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Metasurface Superstrate Inspired Printed Monopole Antenna
for RF Energy Harvesting Application

Bikash R. Behera, Priya R. Meher, and Sanjeev K. Mishra*

Abstract—In this paper, a metasurface superstrate-inspired broadband circularly polarized (CP)
printed monopole antenna is investigated. To achieve broadband circular polarization and directional
radiation pattern, a circle-shaped monopole radiator with asymmetrical staircased partial ground loaded
with metasurface is introduced. It is fed by a 50-Ω microstrip feedline and is fabricated on an FR-
4 substrate, having overall dimension of 1.25λ0 × 1.66λ0 × 0.02λ0 at f = 5 GHz. The metasurface
antenna exhibits a measured impedance bandwidth of 5GHz (1.85–6.85 GHz, 114.9%), axial bandwidth
of 910 MHz (4.09–5 GHz, 20.02%) with average CP antenna gain of 6.82 dBic, directional radiation
pattern and consistent antenna efficiency of > 85.65% in the desired frequency bands. Time domain
characteristics, i.e., group delay is obtained within 2 ns in the operating frequency bands. Due to its
design process and attainment of broadband CP, higher antenna gain, and directional radiation pattern
in the broadside direction, it is extended for RF energy harvesting. The proposed metasurface antenna
is integrated with a rectifier circuit, where RF-to-DC conversion efficiency (η0) and DC output voltage
(Vout) are analyzed by using ADS circuit solver.

1. INTRODUCTION

With the rapid growth of modern RF applications in sub-6GHz bands, there is a requirement of
RF front-ends operating in the electromagnetic spectrum of RFID, GPS, 3G, UMTS (2.1 GHz),
LTE (2.6 GHz), LTE (3.5 GHz), Wi-Fi (2.4/5 GHz), WiMAX (2.5/3.5/5.5 GHz), ISM (2.4/5 GHz), 5G
(5 GHz), and WLAN (IEEE 802.11 b/g/n). Due to the presence of such type of ambient RF signals in
the environment, they are often considered as the intrinsic part of RF energy harvesting system and
other wireless communication platforms [1]. In this scenario, their effectiveness is visualized with the
features of circular polarization (CP). It is quite essential, due to the advantages like reduced multi-
path interference and better signal matching, ensuring that signals are properly received irrespective of
the orientation of antenna [2, 3]. In our study, a printed monopole antennas is chosen due to its low-
profile characteristics, low cost, reasonable antenna efficiency, omnidirectional radiation pattern over the
entire frequency bands, good time domain performance, and easy analysis. For this reason, it has been
considered as an asset for the operation in UWB (3.1–10.6 GHz) [4, 5]. However, its implementation in
the 1-to-7 GHz spectrum is limited in number [6].

In [7–10], although the monopole antenna operates in the required spectrum, non-existence of CP
fails to support their viability from applications point of view. In the reported instances of [11–19], CP is
achieved due to the change in antenna geometry [11], incorporation of metasurfaces/artificial magnetic
conductors (AMCs) [12–15], addition of slots [16, 17], introduction of fractals [18], and modification in
feeding mechanism [19]. In [11], a rectangle-shaped monopole antenna is investigated for CDMA and
GSM bands with axial bandwidth within 5% in their respective bands. When the antenna structure is
embedded with metasurfaces or AMCs [12–15] as a reflector/superstrate, obtained axial bandwidths of
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10% in [12], 18.5% [13], 18.69% [14], and 18% [15] are reported. In current scenario, their main objective
is to enhance the performance of axial bandwidth, antenna directivity, and antenna gain, along with the
attainment of directional radiation properties with wide 3-dB angular beamwidth over the CP bands.

