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Radiation Gauge Potential-Based Time Domain Integral Equations
for Penetrable Regions

Thomas E. Roth1, 2 and Weng C. Chew2, 3, *

Abstract—Potential-based integral equations are being explored to develop numerical methods that
avoid low frequency breakdown issues and are better suited to couple to quantum physics computations.
Important classes of quantum electrodynamics problems are typically formulated in the radiation gauge,
leading to interest in efficient numerical solutions able to be performed directly in this gauge. This work
presents time domain integral equations for penetrable regions that are developed in the radiation gauge.
An appropriate marching-on-in-time discretization scheme is developed that fully conforms to the spatial
and temporal Sobolev space properties of the integral equations. It is shown that following this approach
leads to a discrete system with improved stability properties that produces accurate results down to very
low frequencies. The accuracy and stability of this formulation at low frequencies are shown through
numerical results.

1. INTRODUCTION

Many semiclassical and quantum electrodynamics problems are formulated in the radiation gauge so that
the scalar potential does not need to be considered [1, 2]. In many of these applications, computational
electromagnetics (CEM) methods operating purely in the classical regime can be leveraged to supply the
necessary information about the electromagnetic effects to the quantum calculation [3, 4]. Typically, this
can be done by computing components of the classical dyadic Green’s function for the electromagnetic
environment by solving appropriately defined scattering problems. For instance, it was shown in [3] how
the dynamics of atom-photon interactions can be solved in a general electromagnetic environment by
computing the imaginary part of the dyadic Green’s function. Although a different application, it was
shown in [4] how the Casimir force between two objects could be evaluated using the same information
provided by the dyadic Green’s function for the electromagnetic environment being analyzed. Both of
these applications have the electromagnetic field quantized, yet classical CEM can still play a vital role
in studying these physical systems.

Despite this connection to classical CEM, these and other quantum applications stress the capability
of many CEM methods. For instance, many quantum applications can require the analysis of large
geometries with fine features composed of conducting and penetrable regions over extremely broad
bandwidths [5–7]. One approach to meeting the needs of these emerging areas is with time domain
integral equations (TDIEs), which can analyze large bandwidths in a single simulation and can also
be accelerated with fast algorithms to handle large problems [8, 9]. Despite these favorable properties,
TDIEs in electromagnetics suffer from low frequency and dense mesh breakdowns, impacting their
ability to perform extremely broadband analyses of complicated structures efficiently [10, 11].

The low frequency and dense mesh breakdowns of traditional TDIEs are primarily consequences
of the spectral properties (in the Hilbert space sense) of the hypersingular integral operators that
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are present in many electromagnetic integral equations [11]. For example, this operator is present in
the electric field integral equation (EFIE) for perfect electric conductors, as well as most penetrable
formulations.

Early approaches at overcoming the issue of low frequency breakdown mainly involved performing
quasi-Helmholtz decompositions of the current densities, such as a loop-tree decomposition [10]. Efforts
to address the dense mesh breakdown have primarily focused on developing preconditioners, with the
most successful being the Calderón preconditioners that leverage the self-regularizing properties of the
hypersingular integral operator [11]. Although successful, the combination of these approaches requires
the construction of the spatial basis functions for the quasi-Helmholtz decomposition, which can be
difficult to perform efficiently for complex objects [12].

Alternative approaches to addressing the low frequency breakdown that result in simpler
discretization schemes have also been pursued. These include the augmented EFIE and current and
charge integral equation (CCIE) formulations. These separate the hypersingular integral operator into
two parts that can be stably discretized by treating the surface charge densities as additional sets of
unknowns to the surface current densities [12, 13]. Preconditioning these equations can be pursued to
improve convergence issues that may remain due to dense mesh breakdown effects [12].

A more recent approach to addressing low frequency breakdown issues is to develop equations
directly in terms of electromagnetic potentials, as opposed to fields [14–16]. These systems naturally
do not exhibit low frequency breakdown effects, and have shown promise. However, all potential-based
systems have been formulated in the Lorenz gauge so far, leaving a gap for handling applications
more naturally expressed in the radiation gauge. For instance, both the atom-photon interaction and
Casimir force calculations discussed in [3, 4] can be viewed as being quantized in the radiation gauge.
Although it is in principle possible to recover results in the radiation gauge from a solver operating in the
Lorenz gauge, implementing these gauge transformations as a post-processing step can be complicated
and inefficient. Hence, having appropriate solvers developed directly in the radiation gauge can be of
interest for these applications.

As a result, this work develops TDIEs for penetrable regions in the radiation gauge that do not
exhibit a low frequency breakdown. These TDIEs are derived in Section 2, and are seen to be similar to
the CCIE [13], which to the authors’ best knowledge has never been demonstrated in the time domain.
To assist in discretizing the system, the spatiotemporal Sobolev space properties of the integral operators
are discussed [17]. To aid in interpreting the spatiotemporal Sobolev space properties discussed, a short
primer on these spaces is included in the appendix. Following this, Section 3 presents a discretization
that fully conforms to the Sobolev space properties of the integral operators, enhancing the stability of
the system. Section 4 then presents numerical results that demonstrate the stability and accuracy of
this formulation down to very low frequencies.

