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Improved Enumeration of Scatterers Using Multifrequency Data
Fusion in MDL for Microwave Imaging Applications

Roohallah Fazli1, *, Hadi Owlia1, and Majid Pourahmadi2

Abstract—This paper presents a modified version of minimum description length (MDL) method,
referred as multifrequency MDL (FMDL), for scatterers enumeration before using the multiple signal
classification (MUSIC) algorithm in microwave imaging applications. The inclusion of data from
multiple frequencies should make an attempt to reduce the error in number estimation due to noise
and multiple scattering. Data fusion in multiple frequencies is performed based on two schemes called
averaging and maximization rules. The solution for MDL criterion which is a minimum for one frequency
is not likely to be the solution for other frequencies, so by averaging the MDL criterion over the total
frequencies or by maximization of the solution for each frequency, we can achieve the correct source
number. Furthermore, a whitening step before applying FMDL method is employed to compensate the
aspect limitations of the measured data due to the limited number of antennas. The superiority of
the proposed FMDL approach with respect to the other competing methods is confirmed by both the
numerical examples and the Institut Fresnel experimental dataset. The results indicate that the FMDL
yields more accurate estimate of the targets number specially for the cases of low SNR values and very
closely spaced scatterers.

1. INTRODUCTION

Microwave imaging (MI) for biomedical applications, such as breast cancer detection, is a continually
emerging field of research, and it is a promising method for a low-cost, compact, safe, and real-time
medical imaging. The considerable contrast in the dielectric properties between healthy and malignant
tissues at microwave frequencies and the non-ionizing radiation are two main interesting factors for the
development of the microwave tomography systems over the last decades. Probably, the main challenge
to make microwave tomography a competitive medical imaging modality is its lower resolution than
magnetic resonance imaging (MRI) and x-ray computed tomography (CT) [1]. However, achieving high
resolution fast imaging of the scatterers (targets) remains a challenge in the area of electromagnetic
inverse scattering.

In microwave tomography, we attempt to solve an inverse scattering problem, i.e., finding the
dielectric profile of an object from measurements of the field scattered by the object. In general, there
are two main classes of methods for solving such inverse scattering problems. First, nonlinear methods
such as Gauss-Newton (GN) approach, which can perform a quantitative reconstruction of the scatterers,
but they suffer from intensive computations and inaccurate initial guess of the object profile. Linear
methods, such as MUSIC algorithm, are the second group of algorithms which cannot obtain useful
information about the dielectric properties of the scatterers, but they make it possible to acquire the
location of the scatterers in a few seconds. So, it seems that the linear techniques are promising for real
time inverse scattering as can be seen in references [2–6].
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The MUSIC algorithm is a well-known technique that has been shown to be effective for the
localization of electromagnetic small inclusions in microwave imaging applications [7]. The main idea
of the MUSIC algorithm estimating the location of sources is to employ the orthogonality between
signal and noise subspaces and to search the minimum projections of the array Green’s functions onto
a noise subspace [8]. The common way to find the noise subspace is to enumerate the signal and noise
eignvalues via singular value decomposition (SVD) of the so-called multistatic response matrix (MSR).
The significant eigenvalues map to the signal subspace (targets) and the noise subspace determined by
the smallest eigenvalues. However, due to the measurement errors affecting the MSR matrix, there is
often no enough gap in an eigenvalue map to recognize them, and one may be incorrectly estimate the
number of targets. Hence, the performance of the MUSIC algorithm will be significantly deteriorated
with inaccurate enumeration of targets. So, the method for estimating the number of scatterers has a
vital role for the accurate MUSIC imaging.

The problem of scatterers enumeration before MUSIC imaging can be considered as source number
estimation studied a lot in signal processing. Many algorithms have been presented and developed
for source number estimation such as the hypothesis testing approach [9] and information theoretic
criteria based methods. In [9], a hypothesis testing method has been proposed, in which an artificial
threshold value must be assigned based on the confidence interval of the noise eigenvalue. However, the
threshold needs to be tuned, and the method performance is drastically affected by a low number of
samples. The information theoretic based methods such as the minimum description length (MDL) and
Akaike information criterion (AIC) are two mostly used methods that apply selection criteria to detect
differences between eigenvalues of the signal and noise subspaces. These methods suffer from low signal
to noise ratio and small number of snapshots. The other two methods for source enumeration based on
the eigenvalue gap measure are the second order statistic of eigenvalues (SORTE) [10] and the ratio of
adjacent eigenvalues (RAE) [11]. These methods have the advantages of simple implementation and low
computational cost compared to the MDL and AIC methods, but the performances are considerably
degraded in the cases of using low sensors number and for low SNR cases.

