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Wave Scattering by a Perfect Electromagnetic Conductor Wedge
Residing between Isorefractive Media

Husnu D. Basdemir*

Abstract—In this study, plane wave diffraction by a perfect electromagnetic wedge which is lying
between isorefractive media is investigated. The diffracted waves are constructed by using the relation
between initial geometric optics waves and scattered waves at the transition boundaries. The uniform
theory of diffraction method is used for derivation of the uniform wave expressions. Thus, obtained
uniform expressions are analyzed numerically for different set of parameters.

1. INTRODUCTION

The diffraction is the bending process of waves from the discontinuous parts of the scatterers. The
exact mathematical solution of this process for a perfect electric conductor (PEC) half-plane was first
given by Sommerfeld [1]. Later on, the same problem was investigated by different authors for different
surface boundary conditions [2–4]. The interaction of waves by a wedge is also a canonical problem and
has a key role for the radar cross section applications [5, 6]. The aim of this paper is to obtain a solution
for the diffraction of waves by a perfect electromagnetic conductor (PEMC) wedge which is lying at
the boundary of isorefractive media. The PEMC surface can be defined by the combination of PEC
and perfect magnetic conductor (PMC) surfaces. These kinds of surfaces satisfy both of the boundary
conditions. The connection between PEC and PMC surfaces is satisfied by a special parameter M which
is called as the admittance parameter [7]. Depending on the values of M , this structure acts as a PEC
or PMC surface according to the limiting values of M . Another interesting property of such surfaces is
the excitation of the cross-polarized field components in the reflected waves [8]. The first examination
of the diffraction problem by a PEMC half-screen was given by Ahmed [9]. In order to obtain the
diffracted waves, he used the transformation method, which was introduced by Lindell and Sihvola [10].
The scattering of waves by a PEMC cylinder was investigated by Ahmed and Naqvi [11]. Also, a PEMC
half-screen, illuminated by a point source, was studied by Tiwana et al. [12]. In the literature, there
are only two studies related with PEMC wedge. The first one was presented by Nayyeri et al. [13].
However, this study lacks explicit analytic expressions for the diffracted waves. The second one was put
forth by Umul [14]. In his paper, z components of the electric and magnetic fields were expressed in
terms of a combination of the scattered waves by soft and hard surfaces with the same geometry. Here,
soft and hard refer to the surface boundary conditions of Dirichlet and Neumann, respectively. On the
other hand, in the present study only the whole plane interpretation is considered for determination of
unknown reflection coefficients. The solution has not been obtained in terms of the linear combination
of scattered fields from the soft and hard surfaces.

In this work, contrary to the existing studies in the literature, a PEMC wedge was located at the
boundary of isorefractive media. The existing studies predict the solution for single medium. However,
a more general case is examined in the current paper because of the different electromagnetic properties
of the different media. It should also be noted that analytical examinations are crucial for exhibiting
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the physical meanings of wave interactions with objects. On the other hand, numerical techniques
do not lead to correct field expressions when the size of the scatterer is too large compared to the
wavelength [15]. The two neighboring media are called isorefractive media when they have the same
wave number but different intrinsic impedances. Also, the angle of reflection is equal to the angle
of transmission at the interface of isorefractive media [16]. The wedge geometries, at the boundary of
isorefractive media, for various boundary conditions were investigated in the literature [16, 17]. However,
as far as we know, PEMC wedge at the boundary of isorefractive media has not been tackled before.
Although the PEMC half-plane lying at the boundary of the isorefractive media has been investigated
recently, the wedge problem, which is a more general case of a half-plane, is considered in this study [18].
The solution of this two dimensional boundary value problem is based on the method introduced in [19].
First of all, the geometry of the problem will be introduced.

The proper total geometric optics (GO) waves will be determined taking into account the introduced
geometry. In addition, the initial wave expressions will be obtained by excluding the wedge geometry,
which causes the diffraction. After that, scattered GO waves will be evaluated by subtracting the
initial GO waves from the total GO waves. Later on, the unknown diffracted waves will be derived by
establishing an analogy between the scattered GO and diffracted waves at the transition boundaries.
The ultimate wave expressions will be expressed in terms of the Fresnel functions in order to obtain
finite amplitude values at the transition boundaries. For this purpose, the well-known uniform theory
of diffraction (UTD) method will be used. Finally, behaviors of the waves will be analyzed numerically
for different sets of parameters.

The time factor of exp(jωt) is suppressed throughout the paper where ω represents the angular
frequency.

