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An Effective Sparse Approximate Inverse Preconditioner
for Multilevel Fast Multipole Algorithm
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Abstract—In the iterative solution of the matrix equation arising from the multilevel fast multipole
algorithm (MLFMA), sparse approximate inverse (SAI) preconditioner is widely employed to improve
convergence property. In this paper, based on the geometric information of nearby basis functions pairs
and finer octree grouping scheme, a new sparse pattern selecting strategy for SAI is proposed to enhance
robustness and efficiency. Compared to the conventional selecting strategies, the proposed strategy has
only one variable parameter instructing the constructing time and memory usage, which is more user
friendly. Numerical results show that the proposed strategy can make use of the non-zero entries of
near-field matrix in MLFMA more effectively and elaborately without compromising the numerical
accuracy and the natural parallelization of SAI.

1. INTRODUCTION

As one of the most powerful fast solvers, the multilevel fast multipole algorithm (MLFMA), which
drastically reduces the overall computational complexity from the order of O(N2) to O(N logN), can
make the method of moments (MoM) applied to the analysis of objects with electrically large size [1, 2].
In the MLFMA, based on the addition theorem and diagonalization of the translation operator, the
matrix-vector product in traditional MoM is decomposed into two parts as

ZI = ZN I + ZF I = V (1)

where ZN and ZF are N × N impedance matrices, denoting the reactions computing among the basis
functions in near and far boxes, and I and V are N × 1 unknown current coefficient and generalized
voltage vectors, respectively, while N is the number of unknowns.

During the iterative solution, it is natural to apply preconditioning techniques to accelerate the
convergence rate. For this purpose, the matrix Equation (1) can be transformed into one of the two
kinds of equivalent equations

MZI = MV or ZM
(
M−1I

)
= V (2)

for left or right preconditioning, respectively. M is a nonsingular matrix of order N , which is referred
as the preconditioner matrix for Z. The purpose of these transformations is to make the product
matrix MZ or ZM better conditioned than the original matrix Z. As a consequence, the number of
iterations will be greatly reduced. A suitable preconditioner is needed to retain the computational
complexity of MLFMA. Algebraic preconditioners, such as incomplete LU (ILU) [3–5] and sparse
approximate inverse (SAI) [6–11], have been commonly applied. With some improvements for increasing
the robustness, ILU preconditioners had been widely used in the MLFMA. However, with the popularity
of parallel computers, the drawback of ILU which it is difficult to be parallelized becomes more and more

Received 11 September 2020, Accepted 26 October 2020, Scheduled 4 November 2020
* Corresponding author: Zengrui Li (zrli@cuc.edu.cn).
1 Beijing Polytechnic, Beijing 100176, China. 2 State Key Laboratory of Media Convergence and Communication and the School of
Information and Communication Engineering, Communication University of China, Beijing 100024, China.



68 Yang, Liu, and Li

unacceptable. On the contrary, due to the natural parallel characteristic, SAI preconditioner, which
is based on approximating the inverse of the matrix directly, won the preference. There are several
types of SAI preconditioner, while the one depended on Frobenius norm minimization is usually chosen
since it allows the decoupling of the constrained minimization problem into N independent linear least-
square (LS) problems for each row during the constructing process, which can be parallelized naturally.
Furthermore, benefited from the octree grouping schedule in MLFMA, the construction efficiency of
preconditioning matrix has been greatly improved. In this way, the LS problems of the whole basis
functions belonging to a same finest box need to be solved only once. Apparently, constructing time for
SAI is reduced substantially. On the other hand, however, the SAI preconditioner is very sensitive to the
distribution density of the basis functions. As the number of basis functions belonging to a certain box
increases, the constructing time of SAI increases sharply. To solve this problem, several sparse pattern
selecting strategies have been proposed. Different strategies based on both algebraic and geometric
information are compared in [8] through a large set of numerical experiments, and it is concluded that
the latter ones are more effective.