2. FORMULATION

In this section, potential-based TDIEs for penetrable regions are derived in the radiation gauge. To
do this, traces of the integral representation of solutions to the radiation gauge wave equation are
introduced in Section 2.1. Following this, the spatiotemporal Sobolev space properties of these traces
are discussed in Section 2.2 to assist in discretizing the integral equation system presented in Section 2.3.

2.1. Vector Potential Traces in the Radiation Gauge

To derive integral equations, the differential equations the potentials obey must be found. To do this,
the potentials are introduced in the standard way so that Maxwell’s equations are satisfied [18]. The
particular gauge often used in quantum problems is the radiation gauge, which is characterized by
Φ = 0 and ∇ · A = 0 (this is also sometimes referred to as the Φ = 0gauge). This gauge is typically
used when no near-field sources are present, but also applies when only divergence-free current densities
are considered [1, 18]. For this situation, only the wave equation for the vector potential needs to be
considered. For deriving an integral representation formula, the source-free wave equation can be used,
which is

∇×∇× A + με∂2
t A = 0. (1)
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This equation has an identical form to that for electromagnetic fields, so the standard Stratton-Chu
integral representation formula can be easily adapted to the current case [19]. However, for increased
clarity, the radiation gauge integral representation formula will be developed explicitly in this work.

The simplest way to establish the desired radiation gauge integral representation formula is to use
the scalar-vector Green’s theorem [20, 21]. This is∫

V

[
b
(
∇×∇× a

)
+ a∇2b+

(
∇ · a

)
∇b

]
dV = −

∫
S

[(
n̂ · a

)
∇b+ (n̂× a) ×∇b+

(
n̂×∇× a

)
b

]
dS, (2)

where n̂ is the unit normal vector pointing into the volume V . Further, b and a are arbitrary scalar
and vector functions, respectively. The only conditions required of b and a for Rq. (2) to be valid are
that they have the necessary continuity properties for the derivatives in Eq. (2) to be meaningfully
evaluated [20].

It is easiest to use this identity in the frequency domain and to then transform the results back to
the time domain. Considering this, a frequency domain radiation gauge integral representation formula
can be developed by setting a = Ã(r′) and b = g̃(r, r′) in Eq. (2), where a tilde denotes a quantity
is in the frequency domain with angular frequency ω and g̃ is the free-space Green’s function. In the
frequency domain, Eq. (1) becomes

∇×∇× Ã − μεω2Ã = 0 (3)

and the Green’s function can be seen to obey [20]

∇2g̃(r, r′) + μεω2g̃(r, r′) = −δ(r − r′). (4)

To use Eq. (2), it will be advantageous to have S be a surface bounding a particular region in space
(e.g., the surface of a scatterer) and to have V stretch from S to infinity. The additional surface
integral that would occur at infinity for this setup vanishes due to the radiation condition, and so can
be ignored [21, 22]. At this point, Ã and g̃ can be substituted into Eq. (2). The resulting expression
can then be simplified by using Eqs. (3) and (4) to arrive at∫

V

[(
∇′ · Ã

)
∇′g̃ − Ãδ(r − r′)

]
dV ′ = −

∫
S

[
g̃
(
n̂′ ×∇′ × Ã

)
−∇g̃

(
n̂′ · Ã

)
+ ∇×

(
g̃n̂′ × Ã

)]
dS′. (5)

Noting that ∇′ ·A = 0 due to the gauge condition, the volume integral can be evaluated to give

Ã(r) =
∫

S

[
g̃
(
n̂′ ×∇′ × Ã

)
−∇g̃

(
n̂′ · Ã

)
+ ∇×

(
g̃n̂′ × Ã

)]
dS′, r /∈ S, (6)

which is the desired integral representation formula.
The time domain integral representation formula can now be derived by taking the inverse Fourier

transform of Eq. (6). After redefining the surface sources, this gives

A(r, t) = μ

∫
S

j(r′, τ)
4πR

dS′ −∇
∫

S

∂−1
t d(r′, τ)

4πRε
dS′ + ∇×

∫
S

∂−1
t m(r′, τ)

4πR
dS′, r /∈ S, (7)

where j = μ−1n̂′ × ∇′ × A, d = n̂′ · ε∂tA, and m = n̂′ × ∂tA. Further, τ = t − R/c and ∂−1
t denotes

a time integration from −∞ to the temporal argument of the function it is applied to. Note that the
reasons for the temporal rescaling of the surface sources in Eq. (7) will be discussed in Section 2.2.

Before continuing, it is useful to comment on the physical interpretation of the sources introduced
in Eq. (7), since they are somewhat unfamiliar when written in this potential-based form. Considering
that in the radiation gauge B = ∇ × A and E = −∂tA, it can be seen that j and m correspond to
equivalent electric and magnetic current densities, respectively. Similarly, d can be identified as an
electric charge density which obeys a continuity equation with j. This can be established by taking the
divergence of j and using Eq. (1).