To further investigate CP attributes, a number of cases of dielectric resonator antennas (DRAs) [16–
19] have been discussed. In [16], a stair-shaped DR excited by a coupled slot is investigated with the
axial bandwidth of 10.6%. To widen the 3-dB axial bandwidth, a rotated-stair DR excited by a slot is
presented with CP bandwidth of 18.2% [17]. The fractal concept is soon introduced for improving the
axial bandwidth, but it remains limited to 14.01% [18]. Hence, a new dual-mode CP DRA with low-
profile nature with axial bandwidth of 17.59% is reported. Although polarization agility was witnessed
in [16–19], the overall complexity of structure also increased. Besides, none of the referred papers [7–19]
provided any approach towards the investigation of theoretical insights about the attainment of CP
mechanism.

Here, a metasurface superstrate-based broadband CP monopole antenna is proposed. The
broadband traits of CP and directional radiation pattern in broadside direction are achieved by using an
asymmetrical staircased partial ground plane and the incorporation of metasurface as a superstrate. The
asymmetrical staircased ground plane is responsible for the generation of both horizontal and vertical
field components to achieve circular polarization. With the incorporation of metasurface superstrate,
the antenna offers enhancement in 3-dB axial bandwidth, antenna directivity, antenna gain and helps
in maintaining consistent antenna efficiency in the desired frequency bands. Besides simulation and
characterization, a detailed analogy is backed by the interpretation of surface current distribution,
electric-field pattern, along with the theoretical context of plane-waves and far-field normalized radiation
pattern. The prospective outcomes offer physical insights of designing RF front-end with broadband CP
and directional pattern, a basic requirement for RF energy harvesting [1, 20, 21]. These developments
are in general compensated, in the theoretical context, by time domain analysis and implementing the
proposed multi-stage rectifier circuit embedded with metasurface antenna within the operating regions
of Wi-Fi (2.4/5 GHz), Wi-MAX (2.5/3.5/5 GHz), ISM (2.4/5 GHz) and 5G (5 GHz). Table 1 compares
the performance index of proposed metasurface antenna with existing ones [7–19], operating in the
bandwidth of 1-to-7 GHz.

Table 1. A comparison of measured metrics between proposed antenna with existing antenna designs
reported in [7–19]. [Trade-offs considered for the analysis like (a) impedance and axial bandwidth with
fractional bandwidth of ≥ 20%, (b) CP antenna gain of > 6.5 dBic and (c) antenna efficiency of > 85%
in the desired operating bands].

Ref. Antenna
Impedance
Bandwidth

Axial
Bandwidth

CP Antenna
Gain

Antenna
Efficiency

Time Domain
Analysis

[7] Monopole 167% ——— ——— > 70% ———
[8] Monopole 154% ——— ——— > 70% ———
[9] Monopole 152% ——— ——— > 70% ———
[10] Monopole 175% ——— ——— > 70% ———
[11] Monopole CDMA + GSM < 5.1% 3.5–4.1 dBic > 70% ———
[12] Monopole 16% 10% 5.5 dBic > 80% ———
[13] Monopole 33.7% 16.5% 5.8 dBic > 80% ———
[14] Monopole 34.3% 18.69% 5.1 dBic > 80% ———
[15] Dipole 16.8% 18% < 4.8 dBic > 75% ———
[16] DRA 36.6% 10.6% ——— > 85% ———
[17] DRA 31% 18.2% 4–4.5 dBic > 85% ———
[18] DRA 35.59% 14.01% 2.68 dBic > 85% ———
[19] DRA 26.84% 17.59% 3.86 dBic > 85% ———

Proposed Monopole 114.9% 20.02% 6.82 dBic > 85.65% Investigated
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2. ANTENNA DESIGN

