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Topological Circuit Theory: A Lie Group Perspective

Said Mikki*

Abstract—We present a general theory of linear continuous circuits (microwave networks, waveguides,
transmission lines, etc.) based on Lie theory. It is shown that the fundamental relationship between
the low- and high-frequency circuits can be fully understood via the machinery of Lie groups. By
identifying classes of distributed-parameter circuits with matrix (Lie) groups, we manage to derive the
most general differential equation of the n-port network, in which its low-frequency (infinitesimal) circuit
turns out to be the associated Lie algebra. This equation is based on identifying a circuit Hamiltonian
derived by heavily exploiting the Lie-group-theoretic structure of continuous circuits. The solution of the
equation yields the circuit propagator and is formally expressed in terms of ordered exponential operators
similar to the quantum field theory’s formula of perturbation theory (Dyson expansion). Moreover,
the infinitesimal operators generating the per-unit-length lumped-element local circuit approximation
appear to correspond to operators (such as observables) in quantum theory. This analogy between
quantum theory and circuit theory through a shared Hamiltonian and propagator structure is expected
to be beneficial for the two separate disciplines both conceptually and computationally. Several
applications are presented in the field of microwave network analysis where we introduce and study
the Lie algebras of important generic classes of circuits, such as lossless, reciprocal, and nonreciprocal
networks. Applications to the problems of generalized matching and representation theorems in terms
of uniform transmission lines are also outlined using topological methods derived from our Lie-theoretic
formulation and exact theorems on continuous matching are obtained to illustrate the potential practical
use of the theory.

1. INTRODUCTION

The cross-disciplinary subject of topology-physics interaction has recently experienced a revival through
topics like topological insulators [1] and topological photonics [2]. Other such applications to physics
include topological techniques in quantum field theory (QFT) [3], causal nets in cosmology [4], near-
field analysis of electromagnetic radiation [5–8], and numerous others. While those fields aim at
using topological methods to characterize interesting physical phenomena, another synergistic route
goes through building structural analogies in which topological thinking could be considered a higher
level technique or a more abstract approach for taking up in a unified manner what would otherwise
initially appear as two very different domains of knowledge. The ultimate objective of such a line
of research would be imposing some unity on disparate disciplines within the confines of a single
investigatory framework. One method to accomplish this is exploiting the general and powerful
apparatus of Lie groups [9]. Indeed, a vast amount of physics and engineering can be described by
continuous groups of transformations [10, 11]. One of these applications, as will be proposed below, is
the realization that signal or wave propagation in one-dimensional structures like waveguides or circuits
is essentially a process of continual transformation of energy from electric type to magnetic type and
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vice verse [12]. Consequently, it is very often the case that this propagation process can be perfectly
captured mathematically using linear matrices, leading to the transmission line (TL) model [13] or the
matrix method of wave propagation [14, 15].

It is now fairly well established that the theory of Lie groups, i.e., the study of continuous groups
of transformations [9], is fundamental to modern physics [11]. Moreover, Lie groups continue to play a
major role in the calculations of fundamental interactions in particle physics, especially in connection
with collision experiments within the framework of the standard model of particle physics [16], and in
condensed-matter physics, chemistry, and physical chemistry [17]. However, the impact of this theory on
other fields of physics and engineering has not received the same level of sustained attention as compared
with gauge field theory. For example, while Lie groups have been applied in mechanical engineering and
robotics [18] and information theory [19], the theory is rarely invoked at a fundamental level in optics
or applied electromagnetics, not to mention other disciplines like molecular biology, biophysics, physical
chemistry, and chemical engineering. The purpose of this paper is to forge a new cross-disciplinary
bridge linking quantum theory and circuit theory, where the common structure at the foundation of
this interrelation turns out to be precisely Lie theory. We focus in what follows on the so-called “old
Lie theory,” which dates from the publication of Sophus Lie’s major book [9] to the appearance of the
definitive text on the “modern theory” by Chavalley [20]. Afterwards, most researchers on the subject
working within pure mathematics have concentrated on building the global topological properties of
various important groups [21]. This modern theory also coincides in spirit and content with Weyl’s
influential books on quantum theory published in 1928 [10] and the equally important book on classical
groups [22]. While we appreciate the structural depth of the modern theory with its explicit interest
in characterising the global invariants of the group and the spaces linked to it, we believe that the
simplicity and direct intuitive appeal of the “old Lie theory,” especially in the way it starts with local
representation, is closer to physics and engineering problems as will be demonstrated in this work. In
fact, in recent decades, the “old Lie theory” was applied to rebuild the foundations of classical dynamics
in a strikingly modern way [23]. The move from the local to the global is particularly clear in the old
framework originally envisioned by Sophus Lie and his collaborators in the nineteenth century because
it builds the extension by explicit construction of partial differential equations that when solved can
generate proper flows on the group manifold. This flow often translates into a physical process. In this
paper we show that such flow may be taken to correspond to the propagation of electromagnetic signals
(voltages and currents) along transmission lines. For these reasons, we advocate in the theory briefly
outlined below a cross-disciplinary approach to circuit theory linking the subject with quantum theory
through their mutually shared deep Lie-theoretic structural substrate. The fundamental relevance of
the general theory to be exposed below is by no means restricted to the microwave regime. In fact,
transmission line theory is a theory of “continuous systems” underlying a vastly larger horizon of natural
phenomena, including optical transmission in nonuniform media, electric power systems, and scattering
processes of microscopic particles. However, for concreteness, in the applications sections of this paper
we more often invoke the microwave circuit model as a transmission line.

A microwave circuit is essentially a transmission line (TL), which in turn is a distributed-element
circuit [24]. In this view, a TL is understood as a high-frequency circuit that behaves “globally” in a
very different manner compared to the low-frequency counterpart, which represents the local structure
of the system. In particular, only an infinitesimal (electrically small) section of a TL looks like a
lumped-element circuit. This immediately suggests to us the analogy with differentiable (topological)
manifolds, which by definition look locally like Euclidian spaces. Indeed, the universe of lumped-element
circuit theory is taken as the point of departure for any circuit theory. We know very well how to do
things in the low-frequency regime. Subsequently, the behavior of the global system, i.e., the full
high-frequency circuit, is constructed in the following way. We start with an initial small section of a
TL. Cascade another small section. The resulting system is larger than the initial one, but sill lying
in its “neighborhood” (a topological concept). The process is iterated by inserting new infinitesimal
sections till the global (full) picture of the complete high-frequency system is obtained. In this case, any
microwave circuit can be described in terms of repeated application of infinitesimal transformations,
acting in an abstract differentiable (and hence topological) space. The most natural mathematical
device to handle this problem is the theory of Lie groups [25], which is well developed for classical
(matrix) groups. It is a happy coincidence that microwave networks are described by (invertible) square
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matrices, which motivates direct application of topology and group theory to the traditional area of
microwave engineering. This we endeavor to achieve in the present paper.

The paper is organized as follows. In Section 2 we give the core of the Lie-theoretic approach
proposed here and derive the general master equation of a TL using only Lie group arguments.
The equation is shown to be equivalent to Schrodinger equation and we formally solve it using the
Dyson series of quantum field theory (QFT). In Section 3 we develop the effective method needed for
performing calculations through the introduction of the Lie algebra of distributed-parameter circuits.
We give several examples and show how conventional TL theory can be recovered very efficiently
from our Lie-theoretic reformulation of the problem. New insights into TLs are also obtained and
reported. In Section 4, we outline some possible more advanced future applications of the theory in the
field of microwave networks. A particular application, the problems of generalized matching and the
representation of a generic network by a uniform TL are taken up in Section 5. A set of carefully written
mathematical appendices are inserted at the end of the paper to provide a deeper look into some of the
arguments intuitively sketched out throughout the main text. Finally, we end with conclusion.

2. MAIN FORMULATION OF THE LIE THEORY OF CONTINUOUS CIRCUIT

2.1. Derivation of the Master Differential Equation

Let G be a Lie group of dimension M , which is defined as an M -dimensional differential (smooth)
manifold whose points are equipped with the algebraic structure of a group multiplication operation
such that the product of two elements and the inverse operations are smooth. A matrix group is a Lie
group.† The key idea behind the topological circuit theory proposed in this paper is that the chain
matrix representation of TLs (see Figure 1) leads to a natural representation of signal propagation
in terms of invertible linear matrices, the chain matrix itself. In the case of n input/output ports
circuits, the largest possible G is the general linear group GL(n; C). This is the group of square n × n
invertible matrices over the field C of complex numbers (we assume time-harmonic excitation throughout
the paper.) Interesting physically realizable circuits are matrix subgroups of GL(n; C) (and hence Lie
groups by a well-known

Figure 1. Derivation of the master equation in circuit theory. A transmission line is treated as an
infinite number of infinitesimal circuits cascaded in series connection in order to enact propagation of
electromagnetic signals (optical waves, voltage waves, etc.) Each signal space is represented by the
vector χ of M parameters forming coordinates in the local manifold that is the chain matrix itself. The
propagation of signals is now modeled by the propagator P (l) defined by (13), which is an M × M
matrix obtained by solving a Schrodinger-like Equation (17) with effective circuit Hamiltonian (24).