Typically, integral equations are formulated after using the continuity equation to eliminate d from
Eq. (7). This will not be done in this work because it introduces a hypersingular integral operator in
Eq. (7), damaging the low frequency performance. Retaining d as a surface source follows the core idea
of the augmented EFIE and CCIE, and results in an integral representation that is stable down to very
low frequencies [12, 13].
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To form integral equations, traces of the vector potential, as defined through Eq. (7), need to be
determined for the limit as r approaches S. Note that a trace in this context refers to trace operators
from the theory of Sobolev spaces. For the purposes of this work, these can simply be viewed as a
way to define functions on surfaces as boundary values of functions defined throughout a volume. A
simple example is n̂×F, where n̂ is a normal unit vector on a surface S and F is some vector function
defined throughout the volume of interest. Although this simple view is acceptable for this work, a
more sophisticated consideration is necessary to rigorously establish stability properties of TDIEs that
are central to our discretization approach that will be detailed in Section 3 [17, 23].

Of particular interest are traces related to boundary conditions enforcing the continuity of the
tangential components of the electric and magnetic fields and the normal components of the electric
and magnetic fluxes. For instance, the trace corresponding to the normal component of the electric
flux can be written as n̂ · ε∂tA{j,d,m}(r, t), where the notation emphasizes that this is a functional
evaluated at position r and time t that depends on the source functions given in the braces. The explicit
form of this trace can be found by plugging Eq. (7) into this expression for A and then taking the limit
as r approaches S. Considering this, the explicit form of the traces that are of interest to this work are

n̂×
[
∂tAj{j,d,m}(r, t)

]
×n̂=μj∂tTj{j}(r, t)−ε−1

j ∇Sj{d}(r, t)±
1
2
n̂×m(r, t)−Kj{m}(r, t), (8)

n̂·εj∂tAj{j,d,m}(r, t)=μjεjn̂·∂tTj{j}(r, t)±
1
2
d(r, t)+Nj{d}(r, t) + n̂·εj∇×Tj{m}(r, t), (9)

n̂×
[
μ−1

j ∇×Aj{j,m,b}(r, t)
]
×n̂=−εj∂tTj{m}(r, t)+μ−1

j ∇Sj{b}(r, t)±
1
2
n̂×j(r, t)−Kj{j}(r, t), (10)

n̂·∇×Aj{j,m,b}(r, t)=−μjεjn̂·∂tTj{m}(r, t)∓ 1
2
b(r, t)−Nj{b}(r, t)+n̂·μj∇×Tj{j}(r, t),(11)

where b = −n̂′ · ∇ × A, i.e., an equivalent magnetic charge density related to m through a continuity
equation. Further aspects of the notation include the subscript j, which is used to differentiate whether
the limit is approaching S from the exterior (e) or interior (i) regions. Note that the top (bottom)
sign for the Cauchy principal value terms should be selected for the limit being taken from the exterior
(interior) region.

The integral operators used in Eqs. (8) to (11) are

Tj{q}(r, t) =
∫

S

q(r′, τj)
4πR

dS′, (12)

Kj{q}(r, t) =
∫

S
R̂×

[
q(r′, τj)
4πR2

+
∂tq(r′, τj)

4πRcj

]
dS′, (13)

Sj{p}(r, t) =
∫

S

p(r′, τj)
4πR

dS′, (14)

Nj{p}(r, t) =
∫

S
n̂ · R̂

[
p(r′, τj)
4πR2

+
∂tp(r′, τj)

4πRcj

]
dS′. (15)

where R̂ is a unit vector pointing in the direction from r′ to r. Note that Kj and Nj should be evaluated
in the Cauchy principal value sense.

2.2. Sobolev Spaces

Sobolev spaces form a central part of understanding the mathematical properties of integral operators,
and can be vital in developing well-performing discretizations [24]. Along these lines, it is essential for
basis and testing functions to be selected from appropriate Sobolev spaces to achieve a stable marching-
on-in-time (MOT) discretization of systems combining vector and scalar TDIEs [17]. In particular,
basis functions are selected from the domain space of the integral operators, while testing functions are
selected from the dual to the range space of the integral operators [25]. To support this, the Sobolev
space properties of Eqs. (8) to (11) are discussed in this section. The details of the analysis to determine
the properties presented in this section can be found in [17, 23, 26].
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To begin, we briefly introduce the notation for the family of spatiotemporal Sobolev spaces used.
More details on these spaces can be found in [17] and the appendix of this work. The space of div-
conforming functions is denoted as H s1,s2

div , where s1 (s2) gives the temporal (spatial) order of the
Sobolev space. Similarly, the space of curl-conforming functions is denoted by H s1,s2

curl , and spaces for
scalar functions are denoted by Hs1,s2. Note that for a function to be a member of a higher order
Sobolev space requires the function to be smoother (i.e., more derivatives can be taken of it). As a
result, taking a derivative of a function will lower its Sobolev space order, while integrating a function
can raise its Sobolev space order.

As alluded to above, developing a well-performing discretization will require knowing the dual
spaces for all of the spatiotemporal Sobolev spaces discussed. The dual spaces are summarized as:(
H s1,s2

div

)∗ = H −s1,s2

curl ,
(
H s1,s2

curl

)∗ = H −s1,s2

div , and
(
Hs1,s2

)∗ = H−s1,−s2; where for a Sobolev space H,
the dual space is denoted as H∗.

