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Grounding Current Dispersion of HVDC Grounding System under
Dynamic Seasonal Frozen Soil
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Abstract—When a high voltage direct current (HVDC) system works at single line operation mode,
a big current will flow into the earth through the grounding system directly. Then the large current
can cause damage to surrounding equipment and the environment. Therefore, it is significant to study
the current dispersion characteristics of HVDC grounding system. Firstly, a ±800 kV HVDC model
operated at single line mode is built. The grounding current can be seen as the equivalent current
source injecting to the grounding system. Secondly, the current dispersion characteristics of horizontal,
cross and ring electrodes are investigated. It proves that the ring grounding electrode shows better
current dispersion characteristic. And the double-ring grounding electrode whose ratio of inner and
outer rings is controlled at 0.7 to 0.75 can get a better current dispersion characteristic. In addition,
a dynamic seasonal frozen soil resistivity changing model is built to study the effects of season on the
grounding electrodes. The frozen soil would not only increase the ESP, the resistance to ground, and
step voltage, but also reduce the current density and electrical field. When the frozen soil is melting, the
current dispersion characteristics are the best. The results provide meaningful reference for the design
of the grounding system in extremely cold regions.

1. INTRODUCTION

In recent years, HVDC transmission system has developed rapidly, not only in quantity but also in
voltage levels [1]. However, at the beginning of the construction of an HVDC system, single line
transmission mode is used for a period. Double line operation mode is adopted after the completion of
the HVDC system [2]. In the single line transmission mode, the grounding electrode and the earth form
a loop for HVDC transmission. Large DC current flows directly into the earth through the grounding
electrode, and the grounding electrode operates in an active state for a long time [3, 4]. In this case,
preventing the damage caused by the large grounding current to the surrounding equipment and the
buried metal pipeline is a serious problem, which is essential to be solved urgently [5–7]. Therefore,
it is necessary to calculate and analyze the current dispersion characteristics of the HVDC grounding
electrode in order to ensure the safe operation of the grounding electrode and minimize its damage on
the surrounding environment [8, 9].

After determining the HVDC line, the current dispersion characteristics of the grounding electrodes
are affected by the shape of the electrodes and the soil electrical parameters [10]. There are many shapes
of grounding electrode, such as horizontal electrode, cross electrode, and ring electrode [11]. Some works
have been done to analyze the characteristic of some kinds of grounding electrode [12–14]. For example,
Ref. [12] evaluates the electrical voltage and current density in the immediate vicinity of a toroidal
grounding installation of DC substations. Ref. [13] studies the effect of impurities on performance of
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HVDC cross grounding electrode. Ref. [14] analyzes the performance of the circle high-voltage direct
current (HVDC) grounding system buried in the horizontal multilayer soil. However, they only analyze
the current dispersion effect of one or two kinds of grounding electrodes. And there is no comparison
in different shapes of grounding electrode.

In addition, there are permafrost and seasonal frozen soil in the extremely cold regions. When
constructing HVDC grounding systems in these areas, apart from considering the shape and depth of
the grounding electrode, the effects of frozen soil must also be considered [15–18]. Ref. [15] analyzes the
influences of the frozen soil on the optimal design of grounding systems in homogeneous and double-
layer soil models. Ref. [16] studies the conductivity and lightning impulse breakdown characteristics
of frozen soil and compares it with conventional soil. In reality, the resistivity of seasonal frozen soil
during formation and melting process is complicated. The influence of every state of frozen soil on the
grounding electrodes should be analyzed.

In this paper, an equivalent ±800 kV HVDC transmission model is established firstly, and the
grounding current of the HVDC system in stable operation state is obtained. Then the ESP and current
density of horizontal, cross and ring electrodes are studied with multi-layered soil structure. The results
indicate that the ring grounding electrode has relatively good current dispersion characteristics, hence,
the ring grounding electrodes with different numbers of rings are further analyzed. Finally, a dynamic
seasonal frozen soil resistivity changing model including the process of icing soil and melting soil is
established, and the influence of soil electrical parameters on the current dispersion characteristics is
analyzed. We find that the current dispersion effects of different shapes of grounding electrodes vary
greatly, and the effect of double-ring grounding electrodes performs well. Besides, frozen soil will increase
the earth surface potential (ESP) and reduces the surface current density. In order to reduce the damage
of frozen soil, the buried depth of the grounding electrode can be increased to make it deeper than the
maximum depth of frozen soil.

