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New Theoretical Floquet Modal Analysis to Study 3-D Finite
Almost Periodic Structures with Coupled Cells

Bilel Hamdi* and Taoufik Aguili

Abstract—This research letter offers a generalization character to our previous work [4, 5] to examine
a 3-D almost periodic phased array antenna excited by arbitrarily located sources. An original modal
formulation based on the Floquet analysis procedure is proposed utilizing the periodic walls along x,
y, and z-axes, where the analysis region in the spectral domain is reduced to the Brillouin zone. Here,
a good idea is provided to enforce the given boundary conditions for obtaining an integral equation
formalism developed through Galerkin’s method for solving periodic volumic structure (e.g., 3-D regular
structure in the cubic grid). The interaction between cells in 3-D geometry (lattice) could be deduced
using a novel expression of mutual coupling. However, it is possible to obtain it explicitly by the mean
of Fourier transform and its inverse. Then, it is proven how Floquet analysis can be employed to study
a 3D-finite array configuration with arbitrary amplitude and linear phase distribution along x, y, and
z directions, including mutual interaction effects. To deal with the real hole 3D array configuration,
a superposition theorem is suggested to describe the electromagnetic behavior in the spatial domain.
For modeling the given 3D antenna array, one numerical method is adopted: The moment method
combined with an equivalent circuit (MoM-GEC). An important gain in the running time and memory
used would be achieved using Floquet analysis in comparison with other spatial conventional methods
(especially, when the number of cells increases by adding the second and third directions).

1. INTRODUCTION

Nowadays, almost periodic structures in 3D-dimensional arrangement become the subject of extensive
scientific research, especially in defense and space applications, communication systems, and electronic
devices [1–3]. Common numerical techniques have been employed in this way, and they intend to solve
partial differential equations with 3D periodic boundary conditions. In this work, we suggest calculating
the mutual coupling parameters between antennas array sources in 3D-dimensional configuration
(lattice). To consider coupling effects, a new Floquet modal analysis is required to decrease the difficulty
of the reviewed problem [4–7]. Then, the field components can be therefore expressed in the generalized
Fourier series expansions, and the analysis region can be reduced to simple unity periodicity cell. For
solving this problem, we propose adopting an integral method based on the generalized equivalent model
and using the Floquet modes which are written as excitation sources [4, 5]. The transition to the real
spatial domain is provided through a simple superposition theorem that is established using a Fourier
transform’s inverse [6, 7]. The proposed paper is structured into four sections as follows. The first step is
to remind the essential theoretical Floquet modal analysis. To start with, the Finite Fourier Transform
(FFT) and spectral decomposition are given. Next, in Section 3 the studied problem is formulated
by an integral equation based on a new operator formalism deduced using the Generalized Equivalent
Circuit (GEC) approach. Then, in Section 4 the principal advantages in terms of the memory used and
numerical execution time are presented and discussed. Finally, in the last section, some conclusions are
drawn.
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2. FLOQUET MODAL ANALYSIS

In this section, we propose to tackle the elements in a 3D configuration to generalize the preceding
case with more complex periodicities [4, 5]. Consider a 3-D structure, a linear array of point sources
on the x-y plane with its (i, s, k)th element placed at �risk = (idx, sdy, kdz) with −Nx

2 ≤ i ≤ Nx
2 − 1,

−Ny
2 ≤ s ≤ Ny

2 − 1, −Nz
2 ≤ k ≤ Nz

2 − 1, where dx, dy, and dz are the inter-element periods in the
x, y, and z coordinates, respectively [11–14]. Adding the third direction allows three Floquet modes
(αp, βq, ψt) in the modal space when each element is surrounded by a suitable periodic wall along (ox),
(oy), and (oz) directions [1–3]. Using the modal analysis, the periodic symmetry of the structure forces
us to focus on one cell of the array. The unit cell can be defined as the basic building block (can
be an arbitrary metallic shape) of the array that repeats itself infinitely obtained by the periodicity
(dx, dy , dz), as mentioned in Figure 1. As we have already seen, this efficient original modal analysis
introduces a new excitation source decomposition in spectral-domain according to a finite (respectively
infinite) periodic structure that removes the complexity of the problem under consideration to model
and analyze the periodic structure when motifs are strongly or weakly coupled [9]. As in 1-D and 2-D
cases, the electric source field for a 3-D grid E(i, s, k) is decomposed as