† A full review of the mathematical definition of general Lie group is provided in the Appendix. For an elementary introduction to
Lie groups emphasizing matrix groups, see [26–28]. For more advanced treatment of classical (matrix) continuous groups, see [22, 29].
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general theorem, see [28]) with examples given in Section 3. In general, each point g ∈ GL(n; C) in the
differential manifold of the group will correspond to an n-port circuit. Concrete examples will be given
in Sections 3 and 5. For the remaining parts of this section, the theory is developed at the most general
level possible.

Let the M -parameter coordinate vectors for two elements of g1, g2 ∈ G be Υm and χm (see
Appendix B). When we compose these two elements we obtain a new group element g3 := g1g2, g3 ∈ G,
with parameter array χ′m. The composition operations of Lie group turns out to be M analytic maps
in the form [9, 30]

χ′m = φm
(
Υ1, . . . ,ΥM , χ1, . . . , χM

)
, (1)

where m = 1, 2, . . . ,M. Here, one may think of the arrays of numbers χ′m, χm, and Υm as “circuit
coordinates” chosen from a coordinate patch containing the point (group element) g in the manifold
G. It is to be understood everywhere that the representation of this group element is the usual chain
matrix and the group operation of Eq. (1) captures — in the Lie group analytic manifold coordinate
chart’s language — the usual operation of matrix multiplication.

Now, consider Figure 1. We start with a reference line denoted by the identity operation 1 at
the right. The line is followed by an arbitrary network described by the chain matrix T i. At the
other terminal there is the final network with a chain matrix T f at the left. The infinitesimal circuits
connecting T i and T f are described by the matrices whose Lie manifold coordinates are δΛ, where each
such infinitesimal section is defined along the line going from right to left. Here, we denote by χ the
total attained chain matrix while progressing with the infinitesimally continued steps δΛ. Again, χ
really refers to the coordinates (parameters) of the Lie group representation of the chain matrix as per
the discussion immediately following Equation (1) above.‡

We begin with the chain matrix χ seen after the reference (identity) line. The initial network T i

will transform this value into χ′. The continuation process is started by inserting a small section with
a chain matrix δΛ, producing in turn χ′′. We calculate the differential increment

dχ′m = χ′′m − χm (2)

with the help of the group operation functions in Eq. (1), and this leads to

χ′′m = χ′m + dχ′m = φm
(
δΛ, χ′) . (3)

Expanding the functions φm in Taylor series with respect to the first argument, we find that to the
first-order approximation the following relation holds:

dχ′m =
∑M

n=1
δΛn ∂

∂Υn
φm
(
Υ, χ′)∣∣∣∣

Υ=0

. (4)

On the other hand, we can compute the same quantity by treating the inserted section δΛ as the germ of
new analytical continuation of χ. This is possible because both the new cascaded section’s chain matrix
and the law upon which we calculate the new value of χ are the same, i.e, matrix multiplication. To
see this, notice that

Λ′m = Λm + dΛm = φm (δΛ,Λ) , (5)

where Λ′ can be interpreted as the new chain matrix obtained by cascading T i and then δΛ (see Figure 1);
that is,

Λ′ = δΛT i. (6)

By again expanding Eq. (5) in Taylor series, we obtain to the first order

dΛm =
∑M

n=1
δΛn ∂

∂Υn
φm (Υ,Λ)

∣∣∣∣
Υ=0

. (7)

‡ It is important to acknowledge some abuse of notation we admit throughout this paper. Strictly speaking, we must distinguish
between the actual chain matrix itself, which is an n × n complex matrix, and its “coordinates” or parameters, which are M in
number. However, since the general linear group is a Lie group, it has a manifold structure as mentioned above and hence there is a
local one-one correspondence between the matrices themselves and their coordinates. For that reason, we refer to the “chain matrix”
δΛ here by its coordinates, not the matrix itself. In general, when we say “chain matrix” we either refer to the matrix itself or to its
array of M parameters. This loosening of the distinction between the coordinates and the abstract point is followed throughout.
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Now, define the following M × M matrix

U−1,m
n (Λ) :=

∂

∂Υn
φm (Υ,Λ)

∣∣∣∣
Υ=0

. (8)

This matrix is invertible as can be established from the Lie theoretic properties of composition functions,
see [9] for example. With the notation in Eq. (8), Equation (7) can be rewritten as

δΛm =
∑M

n=1
Um

n dΛn, (9)

where both sides were inverted after substitution. Inserting Eq. (9) into Eq. (4), we obtain

dχ′m =
∑M

n=1

∑M

n′=1
dΛn′

Un
n′ (Λ) V m

n

(
χ′) , (10)

where the matrix V is defined as

V m
n

(
χ′) :=

∂

∂Υn
φm
(
Υ, χ′)∣∣∣∣

Υ=0

. (11)

Differentiating Eq. (10) and carefully labeling the indices, it easily follows that

∂χ′m

∂Λn
=
∑M

r=1
U r

n (Λ) V m
r

(
χ′). (12)

The previous derivation of Eq. (12) can be further appreciated when we remember that, generally
speaking, δΛ and dΛ are essentially different quantities: We can freely vary δΛ, which represents the
inserted infinitesimal section of the tapered line. However, once we do so, we can not freely change dΛ
(or equivalently dχ) since the latter are governed by the particular Lie group structure encapsulated
in the functions in Eq. (1). Physically, the system of Equation (12) represents a coupled set of partial
differential equations, most often nonlinear, and is very general in scope. It describes the “multi-
dimensional dynamics” of wave propagation, i.e., not necessary along a preferred direction like time or
the longitudinal extension of the TL, but instead with respect to all or subset of the total independent
M parameters that describe the dynamics of continuous change (here wave propagation enacted via
infinitesimal cascade modification of the chain matrices.) Next, we develop the special but important
case of one-parameter subgroup of dynamical transformations.

Consider the one-parameter l ∈ R, which is physically interpreted as the longitudinal coordinate
(spatial index) of the TL. In this language, the germ state becomes the parameters χn, n = 1, . . . ,M,
which are the coordinates of the initial chain matrix (initial state). We may express the response of the
network at the location l as

χm (l) =
∑M

n=1
Pm

n (l) χn (0), (13)

where we define P as the one-parameter propagator of the network, clearly an M × M matrix
parametrized by only one parameter l. Using the chain rule, the total derivative of the response χ
can be computed, leading to

d
dl

χm (l) =
∑M

n=1

∂χm (l)
∂Λn

dΛn (l)
dl

. (14)

Substituting Eq. (12) into Eq. (14), we obtain

d
dl

χm (l) =
M∑

n=1

M∑
r=1

U r
n (Λ) V m

r (χ)
dΛn (l)

dl
. (15)

We now introduce the crucial concept of the infinitesimal generators of the Lie group, which are defined
by [27]

Xn (χ) := −
∑M

m=1
V m

n (χ)
∂

∂χm
. (16)

The infinitesimal generator can be interpreted in various ways. Technically, it is a differential operator
on manifolds, the latter coinciding in our case with the group manifold itself [21]. More interestingly,
it will be seen in Section 3 that the infinitesimal operator in fact directly captures the low-frequency
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or “infinitesimal section” of the TL circuit, and possibly can be interpreted as the circuit analog to
observables in quantum theory.

With the help of Eq. (16), Equation (15) can be put in the convenient form

d
dl

Pm
n (l) = −

M∑
v=1

M∑
r=1

dΛv (l)
dl

U r
v [Λ (l)]Xr

[
M∑

r=1

P 1
r (l) χr (0), . . . ,

M∑
r=1

PM
r (l)χr (0)

]
Pm

n (l) . (17)

To prove this, just substitute Eq. (16) to Eq. (15) and use the relation δm
n = ∂ (xm)/∂xn and the

definition of the circuit propagator P in Eq. (13).
Equation (17) presents a set of first-order ordinary differential equations with the initial condition

Pm
n (l = 0) = δm

n . (18)

The system in Eqs. (17) and (18) constitutes the dynamical equations governing the propagation of
electromagnetic signals along the n-port TL, and appears to be derived here for the first time at such
very general level. It can be shown that Eq. (17) is reduced to the well known particular TL model
obtained via Kirchhoff voltage and current laws (KCL/KVL) analysis of RLC infinitesimal sections as
found in standard textbooks like [24]. The details of this reduction are given in Section 3.