In this paper, based on the geometric information of nearby basis functions pairs and finer octree
grouping scheme than the scheme of original MLFMA, a new sparse pattern selecting strategy for
SAI preconditioner is proposed. In contrast to the conventional selecting strategies such as [6–11], the
proposed strategy is more effective and user friendly with only one variable parameter instructing the
constructing time and memory usage of SAI preconditioner. Meanwhile, the nonzero entries of near-field
matrix in MLFMA can be utilized more effectively and elaborately by the proposed strategy, while the
numerical accuracy and natural parallelization of SAI are preserved.

2. FORMULATION

In the implementation of MLFMA, owing to the rapid decay of Green function, the general trend of
magnitude of the matrix entries obeys physical proximity, i.e., basis functions that are close to each other
are expected to have strong electromagnetic coupling, resulting in relatively larger magnitudes of matrix
entries. Therefore, the sparse near-field matrix ZN is likely to retain the most relevant contributions of
the dense matrix Z. Hence, effective utilization of ZN can provide strong preconditioners for Eq. (1).
For the convenience of following expression, we use Z̄ to denote the matrix extracting from ZN , which
is prepared for constructing M .

In the case of right preconditioning, the approximate inverse of the near-field matrix is computed
by minimizing

∥∥E − Z̄M
∥∥

F
, where E is the identity matrix, and ‖·‖F denotes the Frobenius norm. The

Frobenius norm minimization problem can be decoupled into the sum of the squares of the 2-norms of
the individual columns of the residual matrix as

min
∥∥E − Z̄M

∥∥2

F
= min

N∑
k=1

∥∥ek − Z̄mk

∥∥2

2
(3)

where ek and mk are the kth rows of the identity matrix E and the preconditioner matrix M , respectively.
Thus, the computation of M is reduced to solving N independent linear LS problems. In Eq. (3), M is
constrained by a certain sparse pattern S. Various selecting strategies for S have been developed, while
the pattern of Z̄ is often chosen as the optimal one. If S is decided, the nonzero entries position of mk

is accordingly determined. Let Jk be the nonzero structure of mk as

Jk = {j |M (j, k) �= 0, 1 ≤ j ≤ N } Jk ∈ S (4)

and Ik be the set of indices corresponding to the nonzero rows of Z̄ (:, Jk) as

Ik =
{
i
∣∣Z̄ (i, j) �= 0, j ∈ Jk, 1 ≤ i ≤ N

}
Ik ∈ S , (5)

then the kth minimization problem is equivalent to

min
∥∥∥�
ek − �

Zk
�
mk

∥∥∥2

2
(6)

where �
mk = mk (Jk), �

ek = ek (Ik),
�

Zk = Z (Ik, Jk). Usually,
�

Zk is a small full-rank rectangular matrix.
The null vectors in Z̄ (:, Jk) which do not affect the solution of LS problems are eliminated. If n2
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denotes the number of nonzero entries in mk and n1 nonzero rows in Z̄ (:, Jk), the order of independent
minimization problem is reduced to n1 × n2. Thus, the computational complexity of Eq. (3) is about
O

(
Nn1n

2
2

)
. Furthermore, after carefully investigating the MLFMA implementation, we can find that

each basis function in a certain box on the finest level couples with the basis functions in the same
and the adjacent boxes on the same level via the near-field matrix. Therefore, each basis function
in the box couples with the same set of basis functions in the near-field matrix, i.e., for the whole
basis functions belonging to a given box, they have an identical

�

Zk. Based on this information, the
computational complexity of Eq. (3) can be further reduced into O

(
Nn1n

2
2

)
, where Nb is the number of

non-empty boxes in the finest level of MLFMA. This improvement is called modified SAI (MSAI) in [6],
which greatly reduces the time cost during construction of the preconditioner matrix without any loss
of accuracy.

On the other hand, however, as the density of basis functions increases, Z̄ becomes denser. As a
response, n1 and n2 become larger. Since the computational complexity of Eq. (3) rises with n1n

2
2, the

high density of basis functions causes a high constructing time. Especially when the simulated object
contains refined structures or thick dielectric bodies, the meshes will be subdivided finely. Thus, each
finest box may contain plenty of basis functions, which leads to very large n1 and n2. As a result, the
cost of SAI preconditioner increases dramatically. The possible high construction cost mentioned above
calls for the sparse pattern selecting strategy, that is, obtaining a sparser Z̄ by pre-filtering ZN , which
yields a sparser S. There are two main strategies to achieve this purpose as follows:

1) Dropping entries with small magnitude from the original matrix, as done in [7]. However,
improper setting may even deteriorate the condition of original matrix equation. Thus, this strategy is
not popularized.

