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A Meshless Method for TM Scattering from Arbitrary Shaped
Radially Inhomogeneous Cylinders

Birol Aslanyürek1, * and Tolga U. Gürbüz2

Abstract—A meshless method for fast solution of the electromagnetic scattering problem related
to arbitrary shaped radially inhomogeneous cylinders is proposed. This is an important problem
since radially inhomogeneous circular cylinders are common in various engineering applications, and
deformations such as notches, grooves, and noncircular holes on such cylinders are required for different
purposes. This approach is basically an extension of the previously proposed method, which is based
on Fourier series representation of the electric field on boundaries. In the original method, a multilayer
cylinder with arbitrary shaped homogeneous layers is considered, and accordingly, the general solution
of the cylindrical wave equation in homogeneous medium is used. Here we modify the method by
considering the general solution in radially inhomogeneous medium and derive compact expressions for
the field.

1. INTRODUCTION

Materials with continuous variation of material properties along a specific direction are called
functionally graded materials (FGMs). Different types of FGMs are produced by processing various
conventional materials, and due to their superior physical properties, they are used in a diverse range
of applications [1].

A radially inhomogeneous cylinder whose material properties vary continuously along the radial
direction only is a common example of FGM objects. The varying material properties of these cylinders
may include the electrical properties. Efficient solution of the electromagnetic scattering problems
related to such cases have been investigated for a long time and analytical solutions have been derived
for special dielectric permittivity profiles in a number of studies [2–5]. In [6], these analytical solutions
are used to solve the problem of oblique scattering from a possibly multilayer cylinder having radially
inhomogeneous layers, by representing the problem as a system of coupled linear Volterra integral
equations. For more general permittivity profiles, a finely stratified cylinder model, in which the radially
inhomogeneous layer is assumed to be composed of concentric homogeneous layers, is applied in [7]. A
meshless alternative based on Taylor’s series expansion of the permittivity function is also proposed
for such general profiles [8]. For the case that the permittivity changes not only along the radial
direction but also along the azimuthal direction, an extension of the Rigorous Coupled Wave Analysis is
applied to solve the scattering problem [9]. The radially inhomogeneous cylinders considered in all these
studies have circular (or elliptical) cross sections. Circular FGM rods, which can be produced by using
centrifugal methods [10], are examples of such cylinders. On the other hand, it is common to encounter
engineering applications in which these circular rods are used as intermediate product. In such cases,
for various purposes, they are processed in a way to create deformations, such as notches, grooves,
and noncircular hollows, lying parallel to the axis of the cylinder. Hence, in this study we propose
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a meshless method for fast computation of the field scattered from deformed radially inhomogeneous
cylinders when the cylinder is normally illuminated by electromagnetic plane waves. To the best of our
knowledge, except conventional discretization-based techniques such as Method of Moments (MoM) [11]
or Finite Element Method (FEM) [12], this is the first method proposed for solution of the scattering
problem related to arbitrary shaped radially inhomogeneous cylinders.

The approach given here is based on Fourier series representation of the electric field on boundaries,
and it is basically an extension of the approach that we proposed in [13] for multilayer cylinders with
arbitrary shaped homogeneous layers. In [13], the general solution of the cylindrical wave equation in
homogeneous medium, i.e., a series of Hankel and Bessel functions, is used for each homogeneous layer.
One might attempt to use these solutions for radially inhomogeneous cylinders by modeling the object as
a multilayer cylinder composed of numerous thin homogeneous circular rings. However, regions near the
arbitrary shaped boundary cannot be modeled by such rings. For this reason, here we need to modify
the method in [13] by considering the general solution in a single-layer radially inhomogeneous medium
instead of the series of Hankel and Bessel functions used in [13]. With the help of this modification,
we derive compact expressions for the field. One can easily apply the proposed method for multilayer
cylinders that have one or more radially inhomogeneous layers around a core.

In the Numerical Results Section, the proposed method is tested on radially inhomogeneous objects
having two different cross-sections, i.e., a V-notched circle and a rectangle with a hole, which may
be encountered in various applications [14, 15]. The numerical simulations performed for some basic
permittivity profiles show that the proposed method yields accurate results in a short computing time
compared to MoM.

Throughout the paper, the time dependency is assumed as exp(−iωt) and suppressed. Vectors and
matrices are given in bold.