Although the methods presented for source number estimation have been extensively used in
the field of direction of arrival (DOA) estimation for various applications such as radar, sonar,
communication, and speech processing, the utilization of these methods in microwave imaging is much
less studied. In [12], Pourahmadi et al. demonstrated that the mathematical model behind the scattering
from the small scatterers was well compatible with the MDL model, and they employed the MDL
to estimate the number of scatterers for microwave imaging applications. We have also previously
proposed [13] a method that utilized an analytical methodology to estimate the number and position of
2D small targets. We show that the method can extend the ability of the MUSIC algorithm to localize
the small targets in the case of noisy data and when the targets are closely located.

In all works mentioned above, the scattering data matrices measured at a fixed frequency are used
for scatterers location and number estimation. So, small variations in the measured data can lead to
large errors in reconstruction and cause to wrong target enumeration. Thus, the motivation for the
use of multifrequency data is to achieve increased stability for the problem at hand. On the other
hand, the multifrequency data are an attempt to compensate for the aspect limitations of the measured
data. Furthermore, it is clear that to improve the resolution, i.e., the detection of very closely located
targets, we must use an incident field with a shorter wavelength or a higher frequency to illuminate the
scatterer. However, we are limited to use very high frequencies because the inverse problem becomes
very oscillatory and makes many more local minima, and the accuracy of source number estimation will
be affected.

The present work introduces an improved version of MDL, frequency based MDL (FMDL), applying
the received signals from independent transmitters at different frequencies. In the proposed scheme, the
information at several frequencies is employed in MDL to reduce the error in the estimation. The use of
MDL and FMDL in MUSIC algorithm for number detection shows that the FMDL yields more accurate
determination of the target number, even in the presence of strong noise and multiple scatterings. It is
illustrated that in the case of real data, the noise may behave like non-white Gaussian noise, and the
FMDL produces non-consistent estimates as the SNR increases from low to high values. To remedy this
problem, we propose a preprocessing method for whitening the eigenvalues of the noise. The resulting
algorithm, called whitened FMDL, is consistent for the total range of SNR values.
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The remaining of the paper is organized as follows. The statement and formulation of the scattering
from small targets are introduced in Section 2. This section also reviews the theory of subspace signal
processing and the development of the MUSIC algorithm for imaging. Section 3 introduces the MDL
and FMDL and discusses their applications to the problem of estimating the number of scatterers. In
this section, we present the modified version of MDL (FMDL) for target enumeration by combination
of multifrequency data. Simulation results, which illustrate the performance of the proposed algorithm
for both synthetic and real experimental data, are described in Section 4.

2. FORMULATION OF THE MUSIC ALGORITHM

The MUSIC imaging algorithm employs the multistatic response matrix to detect and localize the
targets. First, we describe the mathematical model for the generation of this matrix and, then, explain
the MUSIC algorithm.

2.1. Multistatic Response Matrix

Consider the geometry of the imaging problem given in Fig. 1, where the imaging domain, containing
a set of M small scatterers with the unknown locations Xm and the unknown scattering strengths
τm, m = 1, 2, . . . ,M , is successively irradiated by Nt transmitters, and the scattered electric fields
are measured by Nr receivers. The antenna array is assumed to be circular and coincident, in which
each sensor is commonly used for transmitter and receiver at single frequency simultaneously, similar
to the prototype MI systems built for breast cancer detection. The homogeneous and non-magnetic
background medium is considered, and the imaging is performed under the 2D TM incident. The
aim of imaging is to get the number, location, and if possible the shape and dielectric properties of
the scatterers, using the total measured scattered field at receivers. Under the assumptions of small
transceivers and small targets and also by neglecting all multiple scattering between the targets (Born
approximation), if the jth antenna is excited by an input voltage ej, then the generated field at position
r= (x, y) in the frequency domain equals

ψinc
j (r, ω) = G0

(
r,Rt

j , ω
)
ej(ω) (1)

Figure 1. General setup for a 2D microwave imaging system.
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where ω is the frequency; G0 (r, Rt
j , ω) is the Green function corresponding to the background medium

in which the targets are embedded; and Rt
j is the location of the jth transmitter antenna. The above

Green’s function for homogeneous medium is G0(r, Rt
j) = i/4 ∗ H0(k0|r − Rt

j |) in which H0 is the
zero order Hankel function of the first kind, and k0 = 2π/λ is the free space wavenumber. If the field
ψinc

j (r, ω) is incident on the mth scatterer, it generates the scattered field at point r as