2.1. Proposed Antenna Configuration

The schematic geometry of the proposed printed monopole antenna loaded with metasurface is shown
in Figure 1. It is fabricated on an FR-4 substrate (εr = 4.4, tan δ = 0.018) with overall dimension of
1.25λ0 × 1.66λ0 × 0.02λ0, where λ0 is considered as the free guided wavelength at f = 5 GHz. The
evolution of this antenna involves three stages. At stage-1, a λ/4 linearly polarized (LP) circularly-
shaped monopole antenna with partial ground plane is designed (initial). At stage-2, the conventional
partial ground plane is modified into an asymmetrical staircased partial ground plane, which leads to
exciting both horizontal (x ) and vertical (y) field components, required for generation of CP waves.
Finally, at stage-3, the metasurface as a superstrate is placed just on the top of monopole radiator at
a height of 0.75λ0, supported by the plastic spacers. It leads to the achievement of broadband CP,
higher gain, and directional radiation pattern with wide 3-dB angular beamwidth. A detailed analogy
about them is presented in Subsections 2.2–2.4, along with their outcomes shown in Figures 2–5. CST
microwave studio as a EM solver is used for the design, optimization, and realization of proposed antenna
configurations (stage-1 to stage-3).

Figure 1. Schematic configuration of the proposed metasurface antenna.

Figure 2. Evolution stages, i.e., stage-1 (initial) to stage-3 (final) of the proposed metasurface antenna.

2.2. Design Process of Stage-1

The dimension of the proposed antenna can be derived using Equation (1).

fL =
7.2

2.34R + g
(1)
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where fL is the lowest resonant frequency, R the radius of the structure, and g the gap between radiating
patch and ground plane, which helps in improving the impedance matching of antenna [4]. fL = 1 GHz
is considered for the design of circular monopole antenna (CMA) and obtained simulated impedance
bandwidth from 1.2 to 7.2 GHz and average LP antenna gain of 3.4 dBi.

(a)

(b)

(c)

Figure 3. The analysis of CP mechanism at f = 5 GHz, (a) surface current distribution [1st approach],
(b) electric field distribution [2nd approach] and (c) normalized radiation pattern [3rd approach].
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2.3. Design Process of Stage-2

Due to the modification of partial ground plane into asymmetrical staircased partial ground plane
in stage-2, horizontal (x ) and vertical (y) field components are generated. Here, broad impedance
bandwidth from 1.1 to 6.8 GHz, wide axial bandwidth from 4.65 to 5.37 GHz, and average CP antenna
gain of 2.3 dBic are achieved. For analyzing the CP characteristics, three different approaches are
discussed, as shown in Figures 3(a)–(c).

In the 1st approach, CP behaviour is analyzed using the surface current distribution phenomenon.
In stage-1, surface currents cancel at the horizontal edges of partial ground plane, i.e., oppositely
directed, which indicates the presence of only vertical currents at the monopole arm. As a result,
linearly polarized radiated wave is generated. In stage-2, due to the asymmetrical staircased partial
ground plane, horizontal currents exist at horizontal edges of partial ground plane, whereas vertical
currents are already present at the monopole arm. The presence of both horizontal and vertical currents
confirms the generation of circularly polarized radiated wave [19, 22], as shown in Figure 3(a).

In the 2nd approach, CP behaviour is analyzed using the electric field distribution phenomenon.
The nature of CP depends upon the orientation of electric fields, which moves in the clockwise (CW)
direction, along with direction of propagation, i.e., −z-axis. It is observed that the two field components
horizontal (x ) and vertical (y) components rotate with 90◦ phase. Such trends are observed in
Figure 3(b), when the maximum magnitude of electric fields orients in clockwise direction. This
development is characterized by right-hand thumb rule and visualized through the concept of plane
wave equations. A generalized equation [23] is shown below, which interprets the behaviour of electric
field pattern shown in Figure 3(b).