2) Dropping entries according to the distance between the centers of boxes and the basis functions.
Assume that the kth basis function Xk belongs to the finest box G, then there are two filtrations, τ1

and τ2, to filter the set of indices Jk and Ik, respectively, as{
JG = {j |j ∈ Jk and dist (k, j) ≤ τ1 }
IG = {i |i ∈ Ik, j ∈ Jk and dist (i, j) ≤ τ2 } (7)

where dist(k, j) denotes the distance between the center point of G and the edge j, and dist(i, j)
denotes the distance between the center point of groups containing all edges j ∈ J and the edge i.
In other words, when we select nonzero entries of the columns of M correlated with box G such as
the kth column, firstly we need to draw a sphere of radius τ1 centered at the center of G. All of the
interactions of the basis functions contained by this sphere will be included by Z̄, while the interactions
of the others out of the sphere will be eliminated. This strategy is discussed detailed in [6]. However, it
has disadvantage. Suppose that the locations of Xk and other two basis functions Xj1 and Xj2 in the
finest boxes of MLFMA are as shown in Figure 1. For the basis function Xk belonging to G, actually,
the distance between Xk and Xj1 is smaller than τ1, leading to a strong coupling between the two
correlative basis functions, which is eliminated however. On the contrary, the distance between Xk and
Xj2 is larger than τ1, resulting in a weak coupling, which is included. Because of the existence of this
kind of situation, this strategy cannot utilize the nonzero entries of near-field matrix effectively.

To solve this problem, we produce a new octree (TREE), whose length of finest boxes is LSAI,
to assemble the SAI preconditioner. In other words, the matrix Z̄ preparing for constructing M is
extracted from ZN through the so-called near-field matrix of the new octree. As shown in Figure 1, in
the TREE, the box BII containing Xj1 is one of the neighbor boxes of the box BI containing Xk, thus,
the interaction between Xj1 and Xk will be included in Z̄ through the near interaction between BI and
BII — actually, for all of the interactions of any two basis functions, if the distance between the two
basis functions is smaller than LSAI, the interaction between them will definitely be included. On the
contrary, since Xj2 does not belong to any neighbor box of BI, the interaction between Xk and Xj2 will
be eliminated when generating Z̄.

The size of the smallest boxes in TREE, LSAI, is a user-defined parameter that can be tuned to
control the number of nonzero entries of M , that is, the sparse pattern. If we still use Nb to donate
the number of non-empty boxes in the TREE, apparently, a smaller LSAI leads to a large Nb. However,
according to the computational complexity O

(
Nbn1n

2
2

)
during constructing the SAI preconditioner,

the number of non-empty boxes Nb affects the constructing time far less than n1 and n2. Besides, the
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Figure 1. The locations of Xk, Xj1 and Xj2 in the octree of MLFMA and TREE.

proposed strategy exhibits some advantages over the conventional strategies as follows:

1) User friendly. It has only one variable parameter, i.e., LSAI, which greatly simplifies the process
of tuning an appropriate parameter for a certain problem. Furthermore, the value range of LSAI

is relatively narrow. In general, it is from 0.125λ (λ is the wavelength in free space) to the size
of the finest boxes in MLFMA. According to a large number of numerical experiments, LSAI is
recommended to be two times of the average mesh size.

2) Better approximation of ZN . All of the strong coupling of any two basis functions, the distance
between which is smaller than LSAI, will definitely be included by Z̄.

3) Simple implementation. The proposed strategy keeps the basic characteristics of the structure of
original SAI preconditioner. Thus, the existing code does not need to make major change.

4) Slight setup time for constructing M . Compared to the conventional strategies, Z̄ can be extracted
from ZN directly without any comparison about the magnitude or position of nonzero entries.
The proposed strategy needs slightly more setup time to generate the TREE. However, this time
increase is very limited because of the utilization of the fast binary-tree searching algorithm.