ψscat
j (r, ω) = G0(r,Xm, ω)τm(ω)ψinc

j (Xm, ω) (2)

where τm is the strength of the mth scatterer. Thus, the total scattered field due to the presence of M
scatterers, when Nt transmitter antennas are simultaneously excited using the voltages ej(ω), becomes

ψscat(r, ω) =
Nt∑
j=1

M∑
m=1

G0 (r,Xm, ω) τm(ω)G0

(
Xm,Rt

j , ω
)
ej(ω) (3)

The output voltage Vi (ω) at the ith receiver antenna is assumed to be equal to the amplitude of the
scattered field measured at the ith antenna as

Vi(ω) =
Nt∑
j=1

ψscat
j (Rr

i , ω) =
Nt∑
j=1

M∑
m=1

G0 (Rr
i ,Xm, ω) τm(ω)G0

(
Xm,Rt

j , ω
)
ej(ω) (4)

in which Rr
i is the location of the ith receiver antenna. Using the matrix notation, Eq. (4) can be

rewritten as

Vi(ω) =
Nt∑
j=1

Ki(ω)ej(ω) = K(ω)e(ω) (5)

where e(ω) = [e1(ω), e2(ω), . . . , eNt(ω)]T is an Nt × 1 column vector formed from the set of input
voltages applied at the antenna terminals, and K(ω) is a Nr ×Nt matrix which is known as multistatic
response matrix (MSR). So, we can obtain

K(ω) =
M∑

m=1

G0 (Rr
i ,Xm, ω) τm(ω)G0

(
Xm,Rt

j , ω
)

=
M∑

m=1

τm(ω)g0,r (Xm, ω)gT
0,t (Xm, ω) (6)

where T stands for the transposition, and g0,r(Xm, ω) and g0,t(Xm, ω), respectively, are the receiving
and transmitting background Green’s function vectors at the target location Xm that can be written as

g0,r(Xm, ω) ≡ [
G0 (Rr

1,Xm, ω) , G0 (Rr
2,Xm, ω) , . . . , G0

(
Rr

Nr
,Xm, ω

)]T (7)

g0,t (Xm, ω) ≡ [
G0

(
Xm,Rt

1, ω
)
, G0

(
Xm,Rt

2, ω
)
, . . . , G0

(
Xm,Rt

Nt
, ω
)]T (8)

Eq. (6) is valid when the targets are well separated. Therefore, for the cases of closely located targets,
there is the strong multiple scattering between the targets, and we cannot apply the Born model
anymore. So, we should use the Foly-Lax model [17] to get the MSR matrix as

K(ω) =
M∑

m=1

M∑
m′=1

Am,m′(ω)g0,r(Xm, ω)gT
0,t(Xm′ , ω) (9)

where the generalized multiple scattering amplitudes are Am,m′(ω) = τmH−1
m,m′(ω). The M ×M matrix

H is defined by
Hm,m′(ω) = δm,m′ − (1 − δm,m′)τm′(ω)G0 (Xm,Xm′ , ω) (10)

in which δm,m′ denotes the Kronecker delta function. It is possible to define the correlation matrix,
called time reversal matrix as T(ω) = K(ω)K†(ω) in which † denotes the Hermitian. So we can
conclude that the eigenvalues of T(ω) are the positive squared of the singular values of K(ω). Thus,
the eigenvalues of matrix K(ω) and the singular values of matrix T(ω) can be used interchangeably for
scatterers enumeration. The MUSIC algorithm can now be used as follows to determine the location of
scatterers.
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2.2. Music Imaging

The MUSIC exploits the matrix T(ω) in order to image the small targets using the SVD of it. The
SVD of T(ω) can be written by

T(ω)vp(ω) = λp(ω)up(ω), T†(ω)up(ω) = λp(ω)vp(ω) (11)

where λp(ω) ≥ 0 are the singular values, and up(ω) and vp(ω) are the left and right singular vectors,
respectively. Using the orthogonality of signal and noise subspaces, considering the noise subspace
spanned by the eigenvectors of T(ω) having zero eigenvalues and spanning the signal subspace by
the Green’s vectors at target locations, it is possible to form a pseudospectrum through the following
equation

Pr,t(X, ω) =
1

min(Nt,Nr)∑
p=M+1

∣∣∣u†
p(ω)g0,r(X, ω)

∣∣∣2 +
min(Nt,Nr)∑

p=M+1

∣∣∣v†
p(ω)g∗

0,t(X, ω)
∣∣∣2

(12)

where ∗ denotes the conjugation. The pseudospectrum in Eq. (12) will create a theoretically infinite
peak (without noise) at each target location Xm, m = 1, 2, . . . ,M in a deterministic way when the
number of targets (M) is a priori known. In low noise conditions, we can detect the number of targets
from the number of significant eigenvalues of matrix T(ω). However, the presence of noise and multiple
scattering between the targets can make it difficult to determine the correct number of targets from the
magnitudes of the eigenvalues of matrix T(ω), and hence, the performance of the MUSIC algorithm for
imaging is strongly degraded. So, several methods have been proposed to resolve this problem.