2. PROBLEM STATEMENT AND FORMULATION

Although there is no obstacle to using the method given in this paper for single layer radially
inhomogeneous cylinders, here we deal with a two-layered cylindrical object composed of a radially
inhomogeneous layer and a core layer as shown in Fig. 1 since in most applications there also exists
a homogeneous core. We assume that the arbitrary shaped cylindrical object is infinitely long. When
we consider the outermost medium as another layer and represent it by subscript 0, the complex
permittivities of the layers from outside to inside are ε0, ε1(ρ) and ε2, where ρ is the radial coordinate.
All layers are nonmagnetic and the corresponding wavenumbers are k0, k1(ρ) and k2. The boundaries
between the layers are Γ1 and Γ2 which are defined by ρ = f1(φ) and ρ = f2(φ), respectively. Here, f1

and f2 are real single-valued functions in polar coordinates.

Figure 1. Arbitrary shaped radially inhomogeneous layer around a core.

The object is normally illuminated by a time-harmonic electromagnetic wave. The electric field of
the incident wave is Ei(ρ, φ) = ui(ρ, φ)ez, where ez is the unit vector in the z direction. In this case, the
total field in the mth layer can be represented by scalar functions um(ρ, φ), m = 0, 1, 2. As shown in [5],
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since εm is dependent only on ρ or is a constant, um can be represented as a series of two functions,
namely R

(1)
n,m and R

(2)
n,m, which are linearly independent solutions of[

1
ρ

d

dρ

(
ρ

d

dρ

)
+ k2

0

εm (ρ)
ε0

− n2

ρ2

]
R(1),(2)

n,m = 0. (1)

When εm is constant, i.e., the layer is homogeneous, it is known that the nth order Bessel function,
Jn(kmρ), and Hankel function of the first kind, H

(1)
n (kmρ), are linearly independent solutions of Eq. (1).

In [13] and its recursive version [16], the field is represented as a series of Jn(kmρ) and H
(1)
n (kmρ), and

a fast approach is proposed for computation of the field scattered from arbitrary shaped homogeneous
layers.

For various εm(ρ) distributions, explicit expressions of R
(1)
n,m and R

(2)
n,m are also derived and used

for computation of the field in several studies [2–5]. However, all boundaries are circular in these
studies. In the present study, we propose an approach for computation of the field when the boundaries
of radially inhomogeneous layers are arbitrary-shaped. This approach is basically an extension of the
approach given in [13, 16] to the case that the arbitrary shaped layers can also be radially inhomogeneous.
Accordingly, the field representation that is used in the proposed procedure becomes

um (ρ, φ) =
N∑

n=−N

(
a(m)

n R(1)
n,m (ρ) + b(m)

n R(2)
n,m (ρ)

)
einφ, (2)

for m = 1, 2. In the outermost region, instead of u0, the scattered field us = u0 − ui is represented by
this series for m = 0. Here, N is a sufficiently large number and a

(m)
n , b

(m)
n are unknown coefficients to

be determined.

2.1. Derivation of the Coefficients of the General Solution

In order to determine the coefficients a
(m)
n , b

(m)
n in Eq. (2), a linear system of equations for each of the

boundaries Γ1 and Γ2 is obtained by applying the procedure given in [13, 16]. Briefly, after imposing the
boundary conditions um−1 = um and ∂ρum−1 = ∂ρum on Γm, m = 1, 2, the functions R

(1)
n,m, R

(2)
n,m and

their radial derivatives are expanded into Fourier series. Then, we apply an inner product with e−ipφ,
p = −N, . . . ,N , on both sides of the boundary conditions by using the definition given in [16] for the
inner product. In virtue of the orthogonality of complex exponentials, two linear systems of equations
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are obtained for boundaries Γ1 and Γ2, respectively. Here, W, Ŵ, A(m), and B(m), m = 0, 1, 2, are
column vectors of size (2N + 1). The elements of A(m) and B(m) are the unknown coefficients a

(m)
n and

b
(m)
n , respectively, and
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The coefficient matrices of Eqs. (3) and (4) contain (2N + 1) × (2N + 1) submatrices

Zt,(j)
m =

⎡
⎢⎢⎢⎢⎢⎣

C
t,(j)
2N,−N,m C

t,(j)
2N−1,−N+1,m . . . C

t,(j)
0,N,m

C
t,(j)
2N−1,−N,m C

t,(j)
2N−2,−N+1,m . . . C

t,(j)
−1,N,m

...
...