−→
E RHCP(z, t) = E0 cos(ωt + βz)x̂ + E0 cos(ωt + βz + 90◦)ŷ (2)

Putting z = 0 in above equation, the final expression for electric fields of RHCP becomes
−→
E RHCP(0, t) = E0 cos(ωt)x̂ + E0 cos(ωt + 90◦)ŷ (3)

In the 3rd approach, CP behaviour is analyzed using the relative power from normalized radiation
pattern phenomenon. From Figure 3(c), it is observed that RHCP is stronger than LHCP by more than
−20 dB at f = 5GHz, which confirms that the proposed antenna is an RHCP antenna. The dominance
of CP components is computed by using a CP relationship given in [2]. Therefore, a summary is drawn
that 1st approach relates with existence of CP, whereas 2nd and 3rd approaches relate with finding the
nature of CP for the proposed antenna design. The above analysis of evaluating circular polarization
characteristics can be even extended to other CP antennas, irrespective of its antenna geometry and
frequency of operation [22].

2.4. Design Process of Stage-3

In this stage, prerequisites such as broadband circular polarization (CP), higher antenna gain, consistent
antenna efficiency, and directional radiation pattern are attained [21]. The incorporation of a
metasurface superstrate at a height of 0.75λ0 above circularly-shaped radiator is designed to achieve
enhancement in antenna performance. The proposed rectangular metasurface, with a surface area of
1.05λ0×1.46λ0 used as a superstrate, consists of grid-slotted sub-patches of 13×13 cells, where each cell
is of 0.06λ0 ×0.1λ0 with an intermediate gap of 0.015λ0. The existence of higher order modes correlates
to the achievement of broad impedance and axial bandwidth [24].

When the metasurface superstrate comes in contact with circularly-shaped radiator, it redirects
one-half of the radiated waves to the opposite direction and improves the antenna gain (a rise of 2.94
times, i.e., 2.3 dBic to 6.78 dBic). Therefore, the radiated wave from superstrate-loaded antenna includes
the wave directed from circularly-shaped radiator and wave reflected from the metasurface superstrate,
and due to the geometry of the proposed structure, the superstrate-loaded antenna provides directional
radiation pattern. Because of the presence of metasurface superstrate, not only directional radiation
pattern is observed, but 3-dB axial bandwidth is also improved (a rise of 1.29 times, i.e., 720 MHz to
930 MHz). The enhancement of 3-dB axial bandwidth is specifically due to the generation of strong
orthogonal field components in the corresponding frequency bands.
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Table 2. Effect of various antenna parameters and parametric study regarding placement of metasurface
superstrate on the proposed antenna (stage-3).

hair-gap Impedance Bandwidth Axial Bandwidth CP Antenna Gain
30 mm 2.07–6.71 GHz, 106.9% ——— ———
35 mm 1.99–6.74 GHz, 108.8% ——— ———
40 mm 1.92–6.77 GHz, 111.6% ——— ———
45 mm 1.81–6.88 GHz, 117.9% 4.07–5 GHz, 20.66% 6.78 dBic
50 mm 1.73–6.77 GHz, 118.5% 4.4–4.92 GHz, 11.15% 6.91 dBic
55 mm 1.46–6.78 GHz, 129.1% 4.48–4.5 GHz, 10.97% 6.89 dBic
60 mm 1.13–6.77 GHz, 142.7% ——— ———

The gap (hair-gap) between radiator and metasurface superstrate depends on the thickness of
substrate (hsub), relative permittivity of substrate (εr), and λ0 (guided free-space wavelength at
f = 5 GHz) as shown in Equation (4). With the consideration of Equation (6), hair-gap is 45.24 mm
(theoretical) against hair-gap of 45 mm (simulated). Table 2 shows the understanding about variation
of hair-gap and its relative impact on different antenna parameters such as impedance bandwidth, axial
bandwidth, and CP antenna gain. The mathematical formulation given in Equation (4) can be applied
to the case of any superstrates and reflectors in analyzing their placement (hair-gap) with respect to the
radiator.

hair-gap = 0.76λ0 − hsub
√

εr (4)

The proposed metasurface antenna exhibits broad impedance bandwidth (1.81–6.88 GHz, 117.9%),
broad axial bandwidth (4.07–5 GHz, 20.66%), and average CP antenna gain of 6.78 dBic with the average
antenna directivity of 6.97 dBi. It exhibits better outcomes than the existing works reported in [7–19].
Thus, the objective of incorporating a metasurface as a superstrate is satisfied in this design process.