2. THE GREEN’S FUNCTION OF MULTI-LEVEL HORIZONTAL SOIL

As shown in Figure 1, the current source is located in the multi-layer horizontal soil using a cylindrical
coordinate system to analyze [11, 19, 20]. And the Green’s function is used to calculate the potential
caused by the point current source [20].
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Figure 1. Schematic diagram of the Green’s function in multi-layer horizontal soil.

We can see in Figure 1 that I is the current source, and (r0, h0) indicates its location. ρi indicates
the resistivity (Ω · m), and hi indicates the thickness (m) of the i layer soil. (r, z) is the observation
point. m (1 ≤ m ≤ n) indicates which layer the current I is on. The Poisson equation for the space
potential is [21]:
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In this formula, δ is the Dirac Delta function. Eq. (2) is Hankel transform numerical integration.
φm

i (r, z) indicates the space potential function o. J0 is the Bessel function of the first kind. Am
i and

Bm
i are the function of the integral variable λ [22].

The boundary conditions are known as follows:
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We can get 2n equations from these conditions. If it exists λ1, λ2, ..., λl, then solving these equations
can get Am

i (λj) and Bm
i (λj), (j = 1, 2, ..., l).

3. HVDC TRANSMISSION EQUIVALENT MODEL

As shown in Figure 2, a ±800 kV HVDC transmission equivalent model with single line is built in
MATLAB. It includes a generator, a transformer, a rectifier, an inverter, AC filters, a DC transmission
line, grounding, inverter control and protection, rectifier control and protection, master control, and
oscilloscope [11, 23].
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Figure 2. Equivalent circuit model of single line HVDC transmission system.

Figure 3 shows the HVDC grounding current from the operation to the stabilization. After the
system is running, the ground current gradually increases and reaches stability at 0.6 s. We focus on the
grounding current dispersion characteristic under stable operation (after 0.6 s). So this steady current
(4000 A) can be seen as the equivalent current source injected into the grounding system when the
system is in normal operation. The current source injected to all grounding electrodes is the same
in this paper, and the source impedance has the same effect on all grounding electrodes. Therefore,
the influence of the source impedance on the current dispersion characteristic of grounding electrodes
is ignored. Ground current is usually divided into multiple currents by many diversion cables. Each
electrode of the grounding electrodes is connected by a diversion cable. When the number of diversion
cables is sufficient and the current shunt sufficiently uniform, the current dispersion characteristics will
be the best, and the influence caused by resistance of the diversion cables on the grounding electrodes
will be ignored.
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Figure 3. Grounding current in single line HVDC system from beginning to 0.8 s.

4. CURRENT DISPERSION CHARACTERISTIC OF COMMON GROUNDING
ELECTRODES

4.1. Three Common Kinds of Grounding Electrodes

There are three common types of grounding electrodes, which are horizontal electrode, cross electrode,
and ring electrode [11]. We compare these three types of grounding electrodes and look for the best
grounding electrode for the current dispersion. The equivalent current source obtained from Figure 3
is injected to horizontal, cross, and ring grounding electrodes. The depth of burying is 10 m, and all
grounding electrodes are calculated under the three-layer vertical layered soil model which is given by
State Grid East Inner Mongolia Electric Power Maintenance Company as shown in Table 1. There is
air above the first layer of the soil. The resistivity of surface soil is 354.8528 Ω·m, and the depth is
1.802306 m. The resistivity of the second layer of soil is 63.16796 Ω·m, and the depth is 10.04796 m.
The resistivity of the bottom soil is 65.03293 Ω·m.

Table 1. 3-layer soil model for calculating grounding electrodes current dispersion characteristic.

Layer Number Resistivity (Ω·m) Thickness (m)
1 354.8528 1.802306
2 63.16796 10.04796
3 65.03293 Infinite

CDEGS developed by SES of Canada is a powerful tool for solving engineering problems such as
Soil Structure Analysis, grounding, and electromagnetic fields e [24–26]. Firstly, a 400 m horizontal
electrode model is built as shown in Figure 4(a). The buried depth h is 10 m, and the cross-sectional
area of the electrodes is 60 mm2. Then the equivalent current source (4000 A) is injected to the center
of the electrode. We can see from Figure 4(a) that the ESP distribution of horizontal electrode is
symmetrical. The ESP above the grounding electrode is the highest, and the maximum value of ESP is
751.2 V. The ESP decreases rapidly between 200 m and 400 m near the electrode. But after 400 m, the
trend of the ESP reduction is slowing down. The value of ESP is 42.2 V in 1000 m.

