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Maxwell’s Derivation of the Lorentz Force from Faraday’s Law

Arthur D. Yaghjian*

Abstract—In a brief but brilliant derivation that can be found in Maxwell’s Treatise and traced back
to his 1861 and 1865 papers, he derives the force on a moving electric charge subject to electromagnetic
fields from his mathematical expression of Faraday’s law for a moving circuit. Maxwell’s derivation in
his Treatise of this force, which is usually referred to today as the Lorentz force, is given in detail in
the present paper using Maxwell’s same procedure but with more modern notation.

1. INTRODUCTION

In Article 603 of his Treatise [1, 2], Maxwell derives the force density fc on a conductor carrying electric
current density J through a magnetic field B, namely

fc = J× B. (1)

His derivation is based on the mutual induction between two current carrying circuits that represent
magnetic shells and nowhere in his Treatise does he express J as ρv, where ρ is the electric charge
density, and v is the velocity of the charge density. Therefore, the credit for the force qv × B on an
electric charge q moving in a magnetic field is generally given to Heaviside [3] and credit for the total
force q(E+v×B) on a moving charge in electric and magnetic fields is generally given to Lorentz [4, 5,
app. 7].

Nevertheless, it was Maxwell who first determined the general equation for the force on a moving
unit electric charge, namely (in our present-day notation)

Funit = E + v × B (2)

in a remarkable derivation from the general equation for Faraday’s law that he deduced from Faraday’s
experiments [6].† It is the main purpose of this paper to document and reproduce in modern notation
this impressive derivation of Maxwell contained in his Treatise [1, 2]‡ and, in more rudimentary forms, in
his 1861 and 1865 papers [8, 9]. Incidentally, in his Treatise, Maxwell abandoned the mechanical models
he used to develop his equations (mainly in his 1861 paper), stating that there are an “infinite number”
of possible “demonstrations that a mechanism may be imagined capable of producing a connection of
the parts of the electromagnetic field” [1, art. 831].
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† Faraday did not write any equations in his Experimental Researches [6]. The clearest concise statement that I could find in
Faraday’s writings on electromagnetic induction (Faraday’s law) is in Paragraph 3087 of his Experimental Researches [6], namely,
“The first practical result produced by the apparatus described, in respect of magneto-electric induction generally, is, that a piece
of metal or conducting matter which moves across lines of magnetic force, has, or tends to have, a current of electricity produced in
it.” Following this statement, Faraday continues with a more detailed explanation of the “full effect” of the experimentally observed
magneto-electric induction.
‡ A shortened version of the derivation in the present paper is given in [2] but it contains an error pointed out by Redžić [7]. Redžić’s
treatment [7] of Maxwell’s derivation in his Treatise of the force on a moving electric charge differs from Maxwell’s derivation (and
the derivation given here) in that it requires differentiation of the differential of the position vector as well as a separate mathematical
proof that the time derivative can be brought inside the line integral of the vector potential for a moving curve.
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2. MAXWELL’S MATHEMATICAL FORMULATION OF FARADAY’S LAW

In Articles 530–541 of his Treatise [1], Maxwell explains some of Faraday’s experiments by means of
“primary” and “secondary” circuits that allow him to summarize in Article 541 the “true law of magneto-
electric induction [Faraday’s law of induced electromotive force]” as follows: “The total electromotive
force acting round a circuit at any instant is measured by the rate of decrease of the number of lines
of magnetic force which pass through it.” In Chapter IV of Part IV of the Treatise, he explains that
Faraday’s experiments with a single solenoidal circuit also demonstrate a self-induced electromotive
force.

Maxwell begins the formulation of time-varying electromagnetic-field equations per se with
Chapter VII, “Theory of Electric Circuits,” in Part IV of the Treatise. In this chapter as well as
the following Chapter VIII, specifically in Articles 578–592, he culminates a lengthy argument based on
the experimental results of Ampère and Faraday with a mathematical formulation of these results in
a form we recognize today as Maxwell’s first equation. It is most noteworthy that, although Maxwell
does not include his equation for Faraday’s law explicitly in his summary of equations in Article 619
because, evidently, he decided finally to emphasize the vector and scalar potential representations of his
equations,§ he first wrote down the integral form of Faraday’s law in Articles 579 and 595 as