3. EVALUATION OF CP ATTRIBUTES IN TERMS OF AXIAL BANDWIDTH AND
CP ANTENNA GAIN

To evaluate CP traits, theoretical insights regarding the analysis of CP antennas are presented in terms
of axial bandwidth (BW3-dB) and CP antenna gain (G3-dB). The intuition behind proposed criteria (Cr1–
Cr4) correlates with the analysis of CP antennas, applicable regardless of their geometry and frequency
of operation. A detailed analogy about its mathematical derivation is highlighted from Equations (5)
to (11). The outcomes with realization to various CP antennas reported in [11–19] are shown in Table 3.
The CP characteristics are compared taking account of different parameters. These criteria are used
for a more complete evaluation of antenna characteristics.

To understand such a phenomenon for the proposed metasurface antenna (stage-3) in our study,
let us consider the criteria (Cr) including (a) 3-dB axial bandwidth (BW3-dB) and (b) CP antenna gain
(G3-dB). For the analysis, it can be represented as a function of:

Cr = F (BW3-dB, G3-dB) (5)

By considering product of 3-dB axial bandwidth and the CP antenna gain, Cr takes the form of:

Cr = BW3-dB × G3-dB (6)

Further, dividing the 3-dB axial bandwidth by 100, percentage representation of BW3-dB can be removed
from the criteria measurement unit. Thus, the final form of Cr can be expressed as:

Cr =
BW3-dB × G3-dB

100
(7)

Equation (7) presents the basic form of the proposed criteria for analyzing CP characteristics. Here, it
takes consideration of 3-dB axial bandwidth and CP antenna gain, often considered as the important
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Table 3. Evaluation of CP antennas [11–19] in compliance with proposed criteria: Cr1 and Cr4.

Ref. Type of Antenna BW3-dB G3-dB(avg) G3-dB(peak) Cr1 Cr4

[11] Monopole 5.1% 4.1 dBic 4.1 dBic 0.21 0.21
[12] Monopole 10% 5.5 dBic 6.67 dBic 0.55 0.66
[13] Monopole 16.5% 5.8 dBic 5.8 dBic 0.95 0.95
[14] Monopole 18.69% 5.1 dBic 6.1 dBic 0.95 1.14
[15] Dipole 18% 4.8 dBic 6.8 dBic 0.86 1.22
[16] DRA 10.6% ——— ——— ——— ———
[17] DRA 18.2% > 4 dBic 4.3 dBic 0.72 0.78
[18] DRA 11.57% 2.68 dBic 3.8 dBic 0.31 0.43
[19] DRA 17.59% 3.86 dBic 4.2 dBic 0.67 0.73

Proposed Monopole 20.02% 6.82 dBic 7.24 dBic 1.37 1.45

system parameters for an RF front-end in RF energy harvesting system [21]. These 4 proposed criteria
can be used for the evaluation of CP antennas [Equations (8) to (11)] derived with the segregation of
CP antenna gain and evaluated in the terms of (a) average (Gavg), (b) maximum (Gmax), (c) minimum
(Gmin), and (d) peak (Gpeak). The set of proposed criteria can be represented as:

Cr1 =
BW3-dB × G3-dB(avg)

100
(8)

Cr2 =
BW3-dB × G3-dB(max)

100
(9)

Cr3 =
BW3-dB × G3-dB(min)

100
(10)

Cr4 =
BW3-dB × G3-dB(peak)

100
(11)

Cr1 and Cr4 as the proposed criteria are evaluated with reference to proposed superstrate antenna
and other existing antenna designs reported in [11–19]. By utilizing Cr1–Cr4, the complete evaluations
of RF front-ends is possible. The above given theoretical insights are presented in a quite simplified
manner and utilized directly, compared to [25], where there is no consideration of CP peak antenna gain,
considered as one of the important system parameters in RF energy harvesting application [1, 20, 21].
Thus, an additional antenna parameter is investigated and reported, which strengthens the analysis for
CP antennas. The intuition behind these proposed criteria relate with a complete evaluation of antenna
characteristics, regardless of its nature/geometry and frequency of operation.