E(idx, sdy, kdz) =
1√

NxNyNz

Nx
2

−1,
Ny
2

−1,Nz
2

−1∑
p=−Nx

2
,q=−Ny

2
,t=−Nz

2

Ẽαp,βq,ψte
jαp(idx)ejβq(sdy)ejψt(kdz) (1)

with αp = 2πp
Nxdx

, βq = 2πq
Nydy

, and ψt = 2πt
Nzdz

, where −Nx
2 ≤ i ≤ Nx

2 − 1, −Ny
2 ≤ s ≤ Ny

2 − 1,

−Nz
2 ≤ k ≤ Nz

2 − 1.
Like in 1-D and 2-D cases, we rewrite the IFFT as follows:

Ẽαp,βq,ψt =
1√

NxNyNz

Nx
2

−1,
Ny
2

−1,Nz
2

−1∑
i=−Nx

2
,s=−Ny

2
,k=−Nz

2

E(idx, sdy, kdz)ejαp(idx)ejβq(sdy)ejψt(kdz) (2)

Identically, the current distributions J(i, s, k) and J̃αp,βq,ψt are expressed in the same way as the
electric source fields. This Floquet principle requires to define 3D periodic walls for Maxwell equations.

Figure 1. Unit cell of 3D-almost periodic array with arbitrary planar metallic shape (arbitrary motifs).
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The obtained Floquet modal electric and magnetic fields, E and H, are governed by the differential
form of Maxwell’s relations. Chapter three of ARUN K. BHATTACHARYYA’s book explains how
to demonstrate the normalized Floquet modal functions [8]. Here, we will describe a new expression
|F TE,TMmn,α 〉 of higher-order Floquet modes, which represents 3D periodic walls,

♦ TEz − Fields : (i.e., Ez = 0)

�ETEmn =
ETEmn√

K2
xm,α +K2

yn,β

exp (−j(Kxm,α +Kyn,βy +Kzt,ψz)) (−Kyn,βx̂+Kxm,αŷ) (3)

�HTE
mn =

ETEmn ( μω
Kzt,ψ

)−1√
K2
xm,α+K2

yn,β

exp (−j(Kxm,α+Kyn,βy+Kzt,ψz))

(
Kxm,αx̂+Kyn,β ŷ−

K2
xm,α+K2

yn,β

Kzt,ψ
ẑ

)
(4)

♦ TMz − Fields : (i.e.,Hz = 0)

�ETMmn =
ETMmn (Kzt,ψεω )

η
√
K2
xm,α+K2

yn,β

exp(−j(Kxm,α+Kyn,βy+Kzt,ψz))

(
Kxm,αx̂+Kyn,β ŷ−

K2
xm,α+K2

yn,β

Kzt,ψ,(n=0,m=0)
ẑ

)
(5)

�HTM
mn =

ETMmn

η
√
K2
xm,α +K2

yn,β

exp (−j (Kxm,α +Kyn,βy +Kzt,ψz)) (−Kyn,βx̂+Kxm,αŷ) (6)

Similarly, a particular fundamental Floquet mode is given when m = 0, n = 0 and t = 0. The
wave number along z is obtained as: γz,mn = kzt,ψ =

√
K2

0 −K2
xm,α −K2

yn,β. For a general periodic

grid structure, the wavenumbers constants are given by: Kxm,α = 2mπ
dx

+ α, Kyn,β = 2nπ
dy

+ β, and
Kzt,ψ = 2tπ

dz
+ ψ [11–14]. Referring to our previous work [4, 5], a new mathematical mutual coupling

formula is given, which is absolutely different from the other literature examples [10]. To understand
the idea better, it is sufficient to follow our transformation process detailed in [4, 5]. In this paper, we
prefer to generalize the mutual coupling expression, considering the 3D almost periodic grid. Based on
both 1D and 2D almost periodic arrays, it is possible to construct a new Fourier matrix representation
that follows the 3D periodic grid [1] (Like the examples shown in [5], and it may be important to
obtain the Matlab source code that corresponds to a 3D Fourier matrix). The Fourier matrix TF has

elements TF3D = wipx w
sq
y wktz , and w is a complex nth root of unity: wx = e−j

2πdx
Lx , wy = e

−j 2πdy
Ly , and

wz = e−j
2πdz
Lz . The 3D almost periodic structure’s Fourier matrix form keeps the same properties of the

1D and 2D Fourier matrices explained in [4, 5]. Generally, the use of every proper Floquet wave vector
(wave state) obtained in the spectral domain comes to define a diagonal operator successfully which
contains all possible modal input impedances z̃αp,βq,ψt . Finally, the mainly coupling expression is given
below:

[Zi,j] = TF−1
3D z̃αp,βq,ψtTF3D (7)

