 50 cm in steps of 5 cm, and the other model parameters
are those of configurations C5 and C6. For a given value of r0, each point of the curve is obtained from

Figure 10. Value of thickness of the snow cover estimated from a set of noisy incoherent intensities
as a function of the actual thickness for the C5 configurations (Gaussian autocorrelation function —
Anisotropic case).
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Figure 11. Value of thickness of the snow cover estimated from a set of noisy incoherent intensities
as a function of the true value for the C6 configurations (bi-exponential autocorrelation function —
Anisotropic case).

a single set of 36 values of the incoherent intensity perturbed by an additive noise. These two figures
show that the noise resistance remains good even if the thickness is changed. In the Gaussian case, the
inversion algorithm provides conclusive results for 37 of the 40 simulation points. For bi-exponential
autocorrelation functions, the SA algorithm gives conclusive estimations for 36 of the 40 simulations
points. Three of the 4 points where the relative error is greater than 10% are on the curve obtained for
r0 = 0.1. A way to improve the accuracy of inversion is to average several noisy-data points and use
the averaged data into the SA algorithm.

6. CONCLUSION

We have presented the application of the simulated annealing algorithm to the inversion of the model
parameters characterizing a stratified structure with two rough interfaces. The inversion scheme is
applied to the electrical and geometrical parameters involved into the formulae giving the co-polarized
incoherent intensities with the SPM. The synthetic data are the co-polarized incoherent intensities
obtained from the first-order Small Slope Approximation. The cost function consists in the integrated
squared deviation between the incoherent intensities obtained from the Small Slope Approximation
and those obtained from the Small Perturbation Method. We consider mono-frequency bi-static radar
configurations and incoherent intensity values obtained from several incidence and observation angles.

The capability of other inversion methods such as particle swarm [37] or genetic algorithm [38, 39]
can be studied for the purpose of subsurface characterization. It would be interesting to conduct a
comparative study to define the potential of each of the methods. Such a comparative study is beyond
the scope of this paper. Nevertheless, before using the simulated annealing method, we used the particle
swarm optimization. We have observed that the SA method is more efficient and gives good results
with a better resistance to noise and a shorter computational time. In particular, the SA method is
more efficient for estimating geometrical parameters.

We have studied the sensitivity of the inversion scheme to noise on the synthetic data and the
influence of the shape of the autocorrelation function upon the estimation of parameters. We consider bi-
exponential and Gaussian functions. We have also analysed configurations for which the autocorrelation
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of the upper rough interface is anisotropic and characterized by two correlation lengths. The study is
applied to snow-covered soils in L-band. For isotropic rough interfaces, the number of unknowns is equal
to 8 and for anisotropic rough interfaces, equal to 10. For a set of known parameters and for several
values of signal to noise ratios, the SA algorithm is run Nn times, and the mean value and standard
deviation are derived from the Nn optimized values of each electrical or geometrical parameter. To
study the sensitivity of the inversion scheme to noise, we define the relative errors εxm between the
mean value and the true value of the parameter and the ratio ρxm of the standard deviation to the
true value. We show that the estimation technique is biased, but the noise resistance of the inversion
scheme is good on average for the isotropic configurations. When the signal-to-noise ratio decreases, the
variability of inverse problem results and the ratios ρxm increase. Increasing the number of data (from
18 values of the incoherent intensity to 36) does not significantly reduce relative errors. On the other
hand, increasing the number of data does reduce the variability. Performance depends on the shape of
the correlation function. It is better in the case of Gaussian functions. We draw the same conclusions
for anisotropic configurations, but to determine all the correlation lengths, we must take into account
information in incidence planes defined by different azimuth angles. We show that the noise resistance
remains good whatever the snow-cover thickness and the inversion method is efficient for estimating
this geometrical parameter.

APPENDIX A. EXPRESSIONS OF THE FIRST-ORDER SPM KERNELS

For an incident wave of horizontal polarization, the first-order Kernels Ki,(hh)(α, β) and Ki,(vh)(α, β)
of the SPM associated with the progressive plane waves scattered in the region 1 are expressed in the
following forms [20]:

K1(hh) = j2γ10
(k21 − k22) cos(φ− φ0)

rohrh(γ)

×[γ2 cos(γ2u0) + jγ3 sin(γ2u0)][γ20 cos(γ2u0) + jγ30 sin(γ2u0)] (A1)

K2(hh) = j2γ10
(k22 − k23)γ2γ20

rohrh(γ)
cos(φ− φ0) (A2)

K1(vh) = j2γ10
(k21 − k22)k1γ2 sin(φ− φ0)

rohrv(γ)

×[k22γ3 cos(γ2u0) + jk23γ2 sin(γ2u0)][γ20 cos(γ20u0) + jγ30 sin(γ20u0)] (A3)

K2(vh) = j2γ10
(k22 − k23)k1k

2
2γ20γ2γ3

rohrv(γ)
sin(φ− φ0) (A4)

with
rh(γ) = γ2(γ1 + γ3) cos(γ2u0) + j(γ22 + γ1γ3) sin(γ2u0) (A5)

The propagation constants γi (i = 1, 2, 3) have an imaginary part less than or equal to zero with
γ2i + β2 + α2 = k2i (Im(γi) ≤ 0). The propagation constants γi associated with (α0, β0) are denoted as
γi0 = γi(α0, β0) and r0h = rh(α0, β0). For a progressive plane wave travelling without attenuation in
region 1, γ1 = k1 cos θ.

For an incident wave of vertical polarization, the complex amplitudes Ki,(vv)(α, β) and Ki,(hv)(α, β)
have the following expressions:

K1vv = j2γ10

(
k21 − k22

)
rovrv(γ)

{
k22χχ0

[
k23γ2 cos (γ2u0) + jk22γ3 sin (γ2u0)

]
×
[
k23γ20 cos (γ20u0) + jk22γ30 sin (γ20u0)

]
− k21γ2γ20 cos (φ− φ0)

×
[
k22γ3 cos (γ2u0) + jk23γ2 sin (γ2u0)

] [
k22γ30 cos (γ20u0) + jk23γ20 sin (γ20u0)

]}
(A6)

K2vv = j2γ10

(
k22 − k23

)
k21k

2
2γ20γ2

rovrv(γ)

[
k23χχ0 − k22γ30γ3 cos (φ− φ0)

]
(A7)
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K1hv = j2γ10

(
k21 − k22

)
k1γ20 sin (φ− φ0)

rovrv(γ)

×
[
k22γ30 cos (γ20u0) + jk23γ20 sin (γ20u0)

]
[γ2 cos (γ2u0) + jγ3 sin (γ2u0)] (A8)

K2hv = j2γ10

(
k22 − k23

)
k1k

2
2γ20γ2γ30

rovrh(γ)
sin (φ− φ0) (A9)

with
rv(γ) = k22γ2

(
k23γ1 + k21γ3

)
cos (γ2u0) + j

(
k21k

2
3γ

2
2 + k42γ1γ3

)
sin (γ2u0) (A10)

and r0v = rv(α0, β0), χ =
√

α2 + β2 and χ0 =
√

α2
0 + β2

0 .
When the denominator of first-order Kernel vanishes (i.e., when r0a = 0 or rb = 0), a resonance

phenomenon occurs. Insofar as the propagation constants γ30 and γ3 are complex and taking into
account the incidence and observation angles used in our study, the resonance phenomenon does not
occur regardless of the thickness of the snow cover.

APPENDIX B. SIMULATED ANNEALING ALGORITHM
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