2.2. Solution of the Master Equation Through Lie Algebra and Dyson Formula

Note that Eq. (17) was derived in a systematic manner for arbitrary n-port network without any special
assumption about the physical realization of the low-frequency (infinitesimal) circuit. The physical
content of the theory is injected into Eq. (17) through the per-unit length circuit parameters dΛv (l)/dl.
However, the essential content of the relationship between the low- and high-frequency circuits is encoded
in the Lie algebra (see Section 3), or the algebraic structure of the infinitesimal generators Xi. Our
Equation (17) clearly relates these generators to the formal solution, although in a rather complicated
way. In particular, the coupling between multiple ports (e.g., chain matrices in GL(n; C), n > 1) at
the low-frequency level will be reflected into the rich mathematical structure of the Lie algebra, which
encodes the appropriate form of the internal configuration of continuous circuits such as microwave
networks.

The Lie algebra is the vector space spanned by the infinitesimal generators Xi closed under the
commutation operation [25, 27, 29]

[Xi,Xk] := XiXk − XkXi (19)

and satisfying the Jacobi identity [29]. Intuitively, the Lie algebra can be understood as a linearization
of the Lie group, or a local viewpoint of what is otherwise a complicated global object (the group itself
defined on its entire manifold [21].) Surprisingly, it turns out that one can learn much about the global
behavior of the group from the structure of the Lie algebra [25, 29].

In order to motivate the concept of infinitesimal generator, it will be easier to work directly with a
matrix group Λ than the original (more general) definition in Eq. (16). Expanding in Taylor series, we
find

Λ = 1 +
∑M

i=1
δΛiXi + O

(
δΛ2

)
, (20)

where the infinitesimal matrix generators Xi are defined by [27]

Xi :=
∂

∂Λi
Λ
(
Λ1, . . . ,ΛM

)
. (21)

We notice here that the parameters Λm are chosen such that Λ(0) = 1 and the derivatives are calculated
at Λi = 0 for all i. To the first order, we approximate an infinitesimal section of a TL by the matrix

δΛ ≈ 1 +
∑M

i=1
δΛiXi. (22)

Each infinitesimal network is the low-frequency (lumped-element) circuit with per-unit length parameters
δΛ. The effective chain matrix of the TL is the multiplication of all these small sections. Therefore, by
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carrying out the formal limit, one can use this method to systematically compute the chain matrix of
a uniform TL using the matrix exponential [27]

Λ = exp
(∑M

i=1
ξiXi

)
, (23)

for real parameters ξi. Concrete calculations with familiar uniform TLs using Eq. (23) will be given in
Sections 3 and 5. The generalization to nonuniform TLs is the subject of the next paragraph.

We apply the above theory to derive a formal solution of generalized nonuniform transmission lines.
Start by defining

− i

�
H(l) := −

M∑
v=1

M∑
r=1

dΛv (l)
dl

U r
v (Λ) Xr (χ), (24)

where H plays the role of the Hamiltonian operator in quantum field theory and � the Planck constant.
The master equations assumes then the following compact form

d
dl

Pm
n (l) = − i

�
H(l)Pm

n (l) , (25)

which is clearly identical to the Schrodinger equation in the propagator formalism [31]. Integrating
Eq. (25), we obtain the integral equation

Pm
n (l) = Pm

n (0) −
∫ l

0
dl′

i

�
H
(
l′
)
Pm

n

(
l′
)
, (26)

which can be viewed as the first-order iteration. Reiterating, we arrive at the recursive integral relation

Pm
n (l) = Pm

n (0)−Pm
n (0)

i

�

∫ l

0
dl′H

(
l′
)
Pm

n

(
l′
)
+
(

i

�

)2 ∫ l

0
dl′H

(
l′
) ∫ l′

0
dl′′H

(
l′′
)
Pm

n

(
l′′
)
+ . . . , (27)

which is the well-known perturbation series (Dyson expansion) of the propagator in quantum field
theory [31].§ Its emergence here discloses the deep structural analogy between continuous-parameter
circuits (TLs) and quantum processes: the shared structure of a propagator equation. For example,
one may create Feynman diagrams for the circuit problem in analogy with the situation in QFT, etc.
It will be interesting to explore in future work what the corresponding circuit processes have to offer
QFT in terms of physical interpretation and insight. Conversely, circuit theory, a subject well developed
computationally, may offer new algorithmic techniques to help facilitate solving challenging problems
in QFT.

The final propagator expression can be written compactly as

Pm
n (l) = T exp

[
− i

�

∫ l

0
dl′H

(
l′
)]

, (28)

where T is the ordered exponential symbol [31]. The latter is simply defined as a recipe in which
anything that comes after the symbol T is arranged according to its time argument in chronological
order (increasing time) from right to left. Notice that this exponential is still difficult to compute
in general. However, by analyzing the structure of special important circuit Lie groups, like the
reciprocal/nonreciprocal and/or lossless groups in Sections 3 and 5, it is possible to considerably
enhance our understanding of the general solution of general nonuniform TL. To our knowledge, the
TL’s propagator in Eq. (28) is derived here for the first time.

Figure 2 illustrates the space of the Lie algebra of a generalized TL problem. Two nonuniform
TLs are represented by paths I and II. The particular shape of the path reflects how the low-frequency
circuit is changing while progressing along the TL. Path III models a uniform TL and can be computed
by the exponential map in Eq. (23) as will be shown in Section 3.1. From Lie theory, a neighborhood
of the identity 0 in the Lie algebra will be mapped injectively into the connected identity competent of
a Lie group having the same Lie algebra [21, 25]. As it turns out, the exponential map is not always
§ Perturbation theory was also recently applied to antenna-antenna mutual coupling analysis in [32, 33].



140 Mikki

Figure 2. Various trajectories in the Lie algebra of continuous circuits. The straight line (Path III)
is mapped to the chain matrix (Lie group) via the exponential map (23). This particular special case
corresponds to uniform TL-type propagation. On the other hand, alternative, more complex trajectories
like Paths I and II correspond to various instantiations of non-uniformity in continuous circuit signal
propagation.

onto [29], which provides a significant insight into the relation between high- and low-frequency circuits.
In general, our strategy will be to start from a given Lie algebra, i.e., a low-frequency description, and
then study the structure of the microwave network, i.e., the high-frequency circuit, generated by the
exponential relation.

3. THE LIE ALGEBRA OF DISTRIBUTED-PARAMETER CIRCUITS

The Lie algebra we introduced in Section 2.2 was defined as the vector space spanned by the
infinitesimal generators Xi of Eq. (21) which are also closed under the commutation operation
[Xi,Xk] := XiXk − XkXi while satisfying the Jacobi identity. We will not rehearse all properties
of Lie algebras in details since this subject tends to be extremely well covered in literature, e.g.,
see [17, 22, 25, 28, 31, 34]. The dimension of the Lie algebra is the number of linearly independent
generators Xi. Lie algebra represents a linearization of the Lie group, or a local viewpoint. Surprisingly,
it turns out that one can learn much about the global behavior of the group from the structure of the
Lie algebra [17, 25, 31].

3.1. Basic Examples and Recovery of Conventional Transmission Line Theory

Let us calculate the Lie algebra of some simple low-frequency circuit topologies. Take the configuration
shown in Figure 3. Applying Kirchhoff Current Law (KCL) and Kirchhoff Voltage Law (KVL), we
arrive to the following chain (ABCD) matrix

TT =

⎛
⎜⎝ 1 +

Z1

Z3
Z1 + Z2 +

Z1Z2

Z3
1
Z3

1 +
Z2

Z3

⎞
⎟⎠ . (29)

Let us try to apply this method to calculate the chain matrix of a piece of transmission line with length
l. Consider the Γ-network obtained by setting Z2 = 0 in Figure 3. The resulting chain matrix is

TΓ =
(

1 + ZY Z
Y 1

)
, Y :=

1
Z3

= jYcap, Z := Z1 = jZind, (30)

with Zind, Zcap ∈ R
+, representing the magnitudes of the inductive and capacitive impedance,

respectively. The per-unit-length infinitesimal circuit itself is shown in Figure 4. The infinitesimal
(low-frequency) circuit is an Γ-section with length approximated as

δl =
l

N
, (31)



Progress In Electromagnetics Research B, Vol. 89, 2020 141

(a) (b)

Figure 3. (a) T-section impedance transformer circuit with ABCD matrix TT. (b) The ABCD
parameters.