2. DEFINITION OF THE PROBLEM

The geometry of the PEMC wedge is presented in Fig. 1. The upper half-space y > 0 is filled with a
linear isotropic medium characterized by permittivity of ε1 and permeability of μ1. The lower half-space
y < 0 is filled with a linear isotropic medium characterized by permittivity of ε2 and permeability of
μ2. In this study, these quantities are assumed to be real and positive values. Also, the media satisfy
the condition of ε1μ1 = ε2μ2. Thus, the media have mutual wavenumber k. However, the first medium
has the intrinsic impedance of Z1, and the second medium has the intrinsic impedance of Z2. The edge
of PEMC wedge coincides with the z axis and positioned at the boundary of isorefractive media. The
incident plane wave in Medium I illuminates the upper surface of the PEMC wedge.

Figure 1. The geometry of the problem.
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The electric field component of incident plane wave is
�Ei = �ezE0e

jkρ cos(φ−φ0) (1)

where φ0 is the angle of incidence. The cylindrical coordinates are represented with ρ, φ, and z. Also
P represents the observation point (Fig. 1). The outer apex angle is represented with ψ. The boundary
conditions are given as

�n× �ET1

∣∣∣
φ=π

= �n× �ET2

∣∣∣
φ=π

, (2)

�n× �HT1

∣∣∣
φ=π

= �n× �HT2

∣∣∣
φ=π

, (3)

for the isorefractive media since the field components are continuous across the boundary and there is
not any current flow observed at the interface [16]. Also the boundary conditions on the surface of the
wedge are defined by

�n×
(
�HT1,2 +M �ET1,2

)∣∣∣
φ=0,ψ

= 0 (4)

and
�n ·

(
ε1,2 �ET1,2 − μ1,2

�HT1,2

)∣∣∣
φ=0,ψ

= 0, (5)

where subindices T1 and T2 refer to the total fields in Medium I and Medium II, respectively [14]. In
addition, �n is the unit normal vector, and M represents the admittance parameter [7]. The problem
under consideration is based on the determination of the total electric field intensity, and it is expressed
as

�ET = �ETGO + �Ed, (6)

where ETGO refers to the total GO field, and Ed is the diffracted field. The determination of the
diffracted field is essential to achieving the solution of the problem.

3. DETERMINATION OF GO WAVES

In this part, the total and scattered GO waves will be determined. In order to obtain the unknown
components of wave expressions PEMC surface is taken into account as a whole surface. Also related
boundary conditions given above will be used. The incident magnetic field intensity is obtained as

�Hi = −E0

Z1
(�ex sinφ0 − �ey cosφ0) ejk(x cosφ0+y sinφ0) (7)

by using the Maxwell-Faraday equation. The reflected electric and magnetic field intensities are defined
by

�Er = [−Z1Hrz (�ex sinφ0 + �ey cosφ0) + �ezErz] ejk(x cosφ0+y sinφ0) (8)

and
�Hr =

[
Erz
Z1

(�ex sinφ0 + �ey cosφ0) + �ezHrz

]
ejk(x cosφ0+y sinφ0), (9)

respectively. The unknown z-components of reflected field intensities are derived by using the boundary
conditions given in Eqs. (4) and (5) and the field expressions given in Eqs. (8)and (9) as

Erz = RzE0 (10)

and
Hrz = RxyE0 (11)

where Rz and Rxy are the reflection coefficients of z and x-y components of electric field intensity,
respectively. Due to the dependencies of electric and magnetic field intensities to each other, derived
coefficients are also valid for magnetic field intensity. They are written as

Rz =
1 −M2Z2

1

1 +M2Z2
1

(12)
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and
Rxy = − 2M

1 +M2Z2
1

(13)

where M is the admittance of the surface. Thus, after the determination of unknown coefficients, it is
possible to reach GO waves by using these coefficients. The total GO wave in terms of the electric field
intensities is written as

�ETGO=
{
�Ei+ �Er1U [(π−φ0)−φ]+ �Er2U [φ−(π−φ0)]

}
U (π−φ)+ �EtU [(π+φ0)−φ]U (φ−π) (14)

where Er1 and Er2 are the reflected fields from the surface of the wedge and the interface, respectively.
Et refers to the transmitted field intensity from Medium I to Medium II. U(x) is the unit step function
and shows the location of fields in the related region of space. The initial GO wave can be obtained
when excluding the wedge geometry which causes the diffraction process. Hence, it is written as

�Ein =
[
�Ei + �Er2

]
U (π − φ) + �EtU (φ− π) . (15)

4. DERIVATION OF DIFFRACTED WAVES

In this part, we will make an analogy between scattered GO and diffracted waves. The problem under
consideration is a 2D boundary value problem. Hence, the solution is based on the determination of
total waves. The expression given in Eq. (6) can be rearranged as

�ET = �Ein + �Es, (16)

where the sub-index S refers to the scattered wave. The diffracted wave only exists in the scattered
wave since initial wave is composed of only GO waves. Thus, Eq. (16) can written as

�ETGO + �Ed = �Ein + �EsGO + �Esd (17)

where Eq. (17) reads to the relations as
�ETGO = �Ein + �EsGO (18)

and
�Ed = �Esd. (19)