E(t) = − d

dt
p(t) (3)

where E(t) is the line integral of the dynamic electromotive force per unit electric charge in a circuit
(closed curve) that can be moving (and deforming). For a stationary circuit, E has been given in Article
69 as

∫
C E · dl, where E is the static “electric intensity, or electromotive force”. For a moving circuit,

E can be written in terms of a vector Ev
‖ as [1, art. 598, Eq. (6), 2, Sec. 6.1]

E(t) =
∮

C(t)

Ev(r, t) · dl (4)

where C(t) denotes the closed curve of the moving circuit and Ev(r, t) is the unknown unit-charge force
that would be exerted on a hypothetical¶ electric charge placed at and moving with the point r of the
circuit (see Articles 68 and 598). The vector form of the line integral in Eq. (4) is given in [1, art. 598,
Eq. (6)]. (It should be noted that in Article 579, E represents the “impressed” voltage produced by a
battery in the circuit so that E−IR in Article 579 equals − ∮

C(t) Ev ·dl and thus in Article 579 Maxwell
writes E − IR = dp/dt.)

The p(t) in Eq. (3) is given in Articles 590 and 591 in terms of the vector potential A(r, t) and
magnetic induction field B(r, t)

p(t) =
∮

C(t)

A(r, t) · dl =
∫

S(t)

B(r, t) · n̂dS (5)

with S(t) being any open surface bounded by the circuit (closed curve) C(t) and l (Maxwell’s ρ) is “the
vector from the origin to a point of the circuit.” The vector n̂ is the usual surface unit normal defined
by the right-hand rule with respect to the direction dl around the curve C(t). On the curve C(t), the
§ Physicists often note that quantum field theory is indebted to Maxwell’s emphasis on the vector and scalar potentials in his final
summary of equations in Article 619.
‖ Maxwell uses the same symbol E for the force on a stationary or moving unit electric charge. Here, as in [2], the symbol E is
reserved for the force on a stationary unit electric charge (the usual electric field) and the symbol Ev is used for the force on a unit
electric charge moving with velocity v. (Of course, Ev=0 = E.) Also, it should be noted that J. J. Thomson evidently changed the
term “electromotive force” used by Maxwell in Article 618 and elsewhere in volume two of the first and second editions of Maxwell’s
Treatise to “electromotive intensity” in the third edition of Maxwell’s Treatise. Whenever this occurs in the quotes of Maxwell used
in this paper, I have reinserted Maxwell’s original word “force”.
¶ The adjective “hypothetical” is used herein to denote the force that would be exerted on a small particle carrying a unit of electric
charge if it were placed at a point without disturbing the given sources. In the words that Maxwell used to define the static electric
field with a stationary unit charge, “The resultant electric intensity [field] at any point is the force which would be exerted on a small
body charged with the unit of positive electricity, if it were placed there without disturbing the actual distribution of electricity” [1,
art. 68].
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vectors r and l are identical (r = l on C(t)). The vector forms of the line and surface integrals in Eq. (5)
are given in [1, art. 590, Eq. (7)] and [1, art. 591, Eq. (12)], respectively. With Eqs. (4) and (5) inserted
into Eq. (3), we see that Maxwell has obtained the most general integral form of Faraday’s law∮

C(t)

Ev(r, t) · dl = − d

dt

∮
C(t)

A(r, t) · dl = − d

dt

∫
S(t)

B(r, t) · n̂dS. (6)

When he writes (3) in Article 595, however, he has not yet shown for moving circuits that the
electromotive force (Ev) on a hypothetical unit charge moving with the circuit at r is equal to what now
is generally called the Lorentz force E + v ×B per moving unit electric charge, where v is the velocity
of the moving charge. (Before Maxwell evaluates Ev to show that it equals E + v × B, he has inferred
that Ev is the electromotive force on a moving unit electric charge from Faraday’s measurements [6] of
voltages induced in circuits moving through magnetic fields.)

Maxwell allowed his moving “circuit” C(t) in Eq. (6) to be a purely geometrical closed curve moving
through the free-space vacuum/ether or probably even through (not just with) a conductor or polarized
material. For example, in Article 598 he references Article 69, where he defines

∫
C E · dl for the static

electric field and explains that this integral is “the work that would be done by the electric force on a
unit of positive electricity [electric charge] carried along the curve from A, the beginning, to P , the end
of the arc.” Moreover, in Article 586, Maxwell says, “we are not now considering a current the parts of
which may, and indeed do, act on one another, but a mere circuit, that is, a closed curve along which
a current may flow, and this is a purely geometrical figure, the parts of which cannot be conceived to
have any physical action on each other.” Similar use of the term “circuit” to refer to any geometrical
“closed curve” is found in Articles 587–591, which lead into Article 598.