3. NUMERICAL RESULTS

To investigate the effectiveness of the proposed strategy, several perfectly electric conductor (PEC)
objects involving scattering or radiation problems are simulated respectively. In the implementation,
RWG basis functions [12] are used to model the equivalent surface currents, and the restarted
GMRES [13] is used as the iterative solver to reach the 0.001 convergence criterion, while the restarted
number is fixed to 100, and maximum iterations is limited to 1000. The finest box size of MLFMA is
fixed to 0.25λ. All experiments are performed on a workstation with 3.2 GHz CPU in single precision.

3.1. Monopoles System

This PEC object consists of two λ/4 monopoles mounted over a complex platform as shown in Figure 2.
The ill-conditioned electric field integral equation (EFIE) is applied to model PEC surfaces, discretizing
into 363,198 triangles resulting in 544,500 unknowns at 300 MHz while the discretized mesh size is
0.08λ. The radiation patterns of two monopoles in xoz and yoz planes are simulated. For comparison,
the proposed selection strategy (prop) and the strategy in [3] (conv) for SAI with different variable
parameters are studies. Table 1 shows the detailed performance, where T set, TSAI, and SAI-Mem
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Figure 2. Two λ/4 monopoles attached to a complex PEC structure.

Table 1. Comparison of the details of different strategies and parameters on the SAI preconditioner.

SAI style Parameter
Peak

memory
(MB)

Total
time
(s)

iterations
SAI-Mem

(MB)
TSAI (s) Nb Δ

Non-zero
entries

none —— 3260 3636.16 984 —

prop
(LSAI)

0.125 3818 1791 172 553.8 86.49 57604 9.5 47,358,060
0.15 4057 1923 158 792.9 242.2 40306 13.5 68,406,112
0.2 4660 4535 1000* 1394.5 649.9 22804 23.9 121,065,072
0.25 5447 5187 1000* 2179.9 1257 14402 37.8 189,713,182

conv
(τ1/τ2)

0.2/0.4 3575 3875 1000* 317.2 154.3
—

26,985,129
0.25/0.5 3854 2376 569 589.8 201.2 50,794,601
0.3/0.5 4195 4136 1000* 921.3 322.6 79,695,191

denote the setup time, constructing time, and memory usage of SAI, respectively; Δ denotes the average
number of basis functions per non-empty box in TREE; and * denotes no convergence after maximum
iterations. It is observed that both conv and prop with appropriate parameters can reduce the iteration
number, while prop is much more effective than conv. Besides, under the condition of the similar
SAI-Mem, e.g., prop with LSAI=0.125λ vs. conv with τ1/τ2 = 0.25/0.5, prop exhibits much better
performance than conv in both the constructing time and iterations. This validates the high efficiency
of the proposed strategy. In addition, we find that a larger LSAI even slows down the convergence.
It might be because when LSAI becomes larger, Z̄ will become denser, leading to the increase of the
number of nonzero entries with tiny magnitude. This may have negative effects on the performance
of SAI, which demonstrates that enlarging the number of nonzero entries in M does not always lead
to better performance. Underlying reasons are expected for further research. The radiation patterns
of the monopoles system are shown in Figure 3, where LSAI = 0.15λ for prop, and τ1/τ2 = 0.25/0.5
for conv. Excellent agreement between the results from different implementations is observed, which
convincingly illustrates that the application of the proposed strategy has no negative impact on the
numerical stability, maintaining computational accuracy of original matrix equation.
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Figure 3. Radiation pattern of the monopoles system.