4. EXPERIMENTAL VALIDATION

The fabricated prototype of proposed metasurface antenna (stage-3), along with its measurement
process is shown in Figure 4. The structural support of metasurface superstrate over circularly-shaped
monopole radiator with asymmetrical staircased ground plane is taken care by the plastic spacers. The
proposed metasurface antenna is fabricated by using a PCB-ETSMATE prototyping machine. The
S11 parameter is measured by an Agilent N5247A PNA-X vector network analyzer (VNA) and far-
field parameters such as axial ratio, antenna gain, and radiation pattern which are measured in an
anechoic chamber. The measured impedance and axial bandwidth are 114.9% (1.85–6.85 GHz) and
20.02% (4.09–5 GHz), respectively, shown in Figure 5(a). Figure 5(b) shows simulated and measured
antenna gains. The average simulated and measured gains are 6.78 dBic and 6.82 dBic, respectively, with
simulated consistent antenna efficiency > 85.65% in the desired operating bands. Figures 6(a) and (b)
present the measured far-field normalized radiation patterns at 4.5 GHz and 5 GHz. The metasurface
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Figure 4. Fabricated prototype and experimental setup (including S11 measurement using VNA and
far-field parameters measurement in an anechoic chamber) for the proposed metasurface antenna.

(a)

(b)

Figure 5. Simulated and measured (a) S11 and AR, (b) antenna gain (LP/CP); with simulated antenna
efficiency from stage-1 to stage-3.

superstrate-inspired broadband CP printed monopole antenna offers a directional pattern with 3-dB
angular beamwidth > 100◦ in the broadside direction.

Table 4 highlights the performance metrics of different antenna parameters for stage-1 to stage-3.
Among these three stages, stage-3 witnesses better performance compared with the existing antennas
designs [7–19]. The proposed metasurface antenna excels over the referred instances in terms of
broadband CP, enhanced CP antenna gain of > 6.5 dBic, and antenna efficiency of > 85.65% in
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(a)

(b)

(c)

Figure 6. Simulated and measured normalized radiation pattern at (a) f = 4.5 GHz, (b) f = 5 GHz and
its (c) 3D pattern of dominated component of the metasurface superstrate inspired monopole antenna.
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Table 4. A comparison of performance index [stage-1 to 3] of the proposed antenna configurations.

Antenna Parameters Stage-1 Stage-2 Stage-3 Stage-3
Execution (Nature)-I Initial LP-to-CP Final Stage Final Stage
Execution (Nature)-II Simulated Simulated Simulated Measured

S11 1.2–7.2 GHz 1.1–6.8 GHz 1.81–6.88 GHz 1.85–6.85 GHz
Impedance Bandwidth-I 6 GHz 5.7 GHz 5.07 GHz 5 GHz
Impedance Bandwidth-II 142.8% 144.3% 117.9% 114.9%

Axial Ratio (AR) ——— 4.65–5.37 GHz 4.07–5 GHz 4.09–5 GHz
Axial Ratio Bandwidth-I ——— 720 MHz 930 MHz 910 MHz
Axial Ratio Bandwidth-II ——— 14.1% 20.66% 20.02%

Antenna Gain 3.4 dBi 2.3 dBic 6.78 dBic 6.82 dBic
Antenna Directivity 5.89 dBi 6.07 dBi 6.97 dBi ———
Antenna Efficiency > 70% > 70% > 85.65% ———

3-dB Angular Beamwidth ——— 76.8◦ > 100◦ > 100◦

Radiation Pattern Omni-Directional Omni-Directional Directional Directional

the desired frequency bands. It also offers the characteristics of low-profile, easy implementation and
portability, which is significant for RF energy harvesting [1, 20, 21].