For stationary circuits, he confirms toward the end of Article 598 that, as in Article 69

E(t) =
∮
C

E(r, t) · dl (7)

where E(r, t) is the electric force on a hypothetical unit electric charge placed at r as explained in
Article 68. Consequently, Maxwell has obtained the integral form of Faraday’s law for stationary
circuits, namely ∮

C

E(r, t) · dl = −
∮
C

∂

∂t
A(r, t) · dl = −

∫
S

∂

∂t
B(r, t) · n̂dS. (8)

Application of Stokes’ theorem to (8) yields the differential form of Faraday’s law

∇× E(r, t) = −∇× ∂

∂t
A(r, t) = − ∂

∂t
B(r, t). (9)

However, Maxwell does not write this differential form of Faraday’s law in his Treatise nor in his 1865
paper [9] which contain only the integral form of Faraday’s law.+ The first equation in Eq. (8) or (9)
implies that

E(r, t) = − ∂

∂t
A(r, t) −∇ψe(r, t) (10)

for stationary circuits, where ψe(r, t) is a time-dependent as well as a spatially dependent scalar potential
function. In Article 598 Maxwell says that ψe(r, t) “represents, according to a certain definition, the
electric potential,” which he later says in Article 783 satisfies Poisson’s equation ∇2ψe(r, t) = −ρ(r, t)/ε
in a homogeneous isotropic dielectric with permittivity ε. This Poisson equation follows from Maxwell
using the Coulomb gauge ∇ ·A = 0 throughout his Treatise [2, Secs. 6.2 and 6.4]. Maxwell also writes
Eq. (10) explicitly as his second equation in Article 783 for time varying fields with v = 0.
+ We know that Maxwell deliberately chose to emphasize the integral form of Faraday’s law in his Treatise and 1865 paper [9] since
he had deduced the differential form of this law from his “theory of molecular vortices” that he used in his 1861 paper [8] to explain
Faraday’s experimental results [10]. In Part 2 of that 1861 paper, which contains no integrals, Maxwell wrote the scalar version of
∇×E = −μ∂H/∂t (= −∂B/∂t) as his Eq. (54). Maxwell’s mathematical formulation of Faraday’s law is not contained in Maxwell’s
earlier 1856 paper [11] in either the integral or differential form.
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3. DERIVATION OF THE FORCE ON A MOVING UNIT ELECTRIC CHARGE

Returning to Maxwell’s general integral form of Faraday’s law for moving circuits in Eq. (3), expressed
more fully in Eq. (6), we find in Article 598 Maxwell’s ingenious evaluation of −(d/dt)

∮
C(t) A(r, t) · dl

to prove that Ev(r, t) = −∂A(r, t)/∂t−∇ψe(r, t)+v(r, t)×B(r, t), where v(r, t) is the velocity at each
point r = l of the moving circuit C(t). He thus completes the mathematical formulation of Faraday’s
integral law for moving circuits and in so doing derives the force exerted on a moving unit electric charge
by the magnetic induction field B. Maxwell accomplishes this feat as follows.

He writes A(r, t) · dl in rectangular coordinates as

A(r, t) · dl = Ax
∂x

∂s
ds+Ay

∂y

∂s
ds+Az

∂z

∂s
ds (11)

where s is defined by Maxwell in Articles 16 and 69 as “the length of the arc, measured from A [the
initial point on the arc]”. Thus, ds is the scalar element of length on the closed curve C(t) at a fixed
time t. The x, y, and z are the rectangular components of the position vector l = r = xx̂ + yŷ + zẑ on
C(t). These rectangular components are functions of the time t and the length s along the curve C(t),
that is

l(t, s) = r(t, s) = x(t, s)x̂ + y(t, s)ŷ + z(t, s)ẑ, l = r ∈ C(t). (12)

If we consider the integral∮
C(t)

A(r, t) · dl =
∮

C(t)