(a) (b)

Figure 4. (a) Γ-section per-unit-length (infinitesimal or low-frequency) circuit of a conventional
transmission line. (b) The ABCD matrix relation of the infinitesimal section (b).

for N some large integer. The corresponding chain matrix is given by Eq. (30). There, the impedance
and admittance can be written as

Z = jρZδl, Y = jρY δl, (32)

with the impedance and admittance densities (per-unit-length parameters) denoted by ρZ and ρY ,
respectively. The infinitesimal matrix generators can be calculated from Eq. (21), and the results are

ZindX1 =
Zind∂

∂Zind

(
1 + ZY jZind

Y 1

)∣∣∣∣
Ycap,Zind=0

=Zind

(
0 j
0 0

)
=ρZδl

(
0 j
0 0

)
=

ρZ l

N

(
0 j
0 0

)
, (33)

YcapX2 =
Ycap∂

∂Ycap

(
1 + ZY Z
jYcap 1

)∣∣∣∣
Ycap,Zind=0

=Ycap

(
0 0
j 0

)
=ρY δl

(
0 0
j 0

)
=

ρY l

N

(
0 0
j 0

)
, (34)

where Eqs. (31) and (32) were used. Therefore, it may be concluded from the matrix exponential law
in Eq. (23) that

Λ = lim
N→∞

δΛN = lim
N→∞

(
1 +

ρZ l

N
X1 +

ρY l

N
X2

)N

= exp [(ρZ l)X1 + (ρY l) X2] . (35)

The matrix exponential in Eq. (35) can be computed directly using the standard methods of matrix
analysis [28]. We provide the final result and omit the details for brevity. It emerges that the TL full
chain matrix is given by the expression:

Λ =
(

cos jZc sin βl
jYc sinβl cos βl

)
, β =

√
ρZρY , Zc =

1
Yc

=
√

ρZ

ρY
, (36)

where β and zc are the propagation constant and characteristic impedance, respectively, whose per-unit-
length circuit is the one in Figure 4. The matrix in Eq. (36) is nothing but the chain matrix of a uniform
TL with length and per-unit inductance and capacitance given by ρZ and ρY [13]. We have successfully
recovered the correct traditional transmission line chain matrix from our proposed Lie group theory of
continuous circuits.
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It should be remembered that a relatively straightforward calculation of the matrix exponential
function yielding Eq. (36) was possible only because the densities ρZ and ρY are constant along the
line. We have already shown in Section 2 how to deal with the fully general situation in which the TL
is nonuniform. In that case, the more laborious treatment adopted there resulted in a general solution
that can be obtained by careful integration of the master Equation (17) along a trajectory as in Figure 2,
resulting in the Dyson formula (28). Thus, each nonuniform line will correspond to a path in the Lie
algebra. The direct case of uniform line will correspond to integration through a line (Taylor Theorem
for Lie Groups.)

3.2. The Matrix Exponential and Transmission Line Theory: Additional Insights into the
Structure of the Problem of Signal Propagation

One may use the methods outlined above in order to systematically calculate the chain matrix of a
network with arbitrary length and arbitrary infinitesimal (per unit length) parameters using the matrix
exponential formula (23) restated as follows for the special case of the TL infinitesimal (per-unit) model
in Figure 4:

Λ
(
ξ1, ξ2

)
= exp

(
ξ1X1 + ξ2X2

)
, (37)

where the explicit dependence on the real per-unit-length parameters ξi is emphasized to highlight
the connection with the physical problem at hand (propagation of signals along TLs). Again, this
expression is valid only for uniform lines in which the low-frequency circuits, parameterized by ξi, are
linearly varying with a universal index like the length along the line. For the nonuniform case, the more
complicated Dyson formula (28) must be used. In any case, it should be noted that X1X2 − X2X1

cannot be written as a linear combination of X1 and X2, which means that the subspace of matrices
spanned by X1 and X2 is not closed under the commutator operation and hence is not a Lie subalgebra.
This also implies that the class of chain matrices obtained by repeated multiplication of infinitesimal
operators in the form 1+

∑2
i=1 aiXi does not satisfy the group closure property. The resolution of this

problem is given in Section 3.4 where we show that the proper Lie algebra of TL problems (reciprocal
and lossless class) contains three infinitesimal generators, where a third one X3 will be added to the two
generators X1 and X2 we have already found.

Now for the most general situation, a mechanism for generating Lie group elements can be
implemented in the following way:

(i) The generation of a finite transformation (signal propagation over a finite length) proceeds first by
finding a suitable parametrization of the continuous group. The choice of the parametrization is
not unique but must be made to avoid singularities around the identity element.

(ii) In the case when the low-frequency circuit is known, we can start by building a matrix representation
of an arbitrary element of the associated Lie algebra. This happens because the low-frequency
circuit contains at least the first-order information of the high-frequency circuit (more on this in
Section 3.3).

(iii) By performing the partial derivatives in the definition of the infinitesimal generators in Eq. (21),
one may isolate those pure first-order operation corresponding to each parameter appearing in the
description of the low-frequency circuit.

(iv) Moreover, it should be clear from this description that the chain matrix of the low-frequency circuit
reduces to the identity when the values of the parameters in the circuit description are zero. If
this is not the case, a new parametrization must be attempted in order to achieve the requirements
mentioned before.

(v) These matrices (infinitesimal generators) are taken to be the infinitesimal matrix generators of the
group.

(vi) The finite group elements connected with the unity are then obtained by a suitable exponentiation
operation in Eq. (23).

(vii) Transformations associated with disjoint elements of the Lie group can be obtained by introducing
a discrete group [27–29].
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In the author’s opinion, the greatest, advantage of this connection between the low-frequency
circuits and Lie algebra is that it is easy to study the structure of a microwave network or a general TL by
simply starting from the low-frequency model. In other words, when Maxwell’s equations places global
restrictions on the chain matrices of important subgroups (reciprocal, lossless, etc., see Section 3.4),
this defines our Lie group, which is inherently a global (and nonlinear structure). In contrast, the
low-frequency circuit models can provide a linearization (hence a way for realization) of the original
more complicated Lie group. We can then relate our study of the parent group to our knowledge of the
performance (behavior) of the low-frequency model using the extremely well-developed and sophisticated
methods of Lie algebras [21].

3.3. Generalized Per-Unit-Length (Low-Frequency) Circuits and the Connection with
the Lie Infinitesimal Generators

We would like now to show that the compact analysis of the problem of signal propagation provided in
Section 3.1 is far from being a special case. Lie theory provides an extremely powerful tool to generalize
the concept of the infinitesimal (per-unit-length) circuit that goes beyond conventional TLs models.
Since the recent subject of metamaterials [35–37] is interested in building novel structures by arranging
new unit cells at the subwavelength scale, this might be a good place to investigate the subject of signal
propagation in distributed-parameter systems at greater depth.

Consider the infinitesimal (low-frequency) circuit model shown in Figure 5. We wish to investigate
how to proceed from the general circuit model shown there to the fundamental equations of a
transmission line obtained by repeated cascading of such infinitesimal sections. The matrix T describes
the transfer matrix of the low-frequency approximation of the transmission line. The length of the small
section is given by δl. The relation between the input and output signals is given by

V2 = AV1 + BI1, I2 = CV1 + DI1, (38)

where
V1 = V (l) , I1 = I (l) , V2 = V (l + δl) , I2 = I (l + δl) . (39)

Notice that these relations are completely general. They apply to any low-frequency circuit, regardless of
its topology, and in particular, they are not exclusively tied up with the conventional TL per-unit-length
model shown in Figure 4.

Figure 5. Generalized Infinitesimal (low-frequency) circuit model. The model shown in Figure 4 should
be considered a special case of this circuit.

Let us expand the parameters of the chain matrix T in powers of the length δl as follows:

A (l + δl) = 1 + A1 (l) δl + A2 (l) (δl)2 + . . . , B (l + δl) = B1 (l) δl + B2 (l) (δl)2 + . . . ,

C (l + δl) = C1 (l) δl + C2 (l) (δl)2 + . . . , D (l + δl) = 1 + D1 (l) δl + D2 (l) (δl)2 + . . . ,
(40)

where the choice of the constant terms in the Taylor series expansion above (A0 = D0 = 1, B0 = C0 = 0)
was made based on the constraint that for zero length the network T must be reduced to the unit matrix
1, i.e., we must have the condition

T (l + δl)|δl→0 = 1. (41)

Now consider the dimensions of the various entries of the chain matrix. The quantities A and D are
dimensionless, while B has the unit of impedance and C has the unit of admittance. Since the circuit is
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linear, it can be described in the spectral domain by a set of linear algebraic equations. Therefore, the
functional form of all the elements of the chain matrix contains only rational polynomials in impedances
and admittances. Therefore, the only possible combination able to produce a dimensionless quantity
is that when both A and D are expressed as multiplication of impedances and admittances. However,
according to the choices we made in writing Equation (40), this multiplication can have only second-
order terms proportional to (δl)2 and higher. We conclude then that

A1 (l) = 0, D1 (l) = 0. (42)

Substituting Equations (40) and (42) into Equation (38) and keeping only the first-order terms, i.e.,
ignoring all terms with power (δl)2 and higher, we find

V2 = V1 + (B1δl) I1, I2 = (C1δl)V1 + I2. (43)

By dividing through δl, we obtain the familiar TL (telegrapher) equations [13]

d

dl
V (l) = lim

δl→0

V (l + δl) − V (l)
δl

= B1 (l) I (l) ,
d

dl
I (l) = lim

δl→0

I (l + δl) − I (l)
δl

= C1 (l)V (l) , (44)

Therefore, it can be seen that in terms of the original transfer matrix of the infinitesimal (low-frequency)
circuit, only the following first-order chain matrix

T1 (l, δl) =
(

1 B1 (l) δl
C1 (l) δl 1

)
=

⎛
⎜⎜⎝

1 δl
dB

dl′

∣∣∣∣
l′=l

δl
dC

dl′

∣∣∣∣
l′=l

1

⎞
⎟⎟⎠ (45)

is relevant to the system of differential equations governing the propagation of signals along the
transmission line.