Due to the incorporation of metasurface superstrate, a directional pattern is observed in the
broadside direction shown in Figure 6. Such type of radiation properties is different from a conventional
printed monopole antenna. Conventional printed monopole antennas exhibit only omnidirectional
characteristics [4]. Being the traditional directional antenna, it holds certain advantage such as
possibility of lower interference, improved spatial reuse, longer transmission range, and reduced power
requirement. Substantially, the antennas with omnidirectional radiation cause path loss with increasing
transmission distance, due to the beam spreading, often compensated by utilizing directional antennas.

These outcomes also present a picture that the proposed metasurface antenna is a generic solution
in achieving trade-offs (broadband CP, enhanced CP antenna gain, consistent antenna efficiency,
etc.), especially metasurface enabled radiators reported in recent period-of-times [24, 26–28]. Table 5
highlights the comparison of performance metrics with that of the proposed metasurface antenna.

Table 5. A comparison of existing metasurface enabled radiators in the same field of interest reported
in [24, 26–28].

Ref./
Year

Type of
Antenna

Impedance
Bandwidth

Axial
Bandwidth

CP Antenna
Gain

Time Domain
Analysis

RF Energy
Harvesting

24/2015 Printed 28% ——— ——— ——— ———
26/2017 Printed 30% ——— ——— ——— ———
27/2019 Printed 67.3% ——— ——— ——— ———
28/2020 Printed 29.41% 9.05% 6.34 dBic ——— ———
Proposed Printed 114.9% 20.02% 6.82 dBic Investigated Investigated

5. TIME DOMAIN ANALYSIS

Time domain analysis is important for broadband antennas [4], which describes the signal transmission
and its reception capabilities with minimum distortion, as a fundamental entity. The antenna parameters
such as group delay and isolation are analysed over the desired operating bands. CST microwave studio
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(a)

(b)

(c)

Figure 7. Evaluation of time domain analysis of the proposed metasurface antenna (a) side-by-side
and face-to-face arrangements, (b) normalized input & output pulse and variation in group delay (in
terms of ns), (c) variation of isolation (in terms of dB) and variation of S21 phase (in terms of degrees).

is used to pursue the time domain analysis. The identical radiating structures of proposed metasurface
antenna are kept at (a) side-by-side and (b) face-to-face arrangements, with the intermediate distance of
30 cm in between them. The monopole radiator is characterized in the broadside direction, for showing
a better prospective in terms of antenna performance. A detailed analysis, along with its corresponding
outcomes, is shown in Figures 7(a)–(c).

A Gaussian pulse is used for analyzing the characteristics of its signal behaviour. It is observed from
these outcomes that with better isolation (dB) and approximately linear phase variation, metasurface
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antenna demonstrates good pulse handling capability, as demanded by communication systems. In
the literature, RF front-end is considered an integral part of an RF energy harvesting system, which
predominantly receives RF signals emitted from other ambient sources. Since the RF energy that is
available in the surrounding environment can exist in any orientation and phase alignment, CP antennas
in the broadside direction with enhanced CP antenna gain are more desirable for RF energy harvesting
systems. Output traits of the proposed antenna derived from time domain analysis can be correlated
with the indoor measurement of rectenna system, which is related to the Friis Transmission Equation [1].

(a)

(b)

(c)

Figure 8. Circuit diagram and RF-to-DC conversion efficiency of rectifier circuit embedded with the
proposed antenna configurations (a) stage-1 (initial), (b) stage-2 and (c) stage-3 (final).
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6. IMPLEMENTATION OF DESIGNED RECTIFIER CIRCUIT

The proposed metasurface antenna is integrated with a rectifier circuit consisting of L-C matching
network and Greinacher voltage doubler (GVD) for RF energy harvesting application. To bring more
intuition behind the metasurface antenna, performance levels of individual antenna configurations
(stage-1 to 3) have been investigated and shown in Figures 8(a)–(c). The parameters such as RF-
to-DC conversion efficiency (η0) are calculated by considering the topology of Equation (14), and DC
output voltage (Vout) is taken through the evaluation of circuit variables at the ADS platform.