The largest Sobolev space that each source is a member of can be found through the functional
analysis of Eqs. (8) to (11). The results of this analysis give j,m ∈ H

1/2,−1/2
div and d,b ∈ H1/2,−1/2.

From this, it is seen that the temporal Sobolev space order for each function is the same. This is due
to a deliberate choice in the definitions of the various source terms. For example, if instead of d we
had elected to use as a source d′ = n̂′ · εA, the temporal order of the Sobolev spaces for d′ would be
different from the rest of the sources. Typically it is convenient to define all the sources so that they
have the same temporal Sobolev space order, since this allows the same temporal basis function to be
used for all sources in an MOT discretization [17]. However, for some potential-based formulations it
can be more advantageous to have some sources with different temporal Sobolev space orders, as was
done in [27].

To determine the range space of the integral operators in Eqs. (12) to (15), we note their mapping
properties. These are

Tj : H
s,−1/2

div → H
s+2,−1/2

curl , (16)

Kj : H
s,−1/2

div → H
s+1,−1/2

curl , (17)

Sj : Hs,−1/2 → Hs+2,1/2, (18)

Nj : Hs,−1/2 → Hs+1,−1/2. (19)

Note that the increase of the temporal Sobolev space order of Tj and Sj are higher than that for Kj

and Nj. This is due to the spatial derivatives implied in Kj and Nj, which impact the temporal order
of the integral operators [17]. This difference is balanced out in Eqs. (8) to (11), where a spatial or
temporal derivative is applied to every instance of Tj and Sj . It is important to recognize that for
Sobolev spaces of electromagnetic functions, spatial derivatives also impact the temporal order of the
Sobolev spaces [17]. This can be intuitively understood from the structure of Maxwell’s equations where
E and H are dual to each other. As a result, it would be expected for them to generally be members of
the same Sobolev space. Considering either of Maxwell’s curl equations, it is immediately seen that for
all the functions of these equations to be in the same Sobolev space the spatial derivative will necessarily
impact the temporal Sobolev space order.

The range spaces of Eqs. (8) to (11) can now be found using Eqs. (16) to (19). Performing this,
we see that the range space of Eqs. (8) and (10) is H

3/2,−1/2
curl . Similarly, the range space of Eqs. (9)

and (11) is H3/2,−1/2. From this, it can be seen that the traces given in Eqs. (8) to (11) were selected
so that the temporal order of the range spaces would be the same, and equal to 3/2. This was done for
two reasons. The first is that it is essential for the range spaces to all have the same temporal Sobolev
space order to achieve a stable MOT discretization [17]. Secondly, having the temporal order equal to
3/2 is advantageous so that the temporal dual space has order −3/2, which is the highest order space
that contains the Dirac delta function. As a result, a MOT discretization naturally conforms to the
Sobolev space properties of Eqs. (8) to (11) if a correct temporal basis function is selected [17].

Although this is the approach taken in this work, it is also possible to consider other traces of the
vector potential, e.g., n̂×[Aj{j,d,m}(r, t)]×n̂. This leads to integral equations with a different temporal
range space, which requires a different set of basis functions to discretize using a MOT approach [16, 17].
The properties of an integral equation system using these other traces in the radiation gauge can be
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considered in future work.

2.3. Radiation Gauge Integral Equation System

To derive an explicit set of integral equations, a two region problem with an incident field only in the
exterior region will be considered. This is schematically shown in Fig. 1, where Ainc is assumed to be
produced by a source that is compatible with the radiation gauge. To form the complete system for the
four surface unknowns, we use a Müeller-inspired combination of auxiliary exterior and interior integral
equations derived using the traces given in Eqs. (8) to (11) [28]. For each equation, this corresponds to
a simple rearrangement of the boundary condition enforcing the continuity of the electromagnetic fields
and fluxes. For instance,

n̂×
[
∂tAe{j,d,m}(r, t)

]
×n̂− n̂×

[
∂tAi{j,d,m}(r, t)

]
×n̂ = −n̂×

[
∂tAinc(r, t)

]
×n̂, r ∈ S, (20)

can be seen as enforcing that the tangential electric field is continuous across S by noting that
n̂× [∂tAe(i){j,d,m}(r, t)]× n̂ is the scattered potential in the exterior (interior) region. The benefit
of combining traces in this way is that the resulting matrix system will have an identity operator along
the diagonal, which improves the conditioning of the discretized matrix system.

Figure 1. Configuration of the two-region problem considered in this work.

The remaining equations for the integral equation system are
n̂ · εe∂tAe{j,d,m}(r, t) − n̂ · εi∂tAi{j,d,m}(r, t) =−n̂ · εe∂tAinc(r, t), r ∈ S, (21)

n̂×
[
μ−1

e ∇×Ae{j,m,b}(r, t)
]
×n̂−n̂×

[
μ−1

i ∇×Ai{j,m,b}(r, t)
]
×n̂=−n̂×

[
μ−1

e ∇×Ainc(r, t)
]
×n̂, (22)

r ∈ S,
n̂ · ∇ × Ae{j,m,b}(r, t) − n̂ · ∇ × Ai{j,m,b}(r, t) =−n̂ · ∇ × Ainc(r, t), r ∈ S. (23)

Utilizing all of the boundary conditions in this way ensures the low frequency accuracy of the overall
integral equation system. This occurs because Eqs. (20) to (23) naturally decouple into electrostatic
and magnetostatic integral equations as the frequency lowers [13].