(
Ax

∂x

∂s
+Ay

∂y

∂s
+Az

∂z

∂s

)
ds (13)

one can change the scalar integration variable s to s′ = s/smax at each instant of time t, where smax is
the total length of the closed curve C(t) at the time t, and Eq. (13) becomes

∮
C(t)

A(r, t) · dl =

1∮
0

(
Ax

∂x

∂s′
+Ay

∂y

∂s′
+Az

∂z

∂s′

)
ds′ (14)

and thus the limits of the integration variable s′ need not change with time t. Since C(t) is a closed
curve, s′ = 0 and s′ = 1 refer to the same point on C(t). Maxwell didn’t do this renormalization of the
s variable explicitly because it was probably obvious to him that the limits of the integration variable
s can be chosen to be independent of the time variable t since it occurs in both the numerator and
denominator of the right hand side of Eq. (11).

Taking the time derivative of this equation, we can bring the time derivative of the right-hand side
under the integral sign (because the limits of integration do not depend on time) to get

d

dt

∮
C(t)

A(r, t) · dl =

1∮
0

d

dt

[
Ax

[
r(t, s), t

]∂x
∂s

+ . . .

]
ds

=

1∮
0

[
∂Ax(r, t)

∂t

∂x

∂s
+
∂Ay(r, t)

∂t

∂y

∂s
+
∂Az(r, t)

∂t

∂z

∂s

+
(
∂Ax

∂x

∂x

∂s
+
∂Ay

∂x

∂y

∂s
+
∂Az

∂x

∂z

∂s

)
∂x

∂t

+
(
∂Ax

∂y

∂x

∂s
+
∂Ay

∂y

∂y

∂s
+
∂Az

∂y

∂z

∂s

)
∂y

∂t

+
(
∂Ax

∂z

∂x

∂s
+
∂Ay

∂z

∂y

∂s
+
∂Az

∂z

∂z

∂s

)
∂z

∂t

+
(
Ax(r, t)

∂2x

∂s∂t
+Ay(r, t)

∂2y

∂s∂t
+Az(r, t)

∂2z

∂s∂t

)]
ds (15)
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where the superfluous prime on the integration variable s′ has been dropped. The partial derivatives
with respect to s are taken holding t fixed. The partial derivatives of (x, y, z) with respect to t are taken
holding s fixed. The partial derivatives of A(r, t) with respect to x, y, or z are taken holding t fixed
and the partial t derivative of A(r, t) is taken holding (x, y, z) fixed. To obtain Eq. (15), use has been
made of the chain rules

dA(r, t)
dt

=
∂A(r, t)
∂t

+
∂A(r, t)
∂x

dx

dt
+
∂A
∂y

dy

dt
+
∂A
∂z

dz

dt
(16)

dx(t, s)
dt

=
∂x(t, s)
∂t

+
∂x(t, s)
∂s

ds

dt
=
∂x(t, s)
∂t

= vx (17a)

dy(t, s)
dt

=
∂y(t, s)
∂t

= vy (17b)

dz(t, s)
dt

=
∂z(t, s)
∂t

= vz (17c)

while noting that the variable s is independent of time (ds/dt = 0) since it varies from 0 to 1
independently of t. The chain rule in Eq. (16) holds for any dx, dy, and dz so we can choose (x, y, z) to
be the coordinates [x(t, s), y(t, s), z(t, s)] of the curve whose length has been normalized to 1.

If we proceed as Maxwell did, using B = ∇ × A to substitute ∂Ay/∂x = ∂Ax/∂y + Bz and
∂Az/∂x = ∂Ax/∂z −By into the third line of Eq. (15), we get for that line

1∮
0

(
Bz

∂y

∂s
−By

∂z

∂s
+
∂Ax

∂x

∂x

∂s
+
∂Ax

∂y

∂y

∂s
+
∂Ax

∂z

∂z

∂s

)
∂x

∂t
ds

=

1∮
0

(
Bz

∂y

∂s
−By

∂z

∂s
+
∂Ax

∂s

)
∂x

∂t
ds. (18)

Because
∂Ax

∂s

∂x

∂t
+Ax

∂2x

∂s∂t
=

∂

∂s

(
Ax

∂x

∂t

)
(19)

is a perfect differential, its integral around the closed curve of unity length is zero. Thus, Eq. (18),
along with the similar expressions for the fourth and fifth lines in Eq. (15), reduces Eq. (15) to

d

dt

∮
C(t)