Then a cross grounding electrode mode is built. It consists of two horizontal electrodes placed
vertically, and the length of each electrode is 400 m. The buried depth h is 10 m, and the cross-sectional
area of the electrodes is 60 mm2. The same equivalent current source (4000 A) is injected to the junction.
Figure 4(b) shows the ESP distribution of the cross electrode. The maximum ESP is in the earth surface
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Figure 4. The ESP distribution of three common kinds of electrodes. (a) ESP distribution of horizontal
electrode; (b) ESP distribution of cross electrode; (c) ESP distribution of ring electrode.
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Figure 5. Comparison of current dispersion characteristic with horizontal, cross and ring grounding
electrodes. (a) ESP distribution of 3 types of electrodes; (b) Surface current density distribution of 3
types of electrodes; (c) Surface electric field of 3 types of electrodes.

above the center of the cross grounding electrode which is 614.4 V. The ESP is reduced rapidly from
371.1 V to 108.0 V from 200 m to 400 m. And in an area far from the electrode, the trend of the ESP
reduction is also dropped gently. The value of ESP is 41.8 V in 1000 m.

Figure 4(c) shows a 400 m diameter ring electrode mode and its ESP distribution. The buried
depth h is 10 m, and the cross-sectional area of the electrodes is 60 mm2. The ESP is symmetrically
distributed in the surface because of the symmetry of the ring grounding electrode. The maximum ESP
is 343.8 V evenly distributed directly above the electrode. From 0 to 200 m, the ESP shows a rapid
upward trend. Different from the horizontal and cross electrodes, the ESP in the center is much lower
which is 208.2 V because there is no electrode in this area and no current injected to the center. The
ESP shows a smooth decline trend after 400 m. The value of ESP is 42.0 V in 1000 m.

Figure 5(a) shows the ESP distribution of horizontal, cross, and ring electrodes from 0 to 400 m
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in observation line L on the earth surface. The ESP of the horizontal electrode is the highest in all
positions. And the ESP of the cross electrode is higher than the ring electrode from 0 to 200 m. After
a distance of 200 m, the ESP of the cross electrode is less than the ESP of ring electrodes. Although
the ESP distribution characteristics and these maximum values are totally different, the ESPs of the
three types of ground electrodes are much different in the area far away from center. The ESPs of the
three grounded electrodes at the 1000 m are 42.2 V, 41.8 V, and 42.0 V, respectively. When studying the
effects of grounding electrodes on the equipment at a great distance, the shape of grounding electrode
has little effect on it.

It can be found from Figure 5(b) and Figure 5(c) that the trends of the surface electric field and
surface current density are the same. The horizontal electrode has both the highest ESP and the
highest current density. The maximum current density of the horizontal and cross electrodes is in 200 m
(37.38 mA/m2 for horizontal electrode and 22.00 mA/m2 for cross electrode). Then the curves decrease
quickly on both sides of 200 m. But the ring grounding electrode shows a completely different current
density distribution compared with horizontal electrode and cross electrode. The current density is
6.13 × 10−7 mA/m2 at 0 m in observation line L which is the center of the electrode. The reason for
the current close to 0 is that the electrodes are centrosymmetric, and the currents flowing through the
center of the ring electrode cancel each other out. The horizontal component current is completely
cancelled. Only a small vertical component current remains at the ring center. The current density of
cross electrode increases suddenly in 9.3 m which is near the junction of electrodes and the injection
of grounding current. In the area away from the grounding electrodes, we can see from Table 2 that
the values of the current density tend to be similar and gentle as the distance increased. So, the ring
electrode has more stable ESP, better current density distribution and resistance-to-ground. It is found
that the calculation results in this paper can accurately reflect the current dispersion characteristics of
grounding electrodes by comparing with the conclusions in [27, 28].

Table 2. 300–1000 m surface current density distribution of horizontal, cross and ring electrode.

Electrode
Type

Resistance-to-ground
(Ω)

Maximum
ESP (V)

Maximum Step
Voltage (V)

Surface Current Density (mA/m2)
400 m 600 m 800 m 1000 m

Horizon 0.27635 751.2 10.83 1.00 0.370 0.197 0.122
Cross 0.17680 614.4 6.34 0.837 0.340 0.187 0.119

Single Ring 0.11487 343.8 3.46 0.910 0.356 0.192 0.121

4.2. Ring Grounding System

From the above research, we can see that the ring grounding electrode has good current dispersion
performance relatively. In this section, the dispersion characteristics of ring grounding electrodes
are further analyzed, and the computation and comparison of ring grounding electrode with different
numbers of rings are conducted.