η0(%) =
Pload

Pincident
=

V 2
out

Pin × Rload
(12)

In our study, the designed rectifier circuit is analysed for input power levels (Pin), from −10 to 20 dBm.
On interpretation of the circuit variables in a test environment at ADS, with a load resistance (Rload) of
2.2 kΩ, Vout is 3.21 V with η0 calculated as 29.7% at 12 dBm (for stage-1); Vout is 2.73 V with η0 calculated
as 21.6% at 12 dBm (for stage-2); and Vout is 4.86 V with η0 calculated as 67.8% at 12 dBm (for stage-3).
Prior to simulation, theoretical insights about the proposed rectifier model are also investigated. Here,
each individual stage with its dedicated GVD configuration is considered as the single battery having
open circuit output voltage (Vo.c.), internal resistance (Rint), and load resistance (Rload). Henceforth,
the output voltage (Vout) can be expressed as:

Vout =
Vo.c.

Rint + Rload
× Rload (13)

For n number of stages in series and connected to Rload, Vout can be represented as:

Vout =
nVo.c.

nRint + Rload
× Rload (14)

Thus, the number of stages in the system has a significant effect on the output voltage (Vout) [29],
which can be referenced from Equations (15) and (16). The realization of such high amount of DC
harvested voltage lies in the usage of partial ground plane in the proposed metasurface antenna,
resulting in maximizing the captured energy, which can energize the sensors in internet-of-things (IoTs)
application. Continuing in our investigation, the utilization of metasurface [20, 21, 30] is used to enhance
gain and directivity of RF front-end. Inan RF energy harvesting system, the received power is one of the
important parameters that evaluate the performance of rectenna model. With the specific conditions
of operating frequency and availability of ambient RF signals, enhanced CP antenna gain is the only
possible way-out to maximize the outcomes of RF energy harvesting, as interpreted from Table 6 and
Figures 8(a)–(c).

Table 6. The performance metrics of individual antenna configurations (stage-1 to 3) after integrating
rectifier circuit in the test environment of ADS platform at f = 5 GHz [i.e., Wi-Fi (5 GHz), Wi-MAX
(5 GHz), ISM (5 GHz) and 5G (5 GHz)].

Geometrical Sequences Antenna Gain (LP/CP) Input Power Levels DC Output η0

Stage-1 (Initial) 3.4 dBi (LP) 12 dBm 3.21 V 29.7%
Stage-2 (Intermediate) 2.3 dBic (CP) 12 dBm 2.73 V 21.6%

Stage-3 (Final) 6.78 dBic (CP) 12 dBm 4.86 V 67.8%

7. CONCLUSION

A metasurface superstrate-based broadband CP printed monopole antenna with directional pattern have
been presented and studied. It exhibits broadened impedance & axial bandwidth, average measured
CP gain of 6.82 dBic, and antenna efficiency > 85.65% in the operating bands. Besides simulation and
characterization, a detailed explanation about attainment of broadband CP, backed by surface current
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distribution, electric field distribution & normalized far-field radiation and directional radiation pattern
characteristics in broadside direction, with incorporation of metasurface superstrate is investigated. The
obtained outcomes suggest that it can be an excellent candidate for RF energy harvesting. Therefore,
the proposed metasurface antenna is integrated with a designed rectifier circuit, where the parameters
such as RF-to-DC conversion efficiency (η0) and DC output voltage (Vout) are analyzed by using ADS
platform. It shows better performance (η0 = 67.8% and Vout = 4.86 V at 12 dBm) than other antenna
configurations, reported in Table 6.
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