A(r, t) · dl =

1∮
0

[(
∂Ax(r, t)

∂t
+By

∂z

∂t
−Bz

∂y

∂t

)
∂x

∂s

+
(
∂Ay(r, t)

∂t
+Bz

∂x

∂t
−Bx

∂z

∂t

)
∂y

∂s

+
(
∂Az(r, t)

∂t
+Bx

∂y

∂t
−By

∂x

∂t

)
∂z

∂s

]
ds

=
∮

C(t)

[
∂

∂t
A(r, t) − v(r, t) × B(r, t)

]
· dl (20)

where v = ∂x/∂t x̂ + ∂y/∂t ŷ + ∂z/∂t ẑ. Consequently, Maxwell has proven that∮
C(t)

Ev(r, t) · dl = −
∮

C(t)

[
∂

∂t
A(r, t) − v(r, t) × B(r, t)

]
· dl (21)

and, thus, he concludes that

Ev(r, t) = − ∂

∂t
A(r, t) −∇ψe(r, t) + v(r, t) × B(r, t) (22)
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or in accordance with Eq. (10) (and our present-day notation E for the electric field)

Ev(r, t) = E(r, t) + v(r, t) × B(r, t) (23)

since Ev in Eq. (22) with v = 0 has to equal E in Eq. (10). As mentioned above, Maxwell writes
E = −∂A/∂t − ∇ψe explicitly in Article 783 for time varying fields with v = 0. It should be
emphasized that Maxwell uses his mathematical formulation of Faraday’s law to obtain Eq. (22) and not
the conductor current force density J×B in Eq. (1) that he has found from the force on a magnetic-shell
model of circulating electric current.

Therefore, Maxwell has been able to represent Faraday’s experimental results in a general
mathematical form of Faraday’s law given in Eq. (6) with Ev given in Eq. (22) [1, Arts. 598–599].
In one magnificent synthesis of mathematical and physical insight, he has not only put Faraday’s law on
a solid mathematical foundation but he has also derived the “Lorentz force” for a moving unit electric
charge.

It is also possible to prove Eqs. (6) and (22)–(23) from Eq. (8) using the Helmholtz transport
theorem [12, Ch. 6] of vector calculus, but Maxwell does not do this even though he mentions Helmholtz’s
work with moving circuits in Article 544. Effectively, he proves the Helmholtz transport theorem for
the electromagnetic fields in his mathematical formulation of Faraday’s law as part of his derivation
reproduced above in Eqs. (13)–(22).

After deriving Eq. (22) from Eq. (6) in Article 598, he says that Ev(r, t) in Eq. (22) is the most
general form of the electromotive force on a hypothetical unit point electric charge moving with C(t)
at r, “being the force which would be experienced by a [moving] unit of positive electricity [electric
charge] at that point.” It follows from linear superposition that the force on an electric charge q moving
through electromagnetic fields is given by (in our present-day notation)

F = q(E + v × B) (24)

what we refer to today as the Lorentz force.
Redžić [7] suggests that because “Maxwell’s ψe(r, t) does not have the same connotation as

today’s scalar potential” that satisfies the Lorenz-Lorentz gauge, Maxwell may not have interpreted
−∂A(r, t)/∂t − ∇ψe(r, t) as today’s electric field vector E(r, t) being the force that would be exerted
on a hypothetical stationary unit electric charge placed at the point r. This is highly unlikely given
that Maxwell defines the static electric field E(r) in Article 68 as the force that would be exerted
on a hypothetical stationary unit electric charge at the point r and that Maxwell refers to Article
68 in his Article 598. Moreover, Maxwell always used the Coulomb gauge ∇ · A = 0 [2, Secs. 6.2
and 6.4] and, thus, his scalar potential always satisfies ∇2ψe(r, t) = −ρ(r, t)/ε [1, Art. 783] but his
electric force on a stationary unit electric charge is still given by E(r, t) = −∂A(r, t)/∂t − ∇ψe(r, t),
a relationship that holds independently of the gauge and that Maxwell writes down explicitly for time
varying fields in Article 783. Although Maxwell explained in Article 599 that the vector called Ev(r, t)
herein is also the force experienced by the electric-polarization and conduction charges of a material
body (which could be the ether) moving with the curve C(t) as confirmed by his writing in Articles 608,
609, and 619 that D = εEv (Maxwell looked at D as electric polarization [13]) and J = σEv (correct
for v2/c2 � 1), it seems clear from what Maxwell wrote in Articles 598 and 599 that he fully realized
that −∂A(r, t)/∂t − ∇ψe(r, t) was the force exerted on a hypothetical stationary unit electric charge
placed at the point r and that −∂A(r, t)/∂t−∇ψe(r, t)+v×B was the force exerted on a hypothetical
moving (with velocity v) unit electric charge placed at the point r, even though he did not explicitly
write Ev(r, t) = E(r, t) + v(r, t) × B(r, t) as is done in Eq. (23).