Equation (19) shows the diffracted field component of scattered wave directly related to the total
diffracted wave. The general form of the high frequency asymptotic expression of the diffracted wave
in the scalar form is defined as

Edz = E0

sin
π

n
n

e−j
π
4√

2π

⎡
⎢⎢⎣ fn (φ, φ0)(

cos
π

n
− cos

φ− φ0

n

)(
cos

π

n
− cos

φ+ φ0

n

)
⎤
⎥⎥⎦ × ejkρ√

kρ
(20)

according to the geometrical theory of diffraction (GTD) [20]. The term n is equal to ψ/π, and fn (φ,
φ0) is the unknown function which can be defined from the relation of

fn (π ∓ φ0, φ0) = −2 sin
π ∓ φ0

n
sin

φ0

n
A [EsGO]|φ=π∓φ0

(21)

where A[x] means only considering the amplitude of x by eliminating phase, and π±φ0 term represents
the location of the transition boundaries [14]. In order to obtain the diffracted wave, fn (φ, φ0) function
should be determined. It is seen from Eq. (21) that diffracted wave is directly related with the amplitude
of scattered GO wave at the transition boundaries. Hence, the scattered GO waves can be determined
from Eq. (18) by using Eqs. (14) and (15) as

�EsGO = �Er1U [(π − φ0) − φ] − �Er2U [(π − φ0) − φ] − �EtU [φ− (π + φ0)] (22)

by using Eqs. (15) and (16). The reflected electric field intensity from the interface is defined as
�Er2 = �ezRintE0e

jkρ cos(φ+φ0) (23)
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and the transmitted field intensity is written as
�Et = Tint �Ei (24)

where Rint and Tint are the reflection and transmission coefficients of the interface and given as

Rint =
1 − η

1 + η
(25)

and
Tint =

2
1 + η

(26)

where η is the ratio of the intrinsic impedances of Medium I to Medium II, i.e., Z1/Z2 [16].
It is possible to divide Eq. (22) to its subfields by addition and subtraction of incident electric field

intensity as
�EsGO1 = �Er2U [(π − φ0) − φ] −Rint �EiU [φ− (π + φ0)] (27)

and
�EsGO2 = �Er1U [(π − φ0) − φ] − �EiU [φ− (π + φ0)] (28)

where the first scattered GO waves only includes the z-component, but the second one also has the
other components. The unknown fn (φ, φ0) function is determined for the z-component of Eq. (27) as

f1
n (φ, φ0) = 2 sin

φ

n
sin

φ0

n
Rint (29)

and for Eq. (28) as

f2
n (φ, φ0) = 2 sin

φ

n
sin

φ0

n

M2Z2
1

1 +M2Z2
1

+ 2
(

cos
π

n
− cos

φ

n
cos

φ0

n

)
1

1 +M2Z2
1

(30)

by the aid of Eq. (21). After the determination of unknown functions, z-components of diffracted wave
for scattered GO waves given in Eqs. (27) and (28) can be written as

E1
dz = E0

sin
π

n
n

e−j
π
4√

2π

⎡
⎢⎢⎣ f1

n (φ, φ0)(
cos

π

n
− cos

φ− φ0

n

)(
cos

π

n
− cos

φ+ φ0

n

)
⎤
⎥⎥⎦ × ejkρ√

kρ
(31)

and

E2
dz = E0

sin
π

n
n

e−j
π
4√

2π

⎡
⎢⎢⎣ f2

n (φ, φ0)(
cos

π

n
− cos

φ− φ0

n

)(
cos

π

n
− cos

φ+ φ0

n

)
⎤
⎥⎥⎦ × ejkρ√

kρ
(32)

In order to obtain the finite amplitude values, diffracted waves must be expressed in terms of the Fresnel
functions. In this process, diffracted wave expressions are multiplied and divided, and the terms are
given by

2 sin
φ

2
sin

φ0

2
cosφ+ cosφ0

(33)

and
2 cos

φ

2
cos

φ0

2
cosφ+ cosφ0

(34)

for the representation of diffracted waves in terms of the uniform wave expressions of hard and soft
surfaces. The uniform field expressions are defined by the relation of

sign (x)F [|x|] ∼= e−j
π
4

2
√
x

e−jx2

x
(35)
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where sign(x) is the signum function and equal to 1 when x > 0 and equal to −1 when x < 0. The
term F [|x|] is the Fresnel function and can be defined by the integral of

F [x] =
ej

π
4√
π

∞∫
x

ejt
2
dt (36)

The argument of the Fresnel function is called as detour parameter and defined by the ray path difference
of GO and diffracted waves [16]. The related detour parameters are defined as