3. WELL KNOWN SCATTERERS ENUMERATION METHODS

In MI applications, by assuming the scatterers as sources and different illuminations of transmitters
taken to be the multiple snapshots, the methods utilized for source number estimation in signal
processing can be employed for the problem of scatterers enumeration. So, using Eqs. (6) and (9),
we can consider the following equation for each column of matrix K as

Ki(ω) = ASi(ω) + Vi(ω) (13)

where Si(ω) = [τ1G0(X1, Rt
iω), . . . , τMG0(XM , Rt

iω)]T considered as sources and the matrix A(ω) =
[a1(ω), . . . ,aM (ω)] in which ai(ω) = [G0(Xi, Rr

1ω), . . . , G0(Xi, Rr
Nω)]T are the steering vector. Also,

vi(ω) is a column vector which models the measurement noise added to the scattered field measured at
sensors outputs. Therefore, for the ith transmitter radiation, we assume M sources, which are defined
in vector si(ω) present at the location of M scatterers. Then, we must estimate the location and number
of these sources (scatterers). However, it must be kept in mind that the algorithms should be chosen for
enumeration to be effective for the cases where the number of snapshots equals the number of sensors.
Here, some of the effective methods for scatterers enumeration are introduced.

3.1. RAE Method

Using SVD of matrix T(ω) and sorting the resulted eigenvalues in descending order, we can obtain
the eigenvalues λ1(ω) ≥ . . . ≥ λM (ω) ≥ λM+1(ω) ≥ . . . ≥ λNt(ω) ≥ 0, which contain M larger
eigenvalues λ1(ω) ≥ . . . ≥ λM (ω) associated with the scatterers, and the remaining Nt −M eigenvalues
are, theoretically, equal, i.e., λM+1(ω) = . . . = λNt(ω) = σ2, where σ2 is the variance of the noise. Then,
we calculate the ratio between the adjacent singular values as

RAE(m) =
λm(ω)
λm+1(ω)

(14)

where m = 1, . . . , Nt − 1. The method chooses m as targets number for which the criterion in Eq. (14)
is maximized.
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3.2. SORTE Method

The method can identify the number of targets by searching the gap between λM (ω) and λM+1(ω) using
a gap measure called SORTE that is defined as follows

SORTE(m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

var
[
{∇λi(ω)}Nt−1

i=m+1

]
var

[
{∇λi(ω)}Nt−1

i=m

] , if var
[
{∇λi(ω)}Nt−1

i=m

]
�= 0

+∞ if var
[
{∇λi(ω)}Nt−1

i=m

]
= 0

(15)

where m = 1, . . . , Nt − 1 and the sample variance of the sequence {∇λi(ω)}Nt−1
i=m is

var
[
{∇λi(ω)}Nt−1

i=m

]
=

1
Nt −m

Nt−1∑
i=m

(
∇λi(ω) − 1

Nt −m

Nt−1∑
i=m

∇λi(ω)

)2

(16)

in which (ω)(ω)(ω)∇λi = λi −λi+1, i = 1, . . . , Nt − 1. Then, we can determine the number of scatterers
using the following criterion: SORTE(m) is minimal.

3.3. MDL Method

The MDL method is an information-based approach consisting of minimizing a criterion over the number
of scatterers that are detectable. By assuming that the number of snapshots equals the number of
transmitters (antennas), the criterion for MDL is given by [14, 15]

MDL(m) = Nt ln

⎛
⎝
(

1
Nt −m

Nt∑
i=m+1

λi(ω)

)Nt−m/ Nt∏
i=m+1

λi(ω)

⎞
⎠

+
1
2
m(2Nt −m)ln(Nt), m = 0, . . . , Nt − 1 (17)

The first term in Eq. (17) shows the ML (maximum likelihood) criterion, while the second one is a
penalty function based on the number of free parameters in the model [15].