It is important to note that the main way this integral equation system differs from the CCIE of [13]
is in the vector equations. In particular, the original CCIE of [13] was implemented using rotated vector
equations, i.e., it would correspond to equations built from traces of the form n̂ × ∂tAj{j,d,m}(r, t).
Although this difference is subtle, by not utilizing rotated vector equations our discretization scheme
leads to simpler numerical integrations that can leverage standard approaches for singularity extraction
and transferring of spatial derivatives onto testing functions.

3. DISCRETIZATION

The discretization of Eqs. (20) to (23) is discussed in this section. To enhance the numerical stability of
the system, a discretization that fully conforms to the spatiotemporal Sobolev space properties of these
equations is developed.
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To begin, we consider the temporal basis function, which significantly impacts the stability of a
MOT system [17]. In general, the basis function for the MOT system needs to be selected so that the
MOT discretization is functionally equivalent to one that directly matches the Sobolev space properties
of the system being discretized [17]. However, in some special cases, the equations being discretized
can be scaled such that a MOT discretization is the functionally correct discretization (i.e., it directly
conforms to the Sobolev spaces of the system). This approach was taken in this work, as mentioned in
Section 2.2, so that using a basis function from a Sobolev space with order 1/2 will result in a stable
system. A function that meets these properties is a triangle function defined by

T (t) =

⎧⎨
⎩1 − |t|

Δt
, for |t| ≤ Δt

0, elsewhere,
(24)

where Δt is the width of the time step used in the simulation.
In contrast to the CCIE of [13], our spatial basis functions are selected to fully conform to the

Sobolev space properties of the integral operators. The functions used are defined on the primal mesh,
and a dual mesh formed by the barycentric refinement of the primal mesh. In all cases, the basis and
testing functions have been selected in accordance with the results of [29], where functions on the dual
mesh were carefully constructed to lead to good discretizations when combined with standard functions
used on the primal mesh.

Considering the spatial domain spaces of Eqs. (16) and (17), it is seen that j and m should be
discretized with div-conforming basis functions. In particular, j is discretized with a Rao-Wilton-Glisson
(RWG) function, denoted by fn, where n is the index of a primal mesh edge [30]. To ensure every integral
operator can be tested well, it is necessary to use a different div-conforming basis function to discretize
m. A common approach to address this is to use a differential forms motivated discretization by using
functions defined on the dual mesh for m [31]. Popular choices for this are the Chen-Wilton or Buffa-
Christiansen (BC) functions [29, 32]. In this work, we use the BC function, denoted by gn, where n is
the index of a primal mesh edge [29]. Although the BC function is associated with primal mesh edges,
it is composed of a linear combination of RWG functions defined on the dual mesh (e.g., see [24, 29]).

Considering the spatial domain spaces given in Eqs. (18) and (19), it is seen that the two scalar
unknowns should be discretized with spatial functions from the Sobolev space with order −1/2. For
a function to be in this space, it must at least be a piecewise constant function (see the appendix for
more details). Further, it is natural to have these functions defined on the same mesh as the vector
unknown they are related to through a continuity equation (e.g., j and d are related). As a result, d
is discretized with a piecewise constant function supported over a single primal mesh triangle, denoted
by un, where n is the index of the primal mesh triangle. Similarly, b is discretized with a piecewise
constant function whose support covers all dual mesh triangles attached to a single primal mesh node
(illustrated in Fig. 2(a) and defined in [29]). This function is denoted by vn, where n is the index of the
primal mesh node the function is associated with.

Spatial testing functions are selected to have a square matrix system that fully conforms to the
Sobolev space properties of the integral operators. Considering Eqs. (16) and (17), we see that Eqs. (20)
and (23) should be tested with div-conforming functions. As a result, Eq. (20) is tested with RWG
functions. For a trace from a single region and a particular combination of basis and testing functions,
this yields

〈fm, ∂tAj{fn,uk,g�}〉 = 〈fm, μj∂tTj{fn}〉 + 〈∇ · fm, ε−1
j Sj{uk}〉 ±

1
2
〈fm, n̂×g�〉 − 〈fm,Kj{g�}〉. (25)

In Eq. (25),

〈F,G〉 =
∫

S
F(r, t) · G(r, t)dS, (26)

and a similar definition also applies for scalar integrals. Similarly, Eq. (23) is tested with BC functions,
yielding

〈gm,∇×Aj{fn,g�, vk}〉 = −〈gm, εj∂tTj{g�}〉−〈∇·gm, μ
−1
j Sj{vk}〉±

1
2
〈gm, n̂×fn〉−〈gm,Kj{fn}〉. (27)
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(a) (b)

Figure 2. Definitions of various spatial functions used in the discretization. Each function is composed
of linear combinations of functions defined on the dual mesh. The support of the function is denoted by
dashed lines. The numbers in boxes denote the scaling factors used in the linear combination for any
function touching the box. Thicker lines denote edges on the primal mesh, while thinner lines denote
edges on the dual mesh. Functions are (a) vn made from piecewise constant functions and (b) ψn made
from pyramid functions.