As can be seen from this derivation, all higher-order information contained in the chain matrix T
eventually drops out when writing down the system of differential Equation (44), while the remaining
essential first-order information appears in the off-diagonal terms in Eq. (45) in a form identical to
the infinitesimal generators of one-parameter matrix groups in Eq. (21). We have discovered then a
natural and direct motivation for applying Lie groups to circuit theory or reformulating circuit theory
in terms of Lie groups. Indeed, Lie’s original fundamental insight amounting to the fact that the local
nonlinear group structure can be recovered from the much simpler behaviour of the linear structure
of first-order infinitesimal operators is inherent in the very fabric of the problem of signal propagation
through transmission line, leading to the one-parameter group as the underlying mathematical model of
wave propagation. Since — as we have already seen in Section 2 — the one-parameter group is closely
related to the Lie algebra of the original (chain) matrix group, we conclude that the Lie-algebraic theory
developed in this paper provides a systematization of this basic procedure in terms of matrix Lie group
generators.

3.4. On the Lie Algebra of Lossless and Reciprocal 2-Port Microwave Networks

As a concrete example, we will identify in this section the Lie algebra of the group of lossless and
reciprocal microwave networks. The infinitesimal generators of the Lie algebra will first be computed,
then utilized to find the most important data about any Lie algebra: its structure constants, the regular
representation, and the associated Cartan-Killing form.

One can use Maxwell’s equations to show that any microwave network corresponding to a lossless
system has pure imaginary impedance matrix element [13]. Furthermore, as will be established in
Section 5, if the system is reciprocal, it follows that the determinant of the chain matrix is unity.‖ By
employing the well-known transformation equations between impedance and chain matrices [13], we
may write the most general expression of the chain matrix in the following form

T =
(

a jb
jc d

)
, (46)

‖ See in particular the discussion around Eq. (57) there.
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where a, b, c and d are real. For unit determinant, we obtain a special form given by

T
(
Λ1,Λ2,Λ3

)
=

⎛
⎝ 1 + Λ1 jΛ2

jΛ3 1 + Λ1Λ3

1 + Λ1

⎞
⎠ , (47)

where this parametrization was chosen such that T (0, 0, 0) = 1. It is a straightforward calculation
to show that this matrix form constitutes a matrix group satisfying all the group conditions listed in
Appendix C. We can then directly compute the infinitesimal generators of this group using the defining
relation in Eq. (21). The results are:

X1 =
∂T

∂Λ1

∣∣∣∣
Λ=0

=
(

1 0
0 −1

)
, X2 =

∂T

∂Λ2

∣∣∣∣
Λ=0

=
(

0 j
0 0

)
, X3 =

∂T

∂Λ3

∣∣∣∣
Λ=0

=
(

0 0
j 0

)
. (48)

Note that the infinitesimal matrix generators are traceless as expected. The general element in this Lie
algebra takes the form

X = Λ1

(
1 0
0 −1

)
+ Λ2

(
0 j
0 0

)
+ Λ3

(
0 0
j 0

)
=
(

Λ1 jΛ2

jΛ3 −Λ1

)
. (49)

We can easily compute the structure constants¶ of the fundamental Lie algebra of lossless and reciprocal
circuits. First, the commutation relations are:

[X1,X2] = 2X2, [X1,X3] = −2X3, [X2,X3] = −X1. (50)
Therefore, the structure constants of this canonical case are given by

C1
23 = −C1

32 = −1, C2
12 = −C2

21 = 2, C3
13 = −C3

31 = −2. (51)
On the other hand, the regular representation of the Lie algebra, which is the fundamental tool in
studying the structure of this type of algebras [27–29, 38], is given by

R (Xn)rm = Cr
nm. (52)

In light of Eq. (49), the general element of this matrix representation will then be given as

R (X) = R
(
Λ1X1 + Λ2X2 + Λ3X3

)
= Λ1R (X1) + Λ2R (X2) + Λ3R (X3)

= Λ1

( 0 0 0
0 2 0
0 0 −2

)
+Λ2

( 0 −2 0
0 0 0
−1 0 0

)
+Λ3

( 0 0 2
1 0 0
0 0 0

)
=

⎛
⎝ 0 −2Λ2 2Λ3

Λ3 2Λ1 0
−Λ2 0 −2Λ1

⎞
⎠ . (53)

We may view Eq. (53) as supplying the general expression of any element belonging to the Lie algebra
of lossless reciprocal microwave networks.

To proceed in the analysis of the structure of this particular Lie algebra, let us evaluate the Cartan-
Killing form [27]

(Xn,Xm) := Tr {R (Xn) R (Xm)} =
∑

r

∑
s

Cs
nrC

r
ms, (54)

where Tr is the matrix trace operation. Calculating Eq. (54) by means of Eq. (53), we find

(X,X) = Tr

⎛
⎝ 0 −2Λ2 2Λ3

Λ3 2Λ1 0
−Λ2 0 −2Λ1

⎞
⎠

2

=
(

Λ1 Λ2 Λ3
)( 8 0 0

0 0 −4
0 −4 0

)⎛⎝ Λ1

Λ2

Λ3

⎞
⎠ . (55)

The 3× 3 numerical matrix appearing in the quadratic form at far left of Eq. (54) plays a fundamental
role in the theory of Lie algebra. In fact, its eigenvalues can give immediate information about the
global or topological structure of the associated Lie group [27]. We will not further pursue this line of
thought here but leave a more detailed examination of the Cartan-Killing form to a future work.

Finally, we can provide a physical interpretation for the three infinitesimal matrix generators
obtained previously. In Figure 6, we show three circuits corresponding to the three infinitesimal matrix
generators. It turns out that the algebraic structure of lossless reciprocal microwave circuits is completely
reducible to the three 1-dimensional vector subspaces spanned by
¶ The structure constants of a Lie algebra X are defined by the relation [Xn, Xm] =

∑
l Cl

nmXl, see [9, 23, 25] for more information
on the fundamental role they play in Lie theory.
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(a) (b)

(c)

Figure 6. Physical interpretation for the three infinitesimal matrix generators of the lossless/reciprocal
microwave network group. The three proposed circuits provide the physical content of the Lie algebra
of this class of circuits.

(i) Pure series reactive impedance: Figure 6(a).
(ii) Pure shunt reactive admittance: Figure 6(b).
(iii) A circuit we call the infinitesimal transformer: Figure 6(c).

This last circuit can be interpreted as the infinitesimally small section of an ideal transformer. To see
this, carry out the exponential of the matrix X3, and you will immediately obtain the correct transfer
matrix of the ideal transformer.

4. INTERLUDE: POTENTIAL FURTHER DEVELOPMENT AND APPLICATIONS
OF THE THEORY

Let us assume that we can study the complete structure of a given Lie algebra. For example, we may
obtain the decomposition of a semisimple Lie algebra into direct sums of ideals [29, 39]. This means
that the TL circuit corresponding to the semisimple Lie algebra can be expressed in terms of simpler
circuits, each corresponding to an ideal of the Lie algebra. This can then be taken as an application
of the structure theory of Lie algebra to microwave circuits. This direction of application will not
be further pursued in the present paper since it requires very extensive exposure to the theory of Lie
algebra, which is outside the scope of our work here.

In a slightly different approach, we may proceed by studying the various subspaces associated
with a given low-frequency circuit. In particular, we can explore possible subspaces formed by classic
circuit topologies such as the T- pi-, X-, and T-bridge topologies. We would then try to construct
the circuits that corresponds to the key subspaces associated with a given Lie algebra. For instance,
some of the promising interesting questions to ask are: What are the circuits corresponding to nilpotent
(V0), compact (V−), and noncompact (V+)?+ Notice that this procedure can give us information about
the topology of the induced Lie group. For example, compactness is a topological property. By pure
algebraic calculations, we can deduce something about the global topological properties of the microwave
circuit. This will be illustrated later in Section 5.