In all of the methods described above, the single frequency data have been used for number
estimation. The single frequency source enumeration approach suffers from two main problems. First,
when multiple scatterers are present, the detection performance quickly degrades. Secondly, when the
number of transmitters (snapshots) is decreased, artifacts may rise and prevent the scatterer detection.
We now introduce a multifrequency MDL method for number of scatterers estimation in order to enhance
the detection performance.

4. MULTIFREQUENCY MDL METHOD

Consider that the matrix T(ω), defined in Eq. (4), is given in Q frequencies, i.e.,

T(ωj) = K(ωj)K†(ωj), j = 1, 2, . . . , Q (18)

By performing SVD on the matrix T(ωj), we can obtain the vector λ(ωj) = [λ1(ωj), λ2(ωj), . . . , λNt(ωj)]
containing the singular values of matrix T(ωj) at frequency ωj. Then, by embedding λ(ωj) into Eq. (17),
the MDL criteria is

MDL(m,ωj) = Nt ln

⎛
⎝( 1

Nt −m

Nt∑
i=m+1

λi(ωj)

)Nt−m/ Nt∏
i=m+1

λi(ωj)

⎞
⎠

+
1
2
m(2Nt −m) ln(Nt), m = 0, . . . , Nt − 1 (19)
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4.1. Averaging Method

One method for the utilization of multifrequency data in MDL is the averaging of the single frequency
MDL criterion over the total range of frequencies. So, assuming that the coefficients λ(ωj) corresponding
to different frequencies are statistically independent and employing the data from multiple frequencies,
say, ω1, ω2, . . . , ωQ, the MDL criterion for detecting the number of scatterers can be given by the sum
of Eq. (19) over the frequency range of interest as

Q∑
j=1

MDL(m,ωj) =
Q∑

j=1

⎛
⎝Nt ln

⎛
⎝
(

1
Nt −m

Nt∑
i=m+1

λi(ωj)

)Nt−m/ Nt∏
i=m+1

λi(ωj)

⎞
⎠
⎞
⎠

+
1
2
Qm(2Nt −m) ln(Nt), m = 0, . . . , Nt − 1 (20)

The scatterers number is estimated as the value of m that minimizes the Eq. (20). If we apply only a
single frequency MDL for target enumeration, the accuracy of high frequency MDL and low frequency
MDL can be changed relative to each other according to the various target locations and their strengths.
So, for some target configuration, the high frequency MDL outperforms the low frequency MDL, and
this condition may be reversed for another configuration. However, employing multiple frequencies
in MDL criterion guarantees better results than applying a single frequency (low or high), and the
simulation results verify its effectiveness.

4.2. Maximization Method

Throughout various numerical tests, we observed that by formation of the MDL criterion for each
frequency bin ωj (Eq. (19)) and by detection of the maximum value of the criterion for the total number
of frequencies, i.e., j = 1, . . . , Q, one can achieve a method for number estimation that outperforms the
averaging method. Hence, the number of scatterers using the above method is estimated as follows

�

M = max
(
min
m [MDL(m,ω1)] ,min

m [MDL(m,ω2)] , . . . ,min
m [MDL(m,ωQ)]

)
(21)

To show the correction of the above statement, we perform various simulation tests, and this relation
is verified by employing various scatterers and transceivers geometries. From simulation results, it
can be seen that the noise affects the MDL criterion at each frequency leading to several minima at
various frequencies. The correct source number can be estimated as the maximum of created minimums.
Whatever the noise is decreased (SNR is increased), the MDL criterion at each frequency converges to
a same minimum or correct source number. In Section 7, we present one sample experiment where
calculates the MDL criterion in terms of variable m for total frequencies ω1, ω2, . . . , ωQ, and the results
validate that the correct source number is equal to the maximum m for minimization of the MDL
criterion at total frequencies. Also, the simulation results show that the introduced method for number
estimation has advantage over the single frequency MDL method and also superior relative to the
averaging method for both low and high frequency conditions.

5. PREPROCESSING APPROACH

The noise in data is considered, theoretically, as white Gaussian noise, and hence, the noise eigenvalues
become all equal to the variance of the noise σ2. However, it is observed that the eigenvalues of the noise
in the real data present significant gradient whereas the gradient of the eigenvalues for the synthetic
data is much less. This is due to using the limited number of snapshots (transmitters) that makes a
non-white noise in situations with real data. Even with the addition of white Gaussian noise in the
simulations, the results indicate that the synthetic data also have considerable gradient for the noise
eigenvalues in the case of restricted number of snapshots. The gradient in the noise eigenvalue makes
the MDL overestimate the number of targets even in high SNRs as discussed in [16]. Our research
shows that this is dedicated not only to the MDL, but also to other modified versions of the MDL and
AIC methods [17]. The change of penalty function in the MDL [18] is a method to solve this problem.
However, the method in [18] works well for high SNRs, but its performance is weaker than the classical
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MDL in low SNRs. Hence, we propose a preprocessing method that will produce consistent estimate in
both low and high SNRs.