This testing approach ensures that the discretization of the rotated identity operators in these equations
produces well-conditioned square matrices [29].

From Eq. (19), we see that the scalar equations (21) and (23) should be tested with a function
from a spatial Sobolev space of order 1/2. That is, these functions should become piecewise constants
after being differentiated. As a result, Eq. (23) is tested with a pyramid function associated with primal
mesh nodes. The pyramid function is equal to 1 at the node it is associated with and varies linearly
to 0 at all surrounding nodes. This function is denoted as ϕn, where n is the index of the primal mesh
node the function is associated with. Using this function, the tested form of Eq. (23) is

〈ϕm, n̂ · ∇×Aj{fn,g�, vk}〉

= −〈ϕm, μjεjn̂ · ∂tTj{g�}〉 ∓
1
2
〈ϕm, vk〉 − 〈ϕm,Nj{vk}〉 − 〈n̂×∇ϕm, μjTj{fn}〉. (28)

Finally, Eq. (21) is tested with a function associated with primal mesh triangles, and is defined as a
linear combination of pyramid functions defined on the dual mesh (illustrated in Fig. 2(b) and defined
in [29]). This function is denoted by ψn, where n is the index of the primal mesh triangle the function
is associated with. Using this function, the tested form of Eq. (21) is

〈ψm, n̂ · εj∂tAj{fn,uk,g�}〉

= 〈ψm, μjεjn̂ · ∂tTj{fn}〉 ±
1
2
〈ψm,uk〉 + 〈ψm,Nj{uk}〉 − 〈n̂×∇ψm, εjTj{g�}〉. (29)

As mentioned earlier, the combination of scalar basis and testing functions used in this work follows the
careful construction of functions developed in [29]. The result of this is that the square matrices that
arise from the discretization of the identity operators in Eqs. (21) and (23) are well-conditioned.

4. NUMERICAL RESULTS

Numerical results are presented to demonstrate the stability and accuracy of this system down to very
low frequencies. Stability is assessed through an eigenvalue stability analysis of the MOT system, with
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any eigenvalues lying outside the unit circle meaning that the system is unstable [33].
The first set of numerical examples are performed to highlight the importance of having basis and

testing functions conform to the Sobolev space properties of the TDIEs. The object simulated is a one
meter radius sphere with a relative permittivity of 2.56. The excitation is a plane wave with temporal
variation defined by a modulated Gaussian pulse. The center frequency is 10 MHz, the bandwidth is
5MHz, and the time step is 3.33 ns. The results of eigenvalue stability analyses for three different cases
are shown in Fig. 3.

(a) (b)

Figure 3. Stability results for (a) different discretization approaches for a sphere and (b) a conforming
discretization of a thin double ogive.

The first case is for the discretization detailed in Section 3, which yields stable results. The
second case uses the same spatial discretization, but does not conform to the temporal Sobolev space
properties by using a piecewise constant function for the temporal discretization (Sobolev space order
of −1/2). This gives an unstable system. The final case uses a correct temporal discretization, but uses
a different spatial discretization. In particular, all vector unknowns are expanded with RWG functions,
and Eqs. (20) and (23) are tested with RWG functions. Similarly, both scalar unknowns are expanded
with piecewise constant functions on primal mesh triangles, and Eqs. (21) and (23) are tested with scalar
BC functions. This system is unstable due to the nearly singular matrix that results from discretizing
the rotated identity operators in Eqs. (20) and (23).

To demonstrate the stability of the method on a more complicated object, a thin double ogive is
simulated. The thin double ogive is generated in two steps. The first step generates a traditional double
ogive through a body-of-revolution line defined by

ρ(z) =

⎧⎪⎪⎨
⎪⎪⎩

5f(z)
1 − cos(46.4◦)

, for − 12.5 < z < 0

5g(z)
1 − cos(22.62◦)

, for 0 < z < 25,
(30)

where

f(z) =

√
1 −

(
z

12.5

)2

sin2(46.6◦) − cos(46.6◦), (31)

g(z) =

√
1 −

(
z

25

)2

sin2(22.62◦) − cos(22.62◦), (32)
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and all dimensions are in inches. The second step makes the double ogive thin by shrinking all the
locations of nodes in the mesh by a factor of 10 along a single dimension. The resulting object is shown
in the inset of Fig. 3(b). It is traditionally considered difficult for MOT systems to achieve stability
for objects that are thin or have sharp points, making this thin double ogive a good object to test the
stability of the method presented in this work.