ξ± = −
√

2kρ cos
φ± φ0

2
(37)

by taking into account the locations of the roots of the diffracted waves. The detour parameters are
inserted into Eq. (35), making the comparisons between obtained diffracted waves which are multiplied
and divided by Eqs. (33) and (34), and the ultimate uniform diffracted waves are as

E1
dz = E0

sin
π

n
n

⎡
⎢⎢⎣ f1

n (φ, φ0)(
cos

π

n
− cos

φ− φ0

n

)(
cos

π

n
− cos

φ+ φ0

n

)
⎤
⎥⎥⎦ cosφ+ cosφ0

2 sin
φ

2
sin

φ0

2

×
{
ejkρ cos(φ−φ0)sign (ξ−)F [|ξ−|] − ejkρ cos(φ+φ0)sign (ξ+)F [|ξ+|]

}
, (38)

E21
dz = E0
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π

n
n
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2 sin
φ

n
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φ0
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M2Z2
1

1 +M2Z2
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cos
π

n
− cos

φ− φ0

n
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π

n
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φ+ φ0

n
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⎤
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2 sin
φ

2
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2

×
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ejkρ cos(φ−φ0)sign (ξ−)F [|ξ−|] − ejkρ cos(φ+φ0)sign (ξ+)F [|ξ+|]
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, (39)

and

E22
dz = −E0

sin
π

n
n

⎡
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2
(

cos
π

n
− cos

φ

n
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φ0
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1
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1(

cos
π

n
− cos

φ− φ0
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2 cos
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×
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. (40)

The total diffracted wave is obtained as

Edz = E1
dz + E21

dz + E22
dz (41)

and total wave is obtained as an addition of Eq. (14) to Eq. (41) as

ETz = ETGO + Edz (42)

where ETGO represents only the z-component of total GO wave.

5. NUMERICAL RESULTS

In this part, the amplitude variation of z-component of total wave intensity, total GO, and diffracted
wave will be analyzed which were derived in the previous sections. The angle of incidence φ0 is taken
as 60◦. The angle of observation varies between 0◦ and ψ where the outer apex angle is taken as 300◦.
The wavenumber k is equal to 2π/λ where λ is the wavelength. It is also noted that all the related
parameters are normalized with respect to λ. The distance of observation ρ is taken as 6λ. The ratio
of the impedances Z1/Z2 is taken as 0.5. The admittance parameter M is considered as 3.

In Fig. 2, it is seen that GO wave has two discontinuities at the transition regions of 120◦ and
240◦. The amplitude of the diffracted wave reaches its maximum amplitude values at these regions.
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Figure 2. The z-components of total, GO and diffracted waves variations according to the angle of
observation φ.

[E
z]

Figure 3. The z-components of total wave variations according to different values of η.

The diffracted wave compensates GO wave at these regions, thus the total wave is continuous in all
directions of observation angle. The effect of the interface can be observed between the angles 120◦ and
180◦. In addition, the transition from Medium I to Medium II is continuous at 180◦.

Figure 3 depicts the variation of the total wave according to the observation angle with respect to
the ratio of impedances η. A simple medium can be obtained when η is taken as 1. In other cases, the
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[E
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Figure 4. The comparison of z-components of total wave and exact solution of Sommerfeld.

effect of η on the total wave can be observed depending on the values of reflection and transmission
coefficients of the interface. Especially depending on the transmission coefficient when η takes higher
values, less amplitude of transmitted wave is observed. It is clear that this is due to the ambient density
difference.

In Fig. 4, the wave behaviour is examined for the limiting cases. The admittance parameter M is
taken as 0, hence the surface of the PEMC wedge acts as a hard-surface. The angle of observation varies
between 0◦ and 360◦. The term n is taken as 2. Thus the solution of the problem is reduced to the
solution of the half-plane. In this way, it is possible to make a comparison between the exact solution
of Sommerfeld’s hard-half plane and our solution. As can be seen from Fig. 4 that our solution is very
harmony with the exact solution of Sommerfeld [1]. Thus, our solution is validated at the limiting cases.

6. CONCLUSIONS

In this study, diffraction of waves by a PEMC wedge which is lying at the boundary of isorefractive
media is examined. The relation between the scattered GO and diffracted waves at the transition
boundaries is used in order to obtain the diffracted waves. Unlike the existing studies in the literature,
a more general case for the scattering of waves by an object located between two different media which
have the different electromagnetic properties are taken into account. The deficiencies of GO wave are
compensated by the aid of the diffracted waves at the transition regions. The method of UTD is used
to obtain finite amplitude values of waves in order to examine numerically. Thus, it is seen that all
the mentioned waves are continuous in all directions of observation. In a future study, it is possible to
expand the solutions for the line source illumination. For this purpose, the uniform field expressions
should be expressed in terms of the cylinder Fresnel functions which are more suitable than the classical
Fresnel functions [21, 22]. It is also possible to analyze the problem under consideration for the circular
wave illumination [23].
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