. . .
...

C
t,(j)
0,−N,m C

t,(j)
−1,−N+1,m . . . C

t,(j)
−2N,N,m

⎤
⎥⎥⎥⎥⎥⎦ (7)

whose elements are the Fourier coefficients

Ct,(j)
q,n,m =

1
2π

∫ 2π

0
R

(t)
n,j (fm (φ)) e−iqφ dφ. (8)

In Eq. (8), R
(3)
n,j = ∂ρR

(1)
n,j and R

(4)
n,j = ∂ρR

(2)
n,j.

Applying the Sommerfeld radiation condition yields A(0) = 0. Similarly, B(2) vanishes since in
the homogeneous core R

(2)
n,2(ρ) is equal to H

(1)
n (k2ρ), which is singular at the origin. The details of the

above procedure are given in [13, 16]. In the present formulation, more generalized functions, i.e., R
(1)
n,m

and R
(2)
n,m, are used to represent the total field, and accordingly the Fourier coefficients in Eq. (7) are

modified.

2.1.1. The Explicit Expressions for Coefficients of the General Solution

One can extract the unknown coefficients from the linear systems in Eqs. (3) and (4), and obtain their
explicit expressions as

B(0) =
(
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When the core layer is a perfect electric conductor (PEC), A(2) and B(2) vanish, and Eq. (15)

transforms into Z̃j
2 = Zj,(1)

2 , j = 1, 2.

2.2. The Explicit Expressions of R(1)
n,m and R(2)

n,m for Special Profiles

In free-space and the homogeneous core, R
(1)
n,m(ρ) = Jn(kmρ) and R

(2)
n,m(ρ) = H

(1)
n (kmρ), m = 0, 2. The

explicit expressions of R
(1)
n,m and R

(2)
n,m are given below for some radially inhomogeneous layers that have

different dielectric permittivity profiles [3–5].
• Profile 1:

ε1 (ρ) = ε0
C

(k0ρ)2
(16)

R
(1)
n,1 (ρ) = (k0ρ)1+p (17)

R
(2)
n,1 (ρ) = (k0ρ)1−p (18)
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Here, C is a complex parameter and p2 = n2 − C.
• Profile 2:

ε1 (ρ) = ε0α
2ρ

2β
, β �= −1 (19)

R
(1)
n,1 (ρ) = Jν

(
αk0

β + 1
ρβ+1

)
(20)

R
(2)
n,1 (ρ) = Yν

(
αk0

β + 1
ρβ+1

)
(21)

Here, α and beta are complex and real parameters, respectively, while Yν is the Neumann function
of order ν, and ν = |n|/(β + 1). Note that, C in Eq. (16) and α in Eq. (19) will be real for lossless
profiles.

3. NUMERICAL RESULTS

Some numerical simulations have been performed for two different-shaped objects that have various
dielectric permittivity distributions. In these simulations, the objects are illuminated by a TM plane
wave at 300 MHz with an angle of π/4 with respect to the x-axis. By using a PC with a 3.40 GHz CPU
and 12 GB of RAM, the scattered field is computed on a 2 m-radius circle whose center is at the origin.
The results are compared with the ones obtained by using MoM. While the cell size in MoM is chosen in
terms of the minimum wavelength λmin as λmin/14×λmin/14, the truncation number N in the proposed
method is chosen as 50 (a discussion on the interval of N for which convergent results are achieved is
given in [17]).

In the first example, a V-notched circular radially inhomogeneous layer surrounding a homogeneous
circular core is considered. Three different cases in which ε1(ρ) is proportional to 1/rho2, 1/rho and ρ,
have been designed by using the profiles in Eqs. (16) and (19). More explicitly,

• Case 1: C = 50 + 3i in Profile 1, and ε′r2 = 14, σ2 = 0.03 S/m;
• Case 2: α2 = 15/k0 + 0.3i, β = −0.5 in Profile 2, and ε′r2 = 8, σ2 = 0.05 S/m;
• Case 3: α2 = 25/k0 + 0.06i, β = 0.5 in Profile 2, and ε′r2 = 4, σ2 = 0.05 S/m.