The consequence of this latter transformation is entirely to deduce the mutual admittance and scattering
parameters between periodic elements in an array environment which may define as:

[Yi,j] = TF−1
3D ỹαp,βq,ψtTF3D (8)

[Si,j] = TF−1
3D s̃αp,βq,ψtTF3D (9)

To produce the interaction in the spatial domain, a novel matrix representation is proposed where a
division by submatrix is considered: The interaction established between the elements belonging to the
same plane is given by submatrix disposed diagonally along the hole spatial mutual impedance matrix.
The coupling between elements placed in different planes is given by an upper triangle of the hole spatial
coupling matrix (also called interaction submatrices). According to the reciprocity theorem, the lower
triangular part of the spatial coupling matrix is obtained identically to the upper values (Zij = Zji).
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3. PROBLEM FORMULATION: UNIT CELL OF 3D ALMOST PERIODIC
ANTENNA ARRAY

This part introduces a distinct formulation to investigate the theoretical improvement appreciably for
resolving the planar structure in 3D periodic arrays: The modal formulation restraint to modelize the
unit structure that is designed to support the dependence on Floquet modes. In more details, we assum
a novel schema of an equivalent circuit proposed to examine the latter 3D-unit structure, as shown in
Figure 2. Next, this circuit leads to an equations system, given as:(

Ẽ1,ψ

J̃1,ψ

)
=
(

Ĉi,j
)(

Ẽ2,αβ

J̃2,αβ

)
(10){

Ẽ2,αβ = Ẽ′
2,αβ = E0,αβ + Ee,αβ

J̃2,αβ = J̃0,αβ + J̃ ′
2,αβ (J̃0,αβ = J̃e,αβ)

(11)

(
Ẽ′

2,αβ

J̃ ′
2,αβ

)
=
(

Ĉ ′
i,j

)( ˜E′
3,ψ
˜J ′
3,ψ

)
(12)

Following the Floquet theorem (and the passage from each element to the other along the z-axis), we
can note {

Ẽ1,ψ = Ẽ′
3,ψe

jψdz

J̃1,ψ = J̃ ′
3,ψe

jψdz
(13)

Figure 2. Equivalent circuit of the unit cell in 3D almost periodic array.

How Ĉi,j = Ĉ ′
i,j matrix is calculated.

Normally, the elements of Ĉi,j operator representation can be defined as:

ˆC1,1 =
∑
mn

|fmn〉 cosh
(
γTE,TMmn

dz
2

)
〈fmn|

ˆC1,2 =
∑
mn

|fmn〉 sinh
(
γTE,TMmn

dz
2
zupper,downmn,TE,TM

)
〈fmn|

ˆC2,1 =
∑
mn

|fmn〉 sinh
(
γTE,TMmn

dz
2
yupper,downmn,TE,TM

)
〈fmn|

ˆC2,2 =
∑
mn

|fmn〉 cosh
(
γTE,TMmn

dz
2

)
〈fmn|
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Owing to the generalized equivalent approach, the matrix representation employing the Kirchhoff laws
can be expressed as below: (

J̃0,αβ

Ẽe,αβ

)
=
(

0 1
−1 ˆGpq,st

)(
Ẽ0,αβ

J̃e,αβ

)
(14)

As a result, through analogical reasoning from the matrix chain combined with the Floquet
condition (in terms of current and electric fields) to Galerkin matrix representation, by considering
the Kirchhoff laws, it drives to obtain a novel operator expression ˆGpq,st written as:

ˆGpq,st = (1 − ˆC1,1)−1 ˆC1,2

[
1 + ˆC ′

1,1

(
ˆC1,1(1 − ˆC1,1)−1 ˆC1,2 + ˆC1,2

)
ejψdz

+ ˆC ′
2,1

(
ˆC2,1(1 − ˆC1,1)−1 ˆC1,2 + ˆC2,2)

)
ejψdz

]
(15)

A similar theoretical development is shown in [4, 5], as done for the 3D-unit cell to express the Floquet
modal input impedance:

Z̃in,αβψ =
(
t
[
Ãαβψ

] [
ˆGpq,st,αβψ

]−1
Ãαβψ

)−1

(16)

where [Ãαβψ ] = [〈f |gpq,st,αβψ〉] = [〈1
δ |gpq,st,αβψ〉]. We should bear in mind that this latest Floquet modal

input impedance relation is used in the previous section to calculate the interaction between cells, as
given in Equation (7). Getting back to Kirchhoff’s laws (current and tension), we can deduce:{

J̃0,αβψ = J̃e,αβψ

Ẽe,αβψ = −Ẽ0,αβψ + ĜJ̃0,αβψ

(17)

Then, it is possible to apply the superposition theorem (Fourier transform) with a triply periodic grid
by adding the z-direction and its corresponding ψ Floquet dependence.