For example, near the end of Article 598, Maxwell says that “Hence we may now disregard the
circumstance that ds forms part of a circuit, and consider it simply as a portion of a moving body, acted
on by the electromotive force [my Ev]. The electromotive force has already been defined in Art. 68.
It is also called the resultant electrical force, being the force which would be experienced by a unit of
positive electricity [electric charge] placed at that point. We have now obtained the most general value
of this quantity in the case of a body moving in a magnetic field due to a variable electric system.”
He continues in Article 599 with, “The electromotive force [on a particle with unit electric charge], the
components of which are defined by equations (B) [(22) above], depends on three circumstances. The
first of these is the motion of the particle [carrying unit electric charge] through the magnetic field [B].
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The part of the force depending on this motion is expressed by the first two terms on the right of each
equation [v × B in Eq. (22)].”

From these and other statements in his Treatise, it seems clear that Maxwell realized that he had
derived the force exerted by the electromagnetic fields in free space (ether) or conductors or polarized
material∗ at each instant of time on a hypothetical moving particle at r carrying unit electric charge�

and, if the velocity v of the circuit were zero, the measured time varying force at a point r on C would
be the time varying electric field E(r, t) = −∂A(r, t)/∂t−∇ψe(r, t). Moreover, he explicitly writes this
equation for time varying fields and v = 0 in Article 783. Indeed, if this were not the case, it would
mean that for stationary circuits C, Maxwell’s vector E(r, t) in his Eq. (6) of Faraday’s law would not
refer to the time varying electric field as measured by the force on a hypothetical stationary unit electric
charge placed at r.

Maxwell used the same symbol “E” for the force on a unit electric charge whether or not the
charge was moving. This does not conform to our present-day notation for the electric field but it does
not represent a mistake in either his equations (reproduced herein) derived from Faraday’s law or his
physical interpretation of these equations in terms of the force on moving and stationary unit electric
charges. Other scientists used the same symbol for the force on a moving or stationary unit charge
many years after Maxwell’s Treatise, notably, Poynting in his classic paper deriving what is now known
as Poynting’s theorem [15, 16].

4. CONCLUSION

From the experiments of Faraday, Maxwell infers that the integral of the electromotive force around
a moving circuit (closed curve) C(t) is given by the negative time derivative of the magnetic flux
through any open surface S(t) bounded by the closed curve C(t). Using this generalized mathematical
formulation of Faraday’s law given in Eq. (6), Maxwell effectively derives a Helmholtz transport theorem
for the electromagnetic fields to prove that the electromagnetic force on a moving electric charge is given
by the “Lorentz force” in Eq. (24) (using our present-day notation). This remarkable result derived in
Maxwell’s Treatise can be traced back to his 1861 paper [8], which was written about 30 years before
Heaviside [3] and Lorentz [4] expressed the force on a moving electric charge.
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Maxwell considered D to be the electric polarization and did not introduce a polarization vector P [2, 13].
� Even though Maxwell derived the force on electric charge moving through electromagnetic fields, apparently most of the scientific
community did not understand what he had done until much later when Lorentz used this force extensively in his work. In fact,
Maxwell’s equations were not widely accepted until after Hertz experimentally demonstrated the existence of wireless microwave
radiation [14]. This reluctance to accept Maxwell’s equations until well after he had died, Maxwell’s direct but mathematically
sophisticated deduction of the v × B force in Faraday’s law in Article 598, and his use of potentials and the same symbol E for the
force on both a stationary and moving unit electric charge are probably the main reasons that Maxwell’s derivation of the “Lorentz
force” continues to be largely overlooked.
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