The preprocessing method is based on whitening the noise eigenvalues, so that their gradient
will decrease without any destructive effect on the signal eigenvalues. We propose a diagonal loading
technique that modifies the eigenvalues λ(ωj) to reduce the impact of the noise in the estimation
performance for real applications. For each frequency ωj, we can add the diagonal loading value λDL

to the singular values λi as

μi(ωj) = λi(ωj) + λDL(ωj), i = 1, . . . , Nt, j = 1, . . . , Q (22)

where μi(ωj) are the final singular values at frequency ωj. The diagonal loading value makes little effect
on the larger eigenvalues corresponding to the source signals, and the smaller eigenvalues associated
with the noise will converge near the loading value λDL. Hence, by diagonal loading method, the noise
eigenvalues are approximately equal, and the noise is smoothed. Choosing the value of λDL at each
frequency makes a great effect on the method. A feasible selection of λDL can be considered as follows

λDL(ωj) = Pr ∗
(

Nt∑
i=1

λi(ωj)

)
, j = 1, . . . , Q (23)

where Pr is the percentage of the eigenvalues summation that must be included in a diagonal loading
method. The simulation results for different numbers of targets show that choosing low amount of
Pr leads to the overestimation of the targets, whereas the higher one yields underestimation. The
concluded amount is 1% that gives suitable estimations for both real and simulated data for practical
array configurations.

6. PROPOSED METHOD FOR ENUMERATION OF SCATTERERS

The total stages of the proposed method for scatterers enumeration can be summarised by the following
steps:

Step 1: Calculate the time reversal matrix T(ωj) at each frequency ωj as T(ωj) = K(ωj)K†(ωj).
Step 2: Perform SVD on the matrix T(ωj) to get the eigenvalues λi(ωj), i = 1, . . . , Nt at each

frequency ωj.
Step 3: Apply the diagonal loading method to whiten the noise using Eq. (22). The whitening is

done by calculating the value λDL(ωj) at each frequency ωj using Eq. (23) and adding to the eigenvalues
λi(ωj) to obtain the final eigenvalues μi(ωj), i = 1, . . . , Nt.

Step 4: Employ the final eigenvalues μi(ωj) instead of λi(ωj) into Eq. (20) to obtain the averaged
multifrequency MDL criterion and then estimate the number of targets by minimization of this criterion
(FMDL by averaging).

Step 5: Compute the MDL criterion for each frequency ωj from Eq. (19) and estimate the number
of targets by finding the maximum values as denoted in Eq. (21) (FMDL by maximization).

7. SIMULATION RESULTS

In this section, several simulations are carried out to validate the superiority of the proposed algorithm
over the classical methods for scatterers enumeration for both simulated and experimental data. The
synthetic data have been generated by both the Foldy-Lax model (Eq. (9)) and the method of moments
(MOM) by imposing the geometry of the experimental MI systems [5]. The complex additive white
Gaussian noise (AWGN) is added to all synthetic data sets as Kn(ω) = K(ω)+N(ω) where N(ω) is an
uncorrelated zero mean noise, and the signal-to-noise ratio in dB is SNR = 20 log10(‖K(ω)‖/‖N(ω)‖).

The numerical experiments taken over 100 times Monte-Carlo simulations, unless otherwise stated.
The performance metric is the probability of detecting the correct number of scatterers defined by
P = NK/Nt in which Nt means the number of Monte-Carlo simulations, and NK denotes the number
of the correct detections. In all simulations, the whitening preprocessing method is applied before using
the FMDL method. Moreover, the proposed FMDL method also consists of two approaches, a) the
FMDL by averaging rule and b) the FMDL by maximization rule. These FMDL methods are also
examined using the sample experimental data provided by the Institut Fresnel, Marseille, France [19].
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7.1. Simulation with Foldy-Lax Data

The first simulation is performed using the array of 36 antennas which act as transmitters and receivers
equally spaced on a circle with radius 720 mm. The Foldy-Lax Equation (9) is employed to generate the
synthetic data. The simulation is conducted using four point targets located at positions (0, 50), (50,
0), (−50, 0), and (0, −50) in the x-y plane with a distance unit of millimeter. The simulation is carried
out over the frequency range of 1 to 5GHz with steps of 500 MHz and for two cases of choosing the
targets scattering strengths. Moreover, the diagonal loading value is selected as 1% of total eigenvalues
summation. The simulation results for various SNR levels are shown in Fig. 2. It can be seen from
Figs. 2(a) and 2(b) that the multifrequency method gives higher accuracy for number detection than
the MDL method at single frequency, and also, the method by maximization strategy has better results
than the other methods. By the comparison between Figs. 2(a) and 2(b), it can be observed that the
FMDL approach gives better accuracy in lower SNR values than the single frequency MDL method in
various configuration of targets.