Then the equivalent current source obtained from Figure 2 is injected to three common types of
ring grounding electrodes as shown in Figure 6 [9]. The ring grounding electrodes are buried in the same
three-layer soil model which can be seen in Table 1. The burying depth h is 10 m, and the cross-sectional
area of the electrodes is 60 mm2.

First, a single-ring electrode model with 200 m radius is built, and the equivalent current source
(4000 A) is injected to the electrode. The resistance-to-ground of single-ring electrode is 0.11487 Ω.
Figure 6(a) shows its ESP distribution, and the maximum ESP is 343.6 V equably distributed over the
ring. As mentioned in previous section, the ESP in the center is much lower which is 207.7 V. The ESP
has a gentle upward trend from 0 to 200 m. After 200 m, the trend of ESP also drops flattened. The
ESP is 42.0 V in 1000 m.

Then we build a double-ring electrode mode shown in Figure 6(b). It includes an inner ring and
an outer ring. The radius of the inner ring is r1, and the radius of the inner ring is r2. The radius of
the outer ring (r2) is fixed to 200 m, and the radius of the inner ring (r1) varies from 50 m to 180 m.
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Figure 6. Structures and ESP distribution of ring electrode. (a) A 200 m radius single-ring grounding
electrode; (b) Double-ring grounding electrode with 145 m radius of inner ring and 200 m radius of outer
ring; (c) Triple-ring grounding electrode with 66.67 m radius of inner ring, 133.33 m radius of middle
ring and 200 m radius of outer ring.
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Figure 7. Maximum ESP with r1 changing from 50 m to 180 m and r2 is fixed to 200 m.

Figure 7 shows the maximum ESP with changing r1. When r2 is 140 m and 150 m, the ESP is the
smallest, about 325.5 to 323.8 V. It means that the ESP distribution is the best when the ratio of inner
and outer ring radii is 0.70 to 0.75. So, the best radius of inner ring is 145 m, and the ESP distribution
is shown in Figure 6(b). The resistance-to-ground of double-ring electrode is 0.095862 Ω. The maximum
ESP above the inner ring is 320.9 V, and the ESP above the outer ring is 307.2 V which is much lower
than the maximum value in single-ring electrode. Besides, the ESP above the outer ring is smaller than
that when using a single-ring. The ESP distribution is smoother inside the grounding electrode, and
the value is smaller after 200 m.

A triple ring grounding electrode model is also built, and the structure is shown in Figure 6(c).
The resistance-to-ground of triple-ring electrode is 0.092513 Ω. The ESP above the electrode is higher
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Figure 8. Comparison of current dispersion characteristic with three kinds of ring grounding electrodes.
(a) ESP distribution of three kinds of ring electrodes; (b) Surface current density distribution of three
kinds of ring grounding electrodes; (c) Surface electric field of three kinds of ring electrodes.

than that in other places. The maximum value is above the inner ring which is 323.5 V. The ESP above
the middle ring electrode is 318.0, and that above the outer ring is 298.4 in 200 m. Compared with
single-ring and double-ring electrodes, although the ESP is smaller for outside the outer ring case, the
ESP is much higher within the range of the grounding electrode.

The ESP distribution and current density distribution from the center to 400 m on the earth surface
are drawn in Figure 8. Although single-ring electrode has a low ESP in the central region, the ESP is
higher than the other 2 types of electrodes in the outside of the electrode area. In addition, the maximum
ESP in double-ring electrode is smaller than other two types of electrodes, but double-ring electrode
has higher ESP distribution after 138.4 m. Triple ring electrode has the highest ESP distribution near
the center because the inner ring is close to the center.