Another line of possible development, however, is more directly connected with some of the possible
application of our theory to microwave networks [13, 24] and transformation optics [35]. First, note
that both reciprocal and lossless networks form matrix (Lie) subgroups of the general linear group
(Section 3.4). By studying the group’s topology of these and other classes, we may obtain general
theorems about path-connectedness, a key topological property [40]. This property can be translated
into the possibility of performing continuous matching (taper design [13].) This train of thought will
be further persued for some key special examples in Section 5.1.

+ For definitions of these important technical terminologies within the general subject of Lie algebra, see [27].
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Finally, we add one more possible direction for expanding the topological theory of continuous
circuits. By applying techniques from linear algebra to analyze the structure of the corresponding Lie
algebras, it will become possible to decide which microwave circuits can be represented by uniform
TLs, a cascade connections of two uniform TLs, etc.. Also, new light will be shed on the analysis and
design of nonuniform TLs by exploiting the logic of the interrelation between Lie subalgebras and Lie
subgroups, a topic that is extremely well-attested in the mathematical literature on Lie theory, e.g.,
see [21, 28, 29]. This particular application will also be briefly touched upon in Section 5.2.

5. TOPOLOGICAL APPLICATIONS IN MICROWAVE CIRCUIT THEORY

We sketch out some possible further development of the general theory outlined above. It has already
be en shown in Section 3 that both reciprocal and lossless networks form matrix (Lie) subgroups of the
general linear group. By studying the group’s topology of these and other classes, we obtain general
theorems about path-connectedness, which is translated into the possibility of performing continuous
matching (taper design [24].) On the other hand, by applying techniques from linear algebra to analyze
the structure of the corresponding Lie algebras, it will become possible to decide which microwave
circuits can be represented by uniform TLs, a cascade connections of two uniform TLs, etc. Also, new
light will be shed on the analysis and design of nonuniform TLs by exploiting the logic of the interrelation
between Lie subalgebras and Lie subgroups. These further developments, however, are quite lengthy
and require more refined mathematical tools borrowed from the extensively developed apparatus of Lie
algebras so in what follows our discussion is brief.

5.1. Generalized Matching Problem: Topological Perspective

The chain matrix of a general microwave network will be taken to be invertible, i.e., we assume (as done
throughout this paper) that T ∈ GL(n, C). However, in microwave theory one can talk about subclasses
of GL(n, C) that define classes of particular interest. For example, let us relate the chain matrix to the
impedance matrix Znm. For 2-port networks, we know that [13]

A =
Z11

Z21
, B =

Z11Z22 − Z12Z21

Z21
, C =

1
Z21

, D =
Z22

Z21
. (56)

Therefore, the determinant of the chain matrix is given by

detT =
Z12

Z21
. (57)

It follows then that for reciprocal networks, in which the impedance matrix has to be symmetric, i.e.,
Z21 = Z12, the determinant of the chain matrix is unity. Thus, the chain matrix of a reciprocal network
is a member of the special linear classical group SL(n, C).

For lossless networks, it is well established that the elements of the impedance matrix are all pure
imaginary [13]. It follows then that for nonreciprocal but lossless networks, the chain matrix will have
a determinant in the form detT = a/b, where a = −jZ12 and b = −jZ21. The real numbers a and
b can be positive or negative, depending on whether the coupling between the ports is capacitive or
inductive. Therefore, for arbitrary nonreciprocal lossless network, the determinant can be either positive
or negative: positive for the case when the coupling between the ports both ways is either inductive or
capacitive; negative when the coupling between the two ports is inductive in one direction and capacitive
in the other direction.

Let us turn now into some direct application from topology. The reader should be familiar with
the topological concepts of connectedness, path-connectedness, and homotopy (a review is provided in
Appendix F.) From the information we just stated about the determinant of reciprocal lossless networks
and those of nonreciprocal lossless networks, the following two theorems follow immediately. The proof
technique is similar to the standard procedure used to investigate connectivity properties of classical
(matrix) groups and the reader is referred to [28] for details.

Theorem 5.1 Two reciprocal lossless networks can always be joined together.

That is, it is possible to continuously deform a given reciprocal network to reach any other.
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Theorem 5.2 Two nonreciprocal lossless networks cannot always be joined together. In particular,
a nonreciprocal network with z12/z21 < 0 cannot be continuously deformed till it becomes another
nonreciprocal network with z12/z21 > 0. Also, a lossless reciprocal network and a lossless nonreciprocal
network with z12/z21 < 0 cannot be joined together.

The reader should consult Theorems D.3 and E.2 for more details about the proof.� In physical
terms, if for nonreciprocal networks the coupling between the two ports is capacitive one way and
inductive the other way, then this network cannot be matched with other networks which are either (1)
reciprocal or (2) nonreciprocal with coupling between the two ports is either capacitive or indicative in
the two directions.

The important lesson we have learned so far is that each transmission line can be viewed as a path
in its Lie algebra. A uniform transmission line maps to a straight line passing through the origin, while
a general nonuniform line is mapped to a particular trajectory (see Figure 2). The generalized matching
problem poses the following question: When can we be able to match a given microwave network to
another one using a continuous taper? It follows immediately from the topology of Lie groups that�

Theorem 5.3 Two microwave networks can be matched to each other by a continuous taper if and only
if they both belong to the same connected component of their corresponding Lie group.

Note that in circuit design through optimization, we would like to generate all possible continuous
tapers by building uninterrupted circuit sections that can match two given microwave networks without
introducing scattering discontinuity. In order to evaluate desired performance measures, e.g., return
loss, transmission characteristics, etc., we need then to know how to deform a given initial microwave
network into another. Rephrasing this question using the terminology of the theory developed in this
paper, we see that the generation of one continuous matching circuit from another can be viewed as
whether two paths in the topological space of the corresponding Lie group are deformable to each other
or not. In the jargon of topology, we ask whether they are homotopic or not. A homotopy class with
respect to a given path is the set of all paths that are homotopic to the given path. That is we have
proved the following theorem.

Theorem 5.4 The set of all continuous matching microwave networks that can be continuously
generated from a given network T0 is the homotopy class of T0.

For a review of homotopy, see Appendix F and the related appendices before. Advanced techniques
from homotopy theory [3, 41, 42] can be directly applied now to investigate all possible connectivity
properties of microwave networks at a very general level. As can be noted from our formulation, the
entire subject is developed topologically right from the Lie-theoretic structure of continuous circuits.
There is no need to solve Maxwell’s equations since topology is a covering (larger) theory with respect
to Maxwell’s theory.

5.2. Decidability of the Problem of the Existence of a Transmission Line Model
Realization of Arbitrary Microwave Network

The topological theory developed in this paper can be utilized in an important way to pose a well-
formulated practical problem in the field of microwave circuit analysis and to provide effective general
means for its solution. Our problem is:

Problem Description (Representation of a Generic Microwave Network by a TL): Given a
microwave network represented by its transfer matrix, is it possible to realize it by a transmission line
circuit?

Without Lie theory, this problem is ill-formulated in the following way. It is not clear what are the
specifications of the transmission line that are relevant to the microwave network in the realization under
question. However, Lie algebras represent the tangent plane of the matrix group at the identity element.
Since the structure constants of the Lie algebra are indeed constants, it follows that the behavior of
the Lie group around the identity is enough to get a very general view about the global behavior of the
matrix group. Indeed, this is the core idea behind the concept of a homogeneous topological space and
� These two theorems are also used for proving some of the other results below.
� See the Appendix in general, and Theorem D.1 in particular together with the discussion surrounding it there.
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it is shown in the Appendix that all topological groups are homogeneous spaces. It appears then very
natural to focus the search for TL realizations on mainly those elements belonging to the Lie algebra
associated with the given matrix since it is precisely those realizations that behave as the limit of
infinitesimal transformations “close” the given microwave network.& We then reformulate our problem
in the following manner:

Alternative Problem Description: Given a microwave network represented by its transfer
matrix subgroup G ≤ GL (n, C), is it possible to realize this network by a transmission line circuit
belonging to the Lie algebra g ≤ gl (n, C)?
Here, g and gl stand for the Lie algebras of the Lie groups G and GL, respectively. The notation
g ≤ gl means that g is a Lie subalgebra of gl. The answer to this question depends crucially on purely
topological considerations. For example, a connected compact Lie group can always by represented as
an exponential of an element belonging to the corresponding Lie algebra [21]. However, it is known
that when the Lie group fails to be topologically compact, it is not possible to answer the decidability
problem in general [27].

Let us give a concrete example. Consider our Lie group of reciprocal microwave networks SL(n, C).
This group is connected but not compact [28]. Indeed, we will show now that

Theorem 5.5 There exists a class of lossless reciprocal microwave networks that cannot be realized by
transmission line models. In particular, any lossless and reciprocal microwave network with transfer
matrix T such that Tr T < −2 cannot be represented by any (lossless) uniform transmission line
whatsoever.