(a) (b)

Figure 2. Probability of correct decision in terms of SNR for four closely spaced targets with diagonal
loading value Pr = 0.01. (a) The scatterers with τm =1, m = 1, . . . , 4. (b) The scatterers with τm = m,
m = 1, . . . , 4.

Another simulation is conducted using the previous transceiver geometry and by assuming 6 point
targets located at positions (0, 200), (200, 0), (−200, 0), (0, −200), (100, 0), and (0, 100), all in unit of
millimeter. The scattering strengths of all targets are assumed to be one. The MDL criterion computed
for total frequencies ωj, j = 1, . . . , Q, i.e., all terms of Eq. (21), are shown in Figs. 3(a) and 3(b) for
two SNR values. As can be seen, the MDL criterion in terms of variable m makes multiple minimums
at several frequencies, and the correct source number is equal to the maximum m which creates the
minimum of criterion. Moreover, it is obvious by increasing the SNR value that the number of minimums
is decreased, and the minimums gradually converge to the correct source number.

In the next simulation, we compare the efficiency of the proposed FMDL with three well-
known source number estimation methods including MDL, RAE, and SORTE methods. The array
configuration of this experiment is based on the Manitoba MI setup [20] in which 24 antennas are
equally situated at a circle with radius 220 mm. This simulation is conducted using three point targets
closely located at positions (0, 0), (45, 0), (0, 45) in the x-y plane with a distance unit of millimeter.
The corresponding scattering strengths of the targets are assumed to be τm = m, m = 1, 2, 3, and the
Foldy-Lax Equation (9) is applied to produce the synthetic data. The data are generated for a range
of frequencies 1 to 5 GHz with steps of 500 MHz, and the value of Pr for whitening process is set to
0.02. The simulation results for various SNR levels and for several frequency cases are shown in Fig. 4.
The results for each SNR are the average of values obtained for different noise realizations according
to the Monte Carlo method. Fig. 4 reveals that the FMDL method has better probability of source
number detection than the other competing methods working at single frequency. The results for four
frequencies are given in Figs. 4(a) to 4(d) that verify the superiority of the method over the classical
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(a) (b)

Figure 3. MDL criterion in terms of variable m for various frequencies. (a) SNR = 4 dB. (b)
SNR = 7dB.

(a) (b)

(c) (d)

Figure 4. Probability of correct decision in terms of SNR for classical MDL, RAE, SORTE and FMDL
methods by assuming three closely spaced targets with scattering strengths τm = m, m = 1, 2, 3.

MDL, RAE, and SORTE methods. It can also be seen that the FMDL with maximization rule resolves
the targets better than the FMDL by averaging rule.

7.2. Simulation with MOM Data

Further simulation evaluates the detection accuracy of the proposed method with respect to the other
methods using the array configuration of Manitoba setup and by assuming three small dielectric cylinders
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(a) (b)

(c) (d)

Figure 5. Comparing the probability of correct decision in terms of SNR for MDL, RAE, SORTE and
FMDL methods using three same small dielectric cylinders with diameter 10 mm having the relative
permittivity εr = 3 and conductivity σ = 0 S/m as scatterers.

having diameter 10 mm, relative permittivity εr = 3, and conductivity σ = 0S/m, shown in Fig. 5(a).
The relative permittivity and conductivity of the background medium are εb = 1 and σb = 0. In
this simulation, the numerical data for various frequencies ranging from 1 GHz to 5GHz with steps of
500 MHz are generated by MOM method for 2-D TM (transverse magnetic) incident electromagnetic
wave to compute the T matrix, and we ignored the variation of targets relative permittivities with
frequency. The cylinders are located very closely at positions (0, 0) mm, (20, 20) mm, (20, −20) mm,
and the parameter Pr for whitening process of FMDL method is set to 0.02. Figs. 5(b) to 5(d) depict
the results of this simulation at various SNR levels. It can be found that the proposed FMDL methods
give superior accuracy over the other single frequency methods. As can be seen at frequency 1 GHz, all
of the methods failed to detect the targets number at total ranges of SNR levels whereas two FMDL
methods could detect the targets number correctly at SNR level up to 4 dB.