We can see from Figure 8(b) that the value of current density above the electrode is the smallest,
but the value on either side of the electrode is much higher. With the increase of the number of electrode
rings, the distribution of surface current density inside the electrode is more complex, and the current
density outside the electrode is lower. The surface current density distribution has a trough at 200 m
(2.02 mA/m2) which is above the ring electrode, and there are two peaks on each side of 200 m. Then
we plot the surface current density in the three directions of x, y, z on the observation line L at the
same position in Figure 9 to figure out why there is a trough and two peaks near 200 m. The surface
current density in the y and z directions is small. The surface current density in the x direction is
much greater than the surface current density in other two directions and plays a dominant role on the
surface. Figure 9(a) shows that the direction of surface current density is toward the center of the ring
electrode from 0 to 200 m in x direction, and the value of surface current density is 0 at 200 m. The
direction of the surface current density in x direction changes at 200 m. Then the direction of surface
current density is toward the outside of the ring electrode after 200 m in x direction. So, there are
a trough at 200 m and two peaks near 200 m in ring grounding. The direction of the surface current
density of double-ring grounding electrode in x direction changes 2 times. There are 2 troughs above
each ring and 4 peaks for double-ring grounding electrode. The direction of the surface current density
of triple-ring grounding electrode in x direction changes 3 times. There are 3 troughs above each ring
and 6 peaks for triple-ring grounding electrode. The trends of the surface electric field and surface
current density are the same.

In general, the triple ring grounding electrode has the best dispersion effect, and the single-ring
grounding electrode has the least dispersion effect. However, the triple ring grounding electrode requires
more materials and higher cost. It is recommended that the double-ring ground electrode is considered
first to ensure better dispersion effect and save costs.
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Figure 9. Surface current density distribution of ring grounding electrode in 3 three directions. (a)
Surface current density distribution of ring grounding electrode in x direction; (b) Surface current
density distribution of ring grounding electrode in y direction; (c) Surface current density distribution
of ring grounding electrode in z direction.

5. CURRENT DISPERSION CHARACTERISTIC OF GROUNDING ELECTRODE
UNDER DYNAMIC SEASONAL FROZEN SOIL

When the frozen soil is forming, the resistivity of surface soil will increase significantly, which will
greatly affect the grounding current dispersion characteristics [26]. In this section, a dynamic seasonal
frozen soil model is modeled to analyze the influence of soil. Figure 10 shows the transformation of
dynamic seasonal frozen soil in different periods. In extremely cold regions, the normal soil mode is
usually between July and August every year. The frozen soil mode is between September and November.
The frozen soil pattern is between December and April of the following year. The melting soil mode
is between May and June. A thin layer of frozen soil is expected in the surface of the soil for frozen
condition, and the maximum freezing depth would keep stable after a period of time [29]. With the
atmospheric temperature rising, the frozen soil melts, and the surface frozen soil melts first. At this
time, the surface layer and deep layer are non-frozen soil, but the middle layer is still frozen soil. After
a period of time, the frozen soil is completely melted to the normal soil mode [30]. Consequently, the
dynamic grounding current dispersion characteristics under the above cases are investigated.

Table 3 shows the resistivity stratification data of the dynamic seasonal frozen soil model at each
stage. The maximum depth of frozen soil is 1.6 m. We set the resistivity of permafrost to 5000 Ω·m
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Figure 10. Schematic diagram of dynamic seasonal frozen soil change process.

and the resistivity of non-frozen soil to 160 Ω·m [15]. The icing soil mode is the period when the soil is
forming permafrost, and the frozen soil mode is the period when the soil has formed permafrost. Table 3
shows that the frozen and icing soils have the same resistivity values (5000 Ω·m) in the first layer. But
the thickness of the first layer is different. The thickness of the first layer in icing soil mode is 0.5 m,
and the thickness of first layer in frozen soil mode is 1.6 m. Then the effect on the dynamic seasonal
frozen soil model on the current dispersion characteristics of the grounding electrode is studied.

Table 3. Resistivity stratification of dynamic seasonal frozen soil model under different modes.

Mode
Normal

soil mode

Icing

soil mode

Frozen

soil mode

Melting

soil mode

Layer
Resistivity

(Ω·m)

Thickness

(m)

Resistivity

(Ω·m)

Thickness

(m)

Resistivity

(Ω·m)

Thickness

(m)

Resistivity

(Ω·m)

Thickness

(m)

1

160 ∞
5000 0.5 5000 1.6 160 0.5

2

160 ∞ 160 ∞
5000 1.1

3 160 ∞

5.1. Buried in the Frozen Soil Layer

First, a single-ring grounding electrode with a radius of 200 m is buried at a depth of 1 m [31]. We can
see that the grounding electrode is buried shallower than the maximum frozen soil depth from Table 3.
And the grounding electrode is buried inside the frozen soil after the formation of frozen soil. In this
case, the current dispersion characteristics of the grounding electrode in four soil modes are calculated,
and Figure 11 shows the ESP and current density.
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Figure 11. Comparison of current dispersion characteristic in four soli mode with grounding electrode
buried in 1 m. (a) ESP distribution; (b) Surface current density distribution; (c) Surface electric field.
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It can be seen from Figure 11 that the maximum ESP in the frozen soil mode is the largest, which
is 3.65 times higher than the ESP in non-frozen soil. And the ESP of the icing soil mode is slightly
higher than the ESP of the normal soil mode, because there is a thin layer frozen soil in the earth
surface in icing mode. The value has little difference at the center of the grounding electrode and the
area far from the grounding electrode. The ESP of the melting soil mode is much smaller than that of
the other three modes, mainly because the frozen soil in melting soil mode is in the middle layer, and
the grounding electrode is buried in this layer.