For the proof, notice that the well-known theorem [17, 28]

det exp (A) = eTr A (58)

immediately forces us to look for TLs belonging only to the Lie algebra sl(2, C). Otherwise, for non-
traceless TL models, the determinant of the microwave network transfer matrix will cease to be unity.
Now, the general element of the Lie group of lossless reciprocal microwave networks that can be given
by exponentiating an element of the Lie algebra in Eq. (49) can be shown by brute force calculation to
be

exp (X) =
(

cosh Θ +
(
Λ1
/
Θ
)
sin Θ

(
jΛ2

/
Θ
)
sin Θ(

jΛ3
/
Θ
)
sin Θ cosh Θ −

(
Λ1
/
Θ
)
sin Θ

)
, Θ =

√
− detX =

√
a2 − bc. (59)

Since a, b, and c are real, Θ is either purely real or purely imaginary. Therefore, we have

Tr exp (X) = 2 cosh
√

detX ≥ −2. (60)

It follows then that the microwave network corresponding to a transfer matrix with trace less than −2
cannot be realized by a uniform lossless reciprocal TLs.

We have enough evidence now to claim that the expression (49) represents a closed-form relation
between a general microwave lossless and reciprocal network and its TL model, which is parameterized
by the weights of the infinitesimal generators of the TL, here Λi, i = 1, 2, 3. We can generate the
transfer matrix closed-form expression corresponding to various TL topologies. To do this, we compute
the infinitesimal matrix generators for each topology, and then calculate the matrix exponential. This
will generate standard parametrization of the microwave network transfer matrix. We can carry out
this procedure systematically in order to populate a table of standard parametrization for classical TL
unit cell topologies.

6. CONCLUSION

The theory developed above is expected to help conducting new investigations into fundamental aspects
related to how low- and high-frequency phenomena in electromagnetic wave propagation, examined here
within the specialized context of circuit theory, are structurally interrelated to each other. We anticipate
that the theory will provide a rigorous conceptual framework for current and future microwave circuit
& However, a complete study of all available Lie groups and Lie algebras is possible in principle, and the question of the decidability
whether a given matrix can be represented in terms of TL model can be attacked within the framework of this paper.
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research. From the fundamental physics viewpoint, the analogy with quantum theory is striking. It
appears that there is a correspondence between the concepts of propagator, Hamiltonian, and observable
in QFT and analogous quantities in the circuit universe. For example, observables in quantum physics
correspond to the infinitesimal operators responsible of generating the per-unit length lumped-element
circuit that in turn represents the local approximation of the original continuous circuit. The most
interesting finding is how topology enters the picture through the well attested progressive determination
of a group germ extended analytically from one local domain to another. This process seems to underlie
how electromagnetic signals propagate in a continuous circuit (one-dimensional medium) and may open
the doors for new duality relations or numerical methods in quantum physics coming from circuit
analysis or vice versa.

APPENDIX A. TOPOLOGICAL SPACES

A topological space is defined as the ordered pair (A,S). Here, A is a set of points endowed with a
topological structure S, which consists of a collection of subsets S = {S, S ⊆ A}. Each element of S
is called an open sets in the topology (A,S), and it satisfies the following usual axioms

∅, A ∈ S,

finite⋂
n=1

Sn ∈ S,

finite/infinite⋃
n=1

Sn ∈ S. (A1)

The topological space described by the previous axioms too big for the applications is presented in this
paper. We therefore add the following extra axiom, which is called the axiom of separability [43]

∀p, q ∈ A, p 
= q, ∃Sp, Sq ∈ F | p ∈ Sp, q ∈ Sq, and Sp ∩ Sq = ∅. (A2)

Topological spaces that satisfy this axiom are called Hausdroff spaces. An open set Sp containing p is
called a neighborhood of p. A sequence xn converges to x if, for every neighborhood U of x, there exists
an integer N such that xn ∈ U for n > N . The axiom of separation ensures that some “pathological”
situations are avoided, e.g., the same sequence converges to two different limits. A topological space is
compact if every infinite sequence of points {an}∞n=1, an ∈ A, contains a subsequence that converges to
a point in the space itself. A set is closed if it contains all its limit points. A set S together with all its
limit points is called the closure of S and is denoted by S̄.

We next define maps and continuous maps. Let ϕ be a mapping that links a topological space
T1 = (A1,S1) into another topological space T2 = (A1,S2). That is, we have ϕ : A1 → A2 and the
image of a1 ∈ A1 is a2 = φ(a1) ∈ A2. The set of all points that map to a single point in a2 is called
the inverse image of that point. Now we come to the most important definition in topology. A map
ϕ is said to be continuous if the inverse image of an open set is an open set. It can be easily shown
that in the case of metric spaces, this topological definition is reduced to the familiar ε − δ definition
in real analysis [44, 45]. A homeomorphism ϕ : X → Y is an injective map such that both ϕ and ϕ−1

are continuous. Two topological spaces that can be linked to each other through a homomorphism are
called homeomorphic, or topologically equivalent. They carry the same topological structure.∧

APPENDIX B. DIFFERENTIAL MANIFOLDS

A differentiable manifold is a Hausdroff topological space equipped with additional structure consisting
of a collection of charts ϕp : Tp → R

M , p ∈ Tp ⊂ T, satisfying the following axiom
(i) Each ϕn is a homeomorphism that links an open set Tp, p ∈ Tp, into an open set in the M -

dimensional Euclidian space R
M .

(ii) The union of all open sets Tp, p ∈ Tp covers the original space T . That is,
⋃

Tp = T .
(iii) Let p and q be any different points in T . Since T is a topological space, then, provided that

Tp ∩ Tq 
= ∅, the set Tp ∩ Tq is an open set in the topology of T . In general, the mappings ϕp

and ϕq produce different sets ϕp (Tp ∩ Tq) and ϕq (Tp ∩ Tq). However, we require that the mapping
ϕp ◦ ϕ−1

q : R
M → R

M is continuous and “sufficiently” differentiable.
∧ The subject of topological spaces is covered in many excellent books. We recommend [40, 43].
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The dimension of the chart ϕ : U ⊂ T → R
M is M . The coordinate functions of the chart are defined as

xm = um◦ϕ, where um is the standard coordinate function in R
M given by um(x1, x2, . . . , xm, . . . , xM ) =

xm. As we can see from the definitions above, since a topological manifold is equipped with a chart,
any neighborhood in T can be mapped into a neighborhood in the conventional Euclidean space
R

M . This means that a differentiable manifold looks locally like a Euclidean space. Moreover, the
maps ϕp ◦ ϕ−1

q : R
M → R

M accomplish a transformation between coordinates (charts) that is itself
differentiable. This allows us to bring the full machinery of calculus into work in the analysis of
manifolds.�

APPENDIX C. GROUPS

Groups are the most important algebraic structures. A binary operation ∗ acting on two elements a
and b in the set G is a rule assigning to them a third element c ∈ A. We write a ∗ b = c := ab. A group
consists of a set G equipped with a binary operation satisfying the following axioms

(i) Closure: a, b ∈ G ⇒ c = ab ∈ G.

(ii) Associativity: a, b, c ∈ G ⇒ (ab) c = a (bc) .

(iii) Existence of identity element: ∃e ∈ G|∀a ∈ G, ae = ea = a.

(iv) Existence of right and left inverses: ∀a ∈ G, ∃a−1 ∈ G|aa−1 = a−1a = e.

Technically speaking, a group is defined as the ordered pair (G, ∗), but we follow the convention in
referring to the group by the set G. The identity element and inverses are unique in any group. It
can be easily shown, starting from the group axioms above, that (ab)−1 = b−1a−1 for any a, b ∈ G. A
subgroup H ⊆ G is a subset that forms a group on its own and is closed under the usual multiplication
operation inherited from G. Notice that it follows that H must contain the identity element of G. When
H is a subgroup of G, we write H ≤ G.

APPENDIX D. TOPOLOGICAL GROUPS

A Topological group (or sometimes called continuous group) is a set of points equipped with both
algebraic and topological structures such that�

(i) There exits a topological space M.
(ii) (this condition is optional) There exists an M -dimensional differential manifold defined on the

topological pace M.
(iii) There exists an algebraic structure defined on the topological space M by the operation φ mapping

each pair of points (χ, ξ) in the manifold into a third point γ in the same manifold.
(iv) Let the coordinate system of the points χ and ξ be χ1, χ2, . . . , χM and ξ1, ξ2, . . . , ξM , respectively.