The next simulation is performed using the same geometry as the previous example to analyze
the effect of the diagonal loading value Pr on the detection accuracy of FMDL method for the total
range of SNR values (low to high). It can be realized from the results, shown in Fig. 6, that without
any whitening process (Pr = 0), the classical MDL compared with the FMDL has lower accuracy
in low SNR values while for high SNR values, the single frequency classical MDL method has better
performance than the FMDL method. However, when the prewhitening method is employed, the FMDL
method outperforms the classical MDL for both low and high SNR values. Furthermore, the FMDLs
by averaging rule and the FMDL by maximization rule are compared for different Pr values, and the
results are shown in Fig. 7. The results verify that by choosing a appropriate Pr value (Pr = 0.02), the
FMDL by maximization rule performs better than the FMDL by averaging rule in both low and high
SNR values.
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Figure 6. Comparing MDL and averaging FMDL using the whitening stage for various Pr values.
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Figure 7. Comparing the FMDL methods by averaging rule and maximization scheme for various SNR
values.

7.3. Simulation with Fresnel Experimental Data

The final simulation is carried out using the experimental data sets provided by the Institut Fresnel,
Marseille, France [19] to verify the proposed algorithm. This real data set was employed in various
works [21–24] for evaluating the inverse scattering methods against the experimental data. In this real
data set, 36 antennas are used for transmitters and 49 antennas employed for receivers. The activated
receivers are changed for any active transmitter, so we must use the selected transceivers geometry
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(a) (b)

(c) (d)

Figure 8. Comparing the accuracy of classical MDL, whitened MDL (WMDL) and FMDL using real
experimental dataset, (a) selected transceivers, (b) MUSIC reconstructed image at SNR = 10 dB, (c)
comparison between MDL and FMDL and (d) comparison between whitened MDL and FMDL.

(a) (b)

Figure 9. Comparing the proposed method and WMDL in the presence of random multiplicative noise,
(a) Pr = 0.2 and (b) Pr = 0.3.

shown in Fig. 8(a) for computing the MSR matrix K and also for calculating the matrix T because it is
necessary that the receiver array remains unchanged for all columns of K matrix while the transmitter
is switched from one column to another column. Two identical dielectric cylinder targets are used in this
simulation having εr = 3± 0.3 and radius 15 mm. The experimental data are provided at frequencies 1
to 8 GHz with steps of 1 GHz. The Fresnel measurement data set has a high SNR, so for checking the
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accuracy of the proposed method against noise level, we add some noise to these data. The results of
scatterers number detection for various SNR levels are shown in Figs. 8(c) and 8(d). In these figures,
the classical MDL method without whitening stage and with whitening stage is compared with the two
FMDL methods, respectively. As can be seen, the FMDL methods give more accuracy for scatterers
enumeration for various SNR values. Also, the image reconstruction using MUSIC algorithm is shown
in Fig. 8(b) which verifies the ability of MUSIC method for microwave imaging in the case of real
experimental data set by assuming that the number of scatterers is priori known.

The final simulation is conducted to further validate the performance of the proposed method
against the multiplicative random noise. Thus, we multiply the random noise matrix W to the MSR
matrix K to obtain a noisy MSR matrix as Kn = W ∗ K + N and repeat the previous experiment for
the second time. The results for two values of Pr are shown in Figs. 9(a) and 9(b). It can be seen by
choosing appropriate Pr value that the proposed method outperforms the WMDL method even in the
case of multiplicative noise.

8. CONCLUSION

We have firstly reviewed the theory of the MUSIC algorithm for microwave imaging of small scatterers
from scattered field measured by the antenna array. Afterwards, the methods for scatterers enumeration
including MDL, RAE, AIC, and SORTE required in MUSIC algorithm for imaging have been
investigated. These methods working at single frequency have been implemented and compared
through some simulation tests, and then the new multifrequency MDL (FMDL) method combined
with two averaging and maximization rules has been proposed. The FMDL fuses information at several
frequencies using the proposed rules to reduce the error in the number estimation for various SNR
levels. Also, because the limited number of antennas leading to the noise may behave like non-white
Gaussian noise, a preprocessing step for whitening of noise has been introduced before employing the
FMDL method. Many simulations using both the synthetic and experimental data have illustrated
the merits of the proposed FMDL method with respect to the other competing methods for scatterers
enumeration.
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