3.2. PEC Sphere

The bistatic RCS of a PEC sphere in diameter of 10λ is computed. A suitable mesh is adopted
which results in 96,702 triangles and 145,053 unknowns, respectively. EFIE with poor condition and
well-conditioned combined field integral equation (CFIE) are adopted to disperse the PEC surface,
respectively. The computed results are depicted in Figure 4, and the result from Mie series is also
presented for comparison. Excellent agreement between the numerical results and Mie series is observed.
The detailed calculated information is given in Table 2. From it, we can find that the SAI preconditioner
is effective for both EFIE and CFIE. However, because CFIE is well conditioned which has an excellent
convergence property, the usage of SAI even increases the total time and memory usage. This
phenomenon illustrates that preconditioners are not always needed by all kinds of calculation, especially
when the type of integral equation modeling the calculated object is well conditioned. However, for
EFIE, the SAI preconditioner reduces the number of iterations and total cost-time sharply. On the
other hand, compared to LSAI =0.2λ or 0.25λ situation, despite that LSAI =0.15λ shows a little more
iterations number, it has the lowest total time and peak memory usage. It states that a suitable LSAI

is necessary for a high efficiency, while a bigger value of LSAI is not always better.
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Figure 4. Bistatic RCS of a conducting sphere of diameter 10λ.
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Table 2. Details with different value of LSAI for the PEC sphere of diameter 10λ.

Integral
equation

SAI type
LSAI

(λ)
SAI-Mem

(MB)
TSAI

(sec)
Peak memory

(MB)
Total time

(min)
iterations

EFIE

none —— 788.7 15.3 691

prop
0.15 117.2 32.2 906.8 5.8 249
0.2 208.6 61.6 997.9 6.2 221
0.25 325.5 180 1116 8.5 203

CFIE

none —— 788.7 1.1 29

prop
0.15 117.2 32.2 906.8 1.6 15
0.2 208.6 61.6 997.9 2.5 14
0.25 325.5 180 1116 5.1 13

3.3. Complex Vessel

As shown in Figure 5, a complex vessel with length of 162.2 m, which contains lots of fine and open
structures, is placed across x-axis. The frequency of incident plane wave is 300 MHz. A moderate mesh
size is chosen to generate totally 2,836,938 unknowns with respect to 1,891,288 triangles. EFIE is applied
to model PEC surfaces. This vessel is illuminated by a plane wave across −x-axis, and the observation
range is 0◦ ≤ϕ≤ 360◦ and θ = 90◦. This calculation is executed using OpenMP parallelization with 16
cores. In addition, because SAI can be naturally parallelized, serial and parallel codes for constructing
SAI are compared. The parallel efficiency η is defined as

η =
Tser

np × Tpar
% (8)

where np is the number of cores used in the parallelization. In this experiment, np = 16. The detailed
information is shown in Table 3, while the serially and parallelism constructing time for SAI are denoted
by Tser and Tpar, respectively, and the total time means the whole solution time applying the OpenMP
parallelization. It is observed that SAI shows very good performance on both accelerating convergence
and parallel computation. Besides, the residual error of iterative solver cannot reach convergence
criterion after 1000 iterations without any preconditioner, while the residual error is also presented
in the table. On the contrary, when SAI preconditioner is applied with suitable LSAI, the iterative
solution can be converged. Compared to SAI with LSAI = 0.25λ, LSAI = 0.2λ shows a similar number
of iterations, while the constructing time and peak memory usage are much lower to varying degrees.
The bistatic RCSs of the vessel with different polarization modes are shown in Figure 6.

Figure 5. Model of a complex vessel.
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Figure 6. Bistatic RCS of a complex vessel.

Table 3. Details with different value of LSAI for the complex vessel.

SAI type
LSAI

(λ)
SAI-Mem

(GB)
Tser

(sec)
Tpar

(sec)
η

Peak memory
(GB)

Total time
(min)

iterations

none —— 13.8 92.8 1000*, 0.17

prop
0.15 1.29 1830 133 86% 15.1 95.7 1000*, 0.005
0.2 2.29 4329 21.3 89% 16.2 763 757
0.25 383 20981 99.5 91% 17.9 947 739

4. CONCLUSIONS

A new sparse pattern selecting strategy with only one tuning parameter for SAI preconditioner based
on the geometric information is proposed by using a new octree. With effective utilization of near-field
matrix in MLFMA, the proposed select strategy exhibits a significant reduction in the iteration number
and total solution time demonstrated by numerical results. Besides, the one tuning parameter can be
automatically set according to the average mesh size.
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