where ε′r2 is the real part of the complex relative permittivity, and σ2 is the conductivity of the core.
The real parts of the corresponding complex relative permittivity distributions are given in Fig. 2.
The conductivity distributions are not given here since they have the same radial behavior with the
permittivities in the radially inhomogeneous layer. They change in the intervals [1.3, 14.1] (mS/m),
[5.0, 16.7] (mS/m) and [0.3, 1.0] (mS/m) for Case 1, Case 2 and Case 3, respectively.
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Figure 2. Real part of the complex relative permittivity distribution of a V-notched circular object
with a radially inhomogeneous layer surrounding a circular core: (a) Case 1, (b) Case 2, (c) Case 3.

The amplitude and phase of the scattered fields obtained via the proposed method and MoM are
very close to each other as shown in Fig. 3. During the implementation of MoM, the object is discretized
as described above into 8932, 5055 and 2768 cells for Case 1, Case 2 and Case 3 respectively. For these
cases, the computational advantage of the proposed approach is clearly seen in Table 1, where the
computational times of the two methods are compared.
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0 60 120 180 240 300 360
 [deg]

0

0.5

1

1.5

|u
s| [

V
/m

]

Prop. Method
MoM

0 60 120 180 240 300 360
 [deg]

-180
-90

0
90

180

 u
s [d

eg
] Prop. Method MoM

0 60 120 180 240 300 360
 [deg]

0

0.5

1

1.5

|u
s| [

V
/m

]

Prop. Method
MoM

0 60 120 180 240 300 360
 [deg]

-180
-90

0
90

180

 u
s [d

eg
] Prop. Method MoM

0 60 120 180 240 300 360
 [deg]

0

0.5

1

1.5

2

|u
s| [

V
/m

] Prop. Method
MoM

0 60 120 180 240 300 360
 [deg]

-180
-90

0
90

180
 u

s [d
eg

] Prop. Method MoM

(a) (b)

(c) (d)

(e)

Figure 3. Comparison of the fields scattered from a V-notched circular object with a radially
inhomogeneous layer surrounding a circular core: (a) amplitude and (b) phase for Case 1, (c) amplitude
and (d) phase for Case 2, (e) amplitude and (f) phase for Case 3.

Table 1. Computational times for Case 1, Case 2 and Case 3.

Case 1 Case 2 Case 3
Time for Proposed Method (s) 0.5 1.2 0.9

Time for MoM (s) 83.9 21.2 5.9

In order to test the accuracy of the proposed method inside the object, we have computed the
total field on a 0.4 m-radius circle, which lies in the radially inhomogeneous layer, for Case 3. As seen
in Figs. 4(a) and 4(b), the proposed method yields satisfactory results. As a final simulation for this
example, the dielectric core in Case 3 has been replaced by a PEC. The proposed method continues
to yield accurate results, and the scattered field in Figs. 3(e) and 3(f) transforms into the one given in
Figs. 4(c) and 4(d).

In the second example, the proposed approach has been tested on a rectangular radially
inhomogeneous object with a non-circular hole. As in the first example, three basic radial dependencies
has been considered, i.e., ε1(ρ) is proportional to 1/rho2, 1/rho and ρ. Accordingly,

• Case 4: C = 80 + 3i in Profile 1, and ε2 = ε0;
• Case 5: α2 = 20/k0 + 0.3i, β = −0.5 in Profile 2, and ε2 = ε0;
• Case 6: α2 = 15/k0 + 0.3i, β = 0.5 in Profile 2, and ε2 = ε0.
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Figure 4. Comparison of the (a) amplitude and (b) phase of the total fields in radially inhomogeneous
layer for Case 3. Comparison of the (c) amplitude and (d) phase of the scattered fields when the core
in Case 3 is replaced by a PEC.
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Figure 5. Real part of the complex relative permittivity distribution of a rectangular radially
inhomogeneous object with a non-circular hole: (a) Case 4, (b)Case 5, (c) Case 6.

have been designed. Fig. 5 illustrates the real parts of the corresponding complex relative permittivity
distributions. As to the conductivities in the radially inhomogeneous layer, they change in the intervals
[0.4, 7.9] (mS/m), [2.8, 12.5] (mS/m) and [2.0, 9.0] (mS/m) for Case 1, Case 2 and Case 3, respectively.