The simulation parameters for the thin double ogive are the following. The excitation is a plane
wave with temporal variation defined by a modulated Gaussian pulse. The center frequency is 15 MHz,
the bandwidth is 5 MHz, and the time step is 2.5 ns. The thin double ogive has a relative permittivity
of 4 and a relative permeability of 2. Due to the large size of the matrix system, only the largest 5000
eigenvalues are computed for this simulation. These are plotted in Fig. 3(b), which demonstrates the
stability of the system.

The next example demonstrates the accuracy of the formulation presented in this work. A one
meter radius sphere with a relative permittivity of 1.9 is simulated. The excitation is a plane wave with
center frequency of 10 MHz and a bandwidth of 6MHz. The time step is 3.125 ns. The E-plane bistatic
RCS computed from the simulation is compared to an analytical solution in Fig. 4(a), with very good
agreement observed.

(a) (b)

Figure 4. Accuracy of the formulation developed in this work demonstrated through (a) comparison of
analytical and simulated RCS results for a dielectric sphere and (b) error in the RCS at low frequencies
for the PMCHWT, EFIE, the formulation of [28], and the formulation of this work.

To demonstrate that the formulation maintains high accuracy down to very low frequencies, a
sequence of simulations with center frequencies between 1 Hz to 10 MHz were performed for the one
meter radius sphere with relative permittivity of 2.56. For each case, the bandwidth is set to half the
center frequency. The error in the bistatic RCS over the E-plane was then computed at the center
frequency of each simulation using

Error =
||RCSTDIE − RCSMie||

||RCSMie||
, (33)

where || · || is the �2 norm, RCSTDIE is the RCS calculated using the TDIE, and RCSMie is the RCS
computed with the Mie series (analytical result). The error is plotted in Fig. 4(b), where it is seen that
the formulation of this work maintains a high accuracy over the entire range of frequencies considered.
Fig. 4(b) also plots the accuracy for standard methods, such as the EFIE and PMCHWT formulations
(definitions can be found in [21]), as well as an initial set of potential-based TDIEs developed in the
Lorenz gauge [28]. All of the systems except for the one formulated in this work eventually become
highly inaccurate, although the reasons for the inaccuracy are different. For the field-based systems, the
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inaccuracy comes about because the systems suffer a catastrophic low frequency breakdown, becoming
unstable. In the case of the potential-based system from [28], the system loses accuracy but never
becomes unstable. The loss of accuracy is due to the incomplete set of boundary conditions used in
formulating the integral equation system at low frequencies. This issue does not affect the integral
equations formulated in this work because of the complete set of boundary conditions utilized in
developing Eqs. (20) to (23).

Unfortunately, simulations of this system at higher frequencies (where wave physics effects become
more substantial) were found to be numerically unstable. At this time, the exact reason for instability
has not yet been determined. However, for these situations, the system can be easily modified to remove
the scalar unknowns and revert to a standard PMCHWT or Müeller formulation. However, it would be
preferable for a single TDIE formulation to be stable over the full range of desired frequencies, making
this an area of interest for future work.

5. CONCLUSION

This work developed potential-based TDIEs for penetrable regions formulated in the radiation
gauge. This can allow for easier coupling into computations applicable to semiclassical and quantum
electrodynamics applications. The spatiotemporal Sobolev space properties of the developed TDIEs
were discussed, and a discretization that fully conforms to these properties was developed. Numerical
results demonstrating the improved stability of this discretization compared to alternative approaches
were presented. Additional results illustrating the accuracy of this formulation down to very low
frequencies were also shown. Future work can focus on determining efficient preconditioners for these
TDIEs, as well as modifications to improve their stability at higher frequencies.
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APPENDIX A. INTRODUCTION TO SPATIOTEMPORAL SOBOLEV SPACES

In this appendix, we present a short primer on the spatiotemporal Sobolev spaces used in this work.
For more details, the reader is referred to [17] and the references therein.

The spatiotemporal Sobolev spaces used can be viewed as an ad hoc set of spaces that naturally arise
when attempting to rigorously study the stability properties of TDIEs. In particular, these Sobolev
spaces characterize the needed properties of source functions (e.g., charge and current densities) so
that the electromagnetic energy produced by the sources remains finite for all time. Although various
approaches exist for addressing this problem, the particular approach of interest here is that pioneered
for analyzing acoustic TDIEs in [34], which was extended to electromagnetic TDIEs in [35]. These
approaches utilize Fourier-Laplace transforms and Parseval’s theorem to convert the challenging problem
of studying TDIEs into the more approachable problem of carefully analyzing frequency domain integral
equations. As a result, the norms that define the spatiotemporal Sobolev spaces used in this work are
expressed through the Fourier-Laplace transform.

The foundations of all of these Sobolev spaces lie in those that arise when studying the scalar wave
equation. Namely, H

1
2 (S) and its dual space H− 1

2 (S), where the S denotes that these spaces are defined
over a surface that forms the boundary of some volume [36]. At a high level, the norms that define
these Sobolev spaces ensure that the functions contained in them have sufficient continuity properties
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to evaluate the various singular integrals that arise in solving integral equations. For example, the norm
that defines the space H

1
2 (S) is [36]

||u||
H

1
2 (S)

=
(∫

S
|u(r)|2dS +

∫∫ |u(r) − u(r′)|2
R3

dSdS′
) 1

2

. (A1)

As alluded to in the main text, functions in H
1
2 (S) need to have at minimum a linear variation, such as

the pyramid function used in the discretization. Functions in H− 1
2 (S) are less smooth than functions

in H
1
2 (S), as reflected by the difference in the Sobolev space order of the two spaces. An example of a

function in H− 1
2 (S) is a piecewise constant function.