The ground electrode has the highest ESP in normal soil mode because there is no frozen layer to
prevent current flow. And the icing soil has the lowest ground current density. The current densities of
the frozen soil and melting soil modes are not much different but are both higher than that of the icing
soil mode.

5.2. Buried under the Frozen Soil

Then the ring grounding electrode with a radius of 200 m is buried at a depth of 2 m which is under the
frozen soil layer. Figure 12 shows the current dispersion characteristics of the four soli modes.

180 190 200 210 220
600

700

800

900

1000

1100

1200
 Normal soil

 Icing soil

 Frozen soil

 Melting soil

E
ar

th
 S

u
rf

ac
e 

P
o

te
n

ti
al

 (
V

)

Distance from the center (m)

180 190 200 210 220

0.00

0.05

0.10

0.15

0.20

0.25

0.30
 Normal soil

 Icing soil

 Frozen soil

 Melting soil

C
u
rr

en
t 

d
en

si
ty

 (
A

/m
2
)

Distance from the center (m)
180 190 200 210 220

0

10

20

30

40

50

su
rf

ac
e 

el
ec

tr
ic

 f
ie

ld
 (

V
/m

)  Normal soil

 Icing soil

 Frozen soil

 Melting soil

Distance from the center (m)

(a) (b) (c)

Figure 12. Comparison of current dispersion characteristic in four soli mode with grounding electrode
buried in 2 m. (a) ESP distribution; (b) Surface current density distribution; (c) Surface electric field.

Compared with the grounding electrode buried with the depth of 1 m, the ESP of the frozen soil
mode increases slightly in this case which is only 104.6 V larger than the normal soil mode. And the
maximum ESP in the melting soil mode is smaller than the other three modes, but it is higher than the
other three modes in the area away from the grounding electrode. It means that the ESP distribution
in the melting mode is gentler, and the step voltage is also minimized.

Figure 12(b) shows the current density distribution under four modes. We can see that the
distribution of current density with grounding electrode buried in 2m is totally different from that
buried in 1m. The maximum current density of normal soil is the highest. And the surface current
density values of frozen soil and icing soil modes are almost the same because there is frozen soil in the
surface of these two modes.

From Figure 11, Figure 12, and Table 4, we can find that the buried depth has a serious effect on
current dispersion characteristic of the grounding electrode. Increasing the burial depth will reduce the
ESP and resistance-to-ground of the grounding electrodes significantly.

Table 4. The resistance-to-ground of the grounding system in 4 modes.

Depth Normal soil mode Icing soil mode Frozen soil mode Melting soil mode
1 m 0.33096 Ω 0.34684 Ω 1.96380 Ω 0.33588 Ω
2 m 0.31739 Ω 0.32488 Ω 0.35012 Ω 0.34507 Ω
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6. CONCLUSION

In this paper, a ±800 kV HVDC transmission model operated in single line mode is established to
calculate the grounding current. This current is used as the equivalent current source to analyze the
current dispersion characteristic of some common types of grounding electrodes. A dynamic seasonal
frozen soil model is built to study the current dispersion characteristics in different states of frozen soil.
The following conclusions are made.

Horizontal grounding electrode has the worst current dispersion effect but the lowest cost. It can
be used in the case that the design requirement is not strict. The ring electrodes have more stable ESP
and current density distribution. The double-ring grounding electrode has better current dispersion
characteristics when the ratio of inner and outer ring radii is 0.70 to 0.75.

The frozen soil would not only increase the ESP, grounding resistance, step voltage, and resistance-
to-ground, but also reduce the current density. During the different periods of frozen soil, the current
dispersion characteristics in the melting soil mode are the best. We can choose to repair or maintain
the grounding electrode during the melting soil season. Increasing the depth of the grounding electrode
to make it deeper than the depth of maximum frozen soil can reduce the impact of frozen soil on the
grounding electrode.
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