Then, in terms of this chart defined in the neighborhood of the two points, the coordinates of the
new point γ are also in the same neighborhood, and are given by the functions

γm = φm
(
χ1, χ2, . . . , χM ; ξ1, ξ2, . . . , ξM

)
, m = 1, 2, . . . ,M. (D1)

Formally, the requirement “the new point γ = φ(χ, ξ) generated by the algebraic operation φ should lie
in the neighborhood of the two points χ and ξ” is expressed by the conditions that the maps φ and υ
below are both continuous

φ : χ × ξ → γ = φ (χ, ξ) := χξ, υ : ξ → ξ−1. (D2)

The following is a general procedure to prove that the multiplication operation φ : G×G → G, which is
defined as φ : (x, y) → xy, is continuous. Let N be a neighborhood of uv ∈ G. The objective will be to
find in the topology of G two open sets Gx and Gy such that x ∈ Gx and y ∈ Gy. It follows that the set
Gx ×Gy is open in the product topology G× G. We form the set φ−1(N) = {(u, v) ∈ G× G,uv ∈ N}.
� A great place to learn about differential manifolds in general is [46, 47].
� For readers interested in learning more, the best book on topological groups (and probably Lie theory in general) remains [48].
Other books that discuss the subject in depth include [21, 49, 50].
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If we can show that the product set GxGy = {xy, x ∈ Gx, y ∈ Gy} ⊆ N , then Gx ×Gy ⊆ φ−1(N). From
basic set theory, this last condition means that we can write φ−1(N) = ∪{Gx × Gy, xy ∈ N}. Since
each subset Gx ×Gy is open in the product topology G×G, and φ−1(N) is the union of such open sets,
it follows that φ−1(N) is open also in G × G, and therefore, the map φ is continuous. QED.

Moreover, the group multiplication operation must satisfy the following additional axioms

(i) Closure: χ, ξ ∈ M ⇒ γ = φ (χ, ξ) ∈ M.

(ii) Associativity: φ (γ, φ (χ, ξ)) = φ (φ (γ, χ) , ξ) .

(iii) Identity: ∀ξ ∈ M, ∃ e ∈ M | φ (ξ, e) = φ (e, ξ) = ξ.

(iv) Inverse: ∀ξ ∈ M, ∃ ξ−1 ∈ M | φ
(
ξ, ξ−1

)
= φ

(
ξ−1, ξ

)
= e.

In other words, the continuous operation functions φm, m = 1, . . . ,M, defined on the topological space
M must be compatible with the regular axioms of the group. It is evident from the definition that in
a topological group, both the group operation and the inverse map send points close enough to each
other into points also lying in the neighborhood of each other.

In this paper, the most important topological property of a given group will be connectivity. We
say that a space is connected if any two points in the space can be joined with each other by a line, and
all the points on this line are contained in the original space. Every topological space may be partitioned
into connected components. The connected component of a point p (also called a sheet) is the set of all
points that can be joined with p by a line as described above. The number of connected components in
a given space is a topological invariant, i.e., is preserved precisely between homeomorphic spaces.

A connected component of a topological group must contain the identity element in order to be
able to become a group itself. We have the following important theorem

Theorem D.1 The component of a topological group G that is connected to the identity forms a group
G0.

A connected space is simply connected if any line joining two points in this space can be continuously
deformed into every other curve connecting the same two points.� We note the following assuring
theorem which states that topological groups give rise to regular (nonpathological) topological spaces:

Theorem D.2 Each topological group is Hausdroff.

For classical groups, we have the following important result:

Theorem D.3 The general linear group GL(n, C) is neither compact nor connected. Two connected
components constitute the topological space of the group, one with negative determinant and the other
with positive determinant. The group SL(n, C) is simply connected.

This theorem was used extensively in Section 5 on the topological applications to generalized
matching in microwave networks.††

APPENDIX E. TOPOLOGICAL HOMOGENEOUS SPACES

The concept of homogeneous space is fundamental in this paper. As we will see, topological groups
possess a very unique structure called homogeneity (to be defined below.) It amounts to the observation
that the group looks topologically the same when being viewed from any particular location inside its
own space. This will prove to be of fundamental importance in the systematic analysis of Lie groups since
one can focus only on one point, say the identity element, where performing calculations is considerably
simplified by the existence of Lie algebras. Moreover, the conclusions obtained from such a study,
say the topological behavior around this identity, can be straightforwardly transported to any other
location.

Let G be a topological group. Fix any element g ∈ G. We say that g defines a left-translation
function Lg : G → G such that for any h ∈ G, we have Lg(h) = gh. That is, the left-translation of
h by g is nothing but their multiplication gh. Similarly, right-translations can be defined as functions
� For a rigorous definition of the technical term continuous deformation, see [3, 31, 40].
†† For a good general background on group theory, see [10, 48].
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Rg : G → G with Rg(h) = hg for any h ∈ G. The conclusions to be discussed below about left-
translations applies exactly to the right-translation just defined. Now, let the group multiplication
operation be given by m : G×G → G, and let μg : G → G×G be the function defined by μg (h) = (g, h).
It follows that Lg = m◦μg. Now we show that μg is continuous. Take any base of G×G, i.e., a “rectangle”
composed of direct product U = G1×G2 of two open sets G1 and G2 in G. Now U is by definition open
in the product space G×G. The inverse image of U under μg is just the set μ−1

g [G1 ×G2] = G2, which
is open in G. This shows that μg is continuous because the inverse image of open sets is open. QED.
Next, by the axioms of topological groups, the function m is also continuous. Since the composition of
two continuous functions is continuous, it follows that Lg is continuous for every g ∈ G.‡‡ But the same
argument can be developed for the case of L−1

g , the left-translation by g−1. Moreover, we can compute
LgLg−1(h) = Lg(Lg−1(h)) = Lg(g−1h) = gg−1h = h, and hence LgLg−1 = 1G. Similarly, we can find
Lg−1Lg = 1G. Therefore, L−1

g = Lg−1. To summarize the results we have just obtained, the function
Lg is a homeomorphism from G to G.

A topological space T is called homogenous iff it has the following property: For any two points
p1 and p2 in T , there exists a homeomorphism f from T to itself such that f takes p1 into p2, i.e.,
p2 = f(p1). It follows immediately that every topological group is also a homogenous space; indeed, the
construction Lp2Lp−1

1
is a homeomorphism doing exactly this. Such spaces look topologically the same

when being viewed from any point. To understand this, assume for example that we let a topological
group G be locally homeomorphic to the Euclidean space, i.e., there exists a neighborhood N to the
identity element e ∈ G homeomorphic to R

n. But consider the left translation of N to Lg[N ]. It is
obvious that g = ge ∈ Lg[N ]. Since Lg is a homeomorphism, every open set containing e is translated
into an open set containing g (the converse is also true.) Thus, Lg[N ] is a neighborhood of g. It is
implied then that this neighborhood is also homeomorphic to R

n because N is so.
Therefore, given a topological group, the fact that the underlying topological space is homogenous

implies that if we know the local topological behavior around a given point (say we know the local
topological base at the identity element), then we have a complete knowledge of the local topological
behavior around any point in G whatsoever (the local base there is nothing but the proper translation
of the given local base.) This fact is of paramount importance in the theory of Lie groups and the way
we employ this theory to study the topological structure of microwave circuit theory. Therefore, it is
worthy spending some time contemplating it.

We define a nucleus as a neighborhood of identity. This terminology reflects the fact that such
neighborhoods are special. Indeed, since algebraic manipulations around the identity takes a simpler
form, it is tempting to use knowledge obtained by studying the local behavior around this element of the
topological group to obtain knowledge about the neighborhood surrounding other elements. Consider
the situation depicted in Figure E1 where we show a nucleus of the identity element e in a given
topological group. It is obvious that the left translation Lg will take e into g, where g ∈ G is not
contained in N . Moreover, since this is a homeomorphism it is also open, and therefore, the image
Lg(N) is also a neighborhood of g. Conversely, if Lg(N) is a neighborhood of g, then it contains an
open set containing g. The inverse image of this set under the map L−1

g is open since this function is
continuous. Now this argument can be repeated for every point contained in N . Indeed, take x to be in
N and define the map LyL

−1
x , where y is a point in the neighborhood of g (not necessary in N). This

map will take x into y. Moreover, since it is homeomorphism, any open set containing x will be mapped
into an open set containing y. We phrase this result in the following way: If A is a family of nuclei of the
topological group G, and g ∈ G, then the family of all neighborhoods of g is the translations of members
of A, that is, the set {Lg(N), N is a nucleus of G}. Now one can use this relation to do topology at any
location in the topological group starting from the knowledge of the behavior around the identity. For
example, suppose that we are given a class of sets containing g and that we want to know whether they
are open, closed, etc., in the standard topology of G. We know that a given subset S is open iff for each
point s ∈ S, and there exists a nucleus N such that Lg(N) ⊆ S, which amounts of course to saying that
S is a neighborhood to each of its points. Therefore, any statement on topology surrounding an element
in the topological group can be translated into the corresponding statement about the topology around the
‡‡ Notice that the projections maps from pi : G × G → G, i = 1, 2 are open, and hence one can rephrase the previous result in the
following manner: The subspace g × G is homeomorphic to G.
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Figure E1. Translation of a nucleus