These scalar spaces, in particular H− 1
2 (S), also find use for specifying the needed properties of

vector functions [17, 36]. This typically takes the form of requiring each component of the vector
function to be in H− 1

2 (S), as well as requiring the result of taking a derivative (e.g., a divergence or
curl) to be in H− 1

2 (S). These are the div- and curl-conforming spaces that are sometimes mentioned in
the computational electromagnetics literature [24].

With these points in mind, the spatiotemporal Sobolev spaces used in this work can now be defined.
The scalar spaces consist of all functions for which

||f ||2Hs1,s2 =
1
2π

∫ ∞+iσ

−∞+iσ
|ω|2s1 ||f̃(·, ω)||2Hs2 (ω,S)dω (A2)

is finite. In Eq. (A2), a tilde denotes a function is in the frequency domain and σ is a real, positive
constant. From Eq. (A2), it is seen that s1 is related to the temporal regularity of the function, i.e.,
how many temporal derivatives can be taken before Eq. (A2) is no longer finite. Similarly, s2 is related
to the spatial regularity of the function. In a loose sense, Eq. (A2) can be interpreted as ensuring the
combination of energy produced by f at all frequencies is finite. It should be noted that the spatial
norm used in the RHS of Eq. (A2) must have an ω-scaling applied to different terms in the standard
norm of this space. This is too technical for this level of discussion, but more details can be found
in [23].

Similarly, norms can be used to define the spaces H s1,s2

div and H s1,s2

curl . These are

||f ||2
H

s1,s2
div

=
1
2π

∫ ∞+iσ

−∞+iσ
|ω|2s1 ||f̃(·, ω)||2Hs2 (div,ω,S)dω, (A3)

||f ||2
H

s1,s2
curl

=
1
2π

∫ ∞+iσ

−∞+iσ
|ω|2s1 ||f̃(·, ω)||2Hs2 (curl,ω,S)dω, (A4)

where the spatial norms on the RHS of these equations are

||f̃ ||
H− 1

2 (div,ω,S)
=

(
||f̃ ||2

H− 1
2 (ω,S)

+
1

|ω|2 ||∇ · f̃ ||2
H− 1

2 (ω,S)

) 1
2

, (A5)

||f̃ ||
H− 1

2 (curl,ω,S)
=

(
||f̃ ||2

H− 1
2 (ω,S)

+
1

|ω|2 ||∇ × f̃ ||2
H− 1

2 (ω,S)

) 1
2

. (A6)

Similar to Eq. (A2), these norms can be viewed as ensuring the combination of energy produced by f
at all frequencies is finite.

As mentioned in the main text, choosing basis and testing functions that conform to the properties
of these Sobolev spaces can significantly improve the accuracy and stability of a discretization. However,
it is still possible to arrive at a poorly performing discretization while choosing basis and testing functions
from the correct Sobolev spaces. An example of this is the spatial discretization that led to an unstable
system in Section 4. Hence, it is also important to supplement the functional analysis that leads to
these Sobolev space properties with additional insight. Differential forms and discrete exterior calculus
are excellent examples of mathematical formalisms that can complement the Sobolev space analysis to
achieve a well-performing discretization [31, 37].
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257–306, 2001.

27. Roth, T. E. and W. C. Chew, “Potential-based TDIEs for dielectric regions using magnetic
currents,” 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI
Radio Science Meeting, 1443–1444, IEEE, 2019.

28. Roth, T. E. and W. C. Chew, “Initial potential-based time domain surface integral equations for
dielectric regions,” 2019 PhotonIcs & Electromagnetics Research Symposium — Spring (PIERS —
Spring), Rome, Italy, June 17–20, 2019.

29. Buffa, A. and S. Christiansen, “A dual finite element complex on the barycentric refinement,”
Mathematics of Computation, Vol. 76, No. 260, 1743–1769, 2007.

30. Rao, S., D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,”
IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409–418, 1982.

31. Dai, Q. I., W. C. Chew, L. J. Jiang, and Y. Wu, “Differential-forms-motivated discretizations
of electromagnetic differential and integral equations,” IEEE Antennas and Wireless Propagation
Letters, Vol. 13, 1223–1226, 2014.

32. Chen, Q. and D. Wilton, “Electromagnetic scattering by three-dimensional arbitrary complex
material/conducting bodies,” International Symposium on Antennas and Propagation Society,
Merging Technologies for the 90’s, 590–593, IEEE, 1990.

33. Walker, S., M. Bluck, and I. Chatzis, “The stability of integral equation time-domain scattering
computations for three-dimensional scattering; similarities and differences between electrodynamic
and elastodynamic computations,” International Journal of Numerical Modelling: Electronic
Networks, Devices and Fields, Vol. 15, No. 5-6, 459–474, 2002.
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