4. STORAGE MEMORY AND TIME COMPUTATION

In this section, we appreciate the Floquet modal formulation compared to the old spatial formulation
in requirement memory cost and reducing computational time: As we have always explained in our
past work [4, 5], we show how Floquet analysis is more important in terms of the total needed time and
memory resources. Physically, we obtain the same observation concerning the operation number, storage
memory, and time-consuming, as given in [4, 5, 15–17], when the third direction will be considered.
In more details, we must take into account that the addition of z-direction permits modification of
the impedance matrix dimension in both spatial and spectral formulations. However, the growing of
the number Nz according to the third axis makes the electromagnetic calculation heavier in terms of
memory resource and time execution than 1-D and 2-D almost periodic structures. Table 1 shows how
the memory space behavior, the number of operations, and execution time increase versus the sizes of
1D, 2D, and 3D quasi-periodic arrangements, using the Floquet’s modal formulation.

Table 1. A comparison table to compute the storage memory and the execution time consuming based
on the Floquet modal analysis.

Floquet modal analysis

Configurations
Memory size

(Bytes)
Number of
operation

TMoM

(total needed time)
(second)

1D (Nx = 3) 153600 64000 1296.30
2D (Nx = Ny = 3) 460800 192000 3888.76

3D (Nx = Ny = Nz = 3) 1382400 576000 11666.30
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5. CONCLUSION

In this paper, we show an innovative modal Floquet approach to investigate the mutual coupling in finite
and infinite 3-D almost periodic sources arrays. Usually, the modal representation leads to elimination
of the electromagnetic complexity of the considered problem. The selected formalism of Floquet analysis
combined with the equivalent circuit method reduces the electromagnetic calculation of the whole 3D
almost periodic structure on one unit cell. As a result, an easy relation, based on the Fourier transform
and its inverse permits a manageable calculation of the coupling terms (Z, Y , and S). The main interest
of this novel modal analysis is reducing the computation time and memory storages that relatively
depend on the cube and square of the number of array elements. This work is a fundamental starting
point for coming research of different periodic and aperiodic 3-D arrangements with different sources
amplitudes.

APPENDIX A. TABLE TO RESUME HOW TO COMPUTE STORAGE MEMORY
AND TIME CONSUMING

Table A1. Table of comparison between Floquet modal formulation and spatial formulation in terms
of the memory consumption and the execution time for a 1D, 2D, and 3D finite almost periodic
configurations.

New Floquet modal formulation

Configurations
Memory
size [15]

Number of
operation [16]

TMoM

(total needed time) [5]

1D Nx(P )2 Nx
P 3

3

MNx(P )2(Ts + Top)
+2

3Nx(P )3Top + δ

2D (NxNy)(P )2 (NxNy)P
3

3

M(NxNy)(P )2(Ts + Top)
2
3(NxNy)(P )3Top + δ

3D (NxNyNz)(P )2 (NxNyNz)P
3

3

M(NxNyNz)(P )2(Ts + Top)
+2

3(NxNyNz)(P )3Top + δ

Old spatial formulation

Configurations
Memory
size [15]

Number of
operation [16]

TMoM

(total needed time) [5]

1D (NxP )2 (NxP )3

3

M(NxP )2(Ts + Top)
+2

3(NxP )3Top + δ

2D (NxNyP )2 (NxNyP )3

3

M(NxNyP )2(Ts + Top)
2
3 (NxNyP )3Top + δ

3D (multidimensional
matrix)

Nz(NxNyP )2 Nz
(NxNyP )3

3

MNz(NxNyP )2(Ts + Top)
+2

3Nz(NxNyP )3Top + δ

3D (simple
matrix)

(NxNyNzP )2 (NzNxNyP )3

3

M(NxNyNzP )2(Ts + Top)
+2

3(NxNyNzP )3Top + δ

Nx, NxNy, and NxNyNz represent the possible phases shift number of Floquet states that
correspond respectively to αp, (αp, βq), and (αp, βq, ψt) (according to a finite 1D, 2D, and 3D almost
periodic arrays). Nx, NxNy, and NxNyNz also represent the number of arrays elements in 1D, 2D, and
3D periodic arrays. M is the total guide’s modes number, and P is the total test function number (that
describe the metal part).

The other parameters are defined in detail in [4, 5].
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