As seen in Fig. 6, the scattered field has been accurately computed via the proposed method for
this relatively complex-shaped object, which has boundaries with corners. For this example, only the
radially inhomogeneous layer is discretized in MoM. The resulting cell numbers are 11780, 7306 and
3988 for Case 4, Case 5 and Case 6, respectively. As seen in Table 2, the computational advantage
of the proposed method becomes more substantial as the number of mesh cells required during the
implementation of MoM increases. On the other hand, the method tends to lose accuracy for complex
shaped objects whose boundaries have large and frequent variations, as discussed in [13, 17].

Table 2. Computational times for Case 4, Case 5 and Case 6.

Case 4 Case 5 Case 6
Time for Proposed Method (s) 0.5 1.4 1.2

Time for MoM (s) 139.6 42.5 11.6
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Figure 6. Comparison of the fields scattered from rectangular radially inhomogeneous object with a
non-circular hole: (a) amplitude and (b) phase for Case 4, (c) amplitude and (d) phase for Case 5, (e)
amplitude and (f) phase for Case 6.

3.1. Energy Conservation

It can also be shown that energy conservation is satisfied when the fields are computed via the proposed
method. Energy conservation implies

We = Wa + Ws (22)

where We, Wa, and Ws are respectively the extinction power, absorbed power, and scattered power per
unit length of the cylinder [18]. More explicitly,

Ws =
1
2

∮
∂Ω

Re (Es × H∗
s) · n̂ ds, (23)

We = −1
2

∮
∂Ω

Re (Ei × H∗
s + Es × H∗

i ) · n̂ ds (24)

where ∂Ω is the boundary of a region Ω containing the object on the ρφ-plane, and n̂ is the unit outward
normal vector on ∂Ω [19]. Es and Hs are the scattered electric and magnetic field vectors while Hi is
the incident magnetic field vector. The absorbed power can be computed by

Wa =
1
2

∫∫
Ω

σ (ρ) |E|2 dA (25)

Here, E is the total electric field vector, and σ is the conductivity in Ω.
We have chosen ∂Ω as a 2m-radius circle and repeated all of the above given simulations individually

for 100 equally spaced incidence angles, φi, in the interval [0, 2π). It has been observed that the computed
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Figure 7. Comparison of the extinction power We, the scattered power Ws and the absorbed power
Wa for Case 1.

fields consistently satisfy Eq. (22). As an example, Ws, Wa, We and Wa + Ws for Case 1 are given in
Fig. 7.

3.2. Reciprocity

Finally, we have tested whether the computed fields satisfy the Lorentz reciprocity theorem, which is∮
∂Ω

(EA × HB) · n̂ ds =
∮

∂Ω
(EB × HA) · n̂ ds (26)

in source-free region. Here, EA, HA and EB, HB are the fields due to sources A and B, respectively.
For the purpose of numerical validation of Eq. (26), Case 1 has been considered. The fields EA and
HA have been computed for an incidence angle of φA = 0 while EB and HB have been computed
individually for 100 equally spaced incidence angles, φB , in the interval [0, 2π). The satisfaction of
Eq. (26) is shown in Fig. 8 where IAB and IBA are the left and right hand sides of Eq. (26).
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Figure 8. Comparison of (a) |IAB | and |IBA|, (b) ∠IAB and ∠IBA.

4. CONCLUSION

The proposed method can be used for fast computation of the field scattered from radially
inhomogeneous circular cylinders with deformations such as notches, grooves, noncircular hollows, etc. It
is also applicable for multilayer cylinders that have one or more radially inhomogeneous layers around an
arbitrary shaped dielectric or PEC core. Based on the results related to the basic dielectric permittivity
profiles given here, we expect that the proposed method will be beneficial for different ε1(ρ) profiles
(including lossy ones), as long as functions R

(1)
n,m, R

(2)
n,m are determined.

The time and memory complexities of the proposed method are O(N3) and O(N2) while they are
O(N3

MoM ) and O(N2
MoM ) for MoM. Here NMoM is the number of mesh cells required by MoM. Except

objects with small electrical sizes, mostly N < NMoM and the proposed method is more advantageous
in terms of time and memory complexities.

Adaptation of the method to the oblique incidence case constitutes a part of our future work.
The possibility of extending the method to more general inhomogeneity profiles involving azimuthal
variations will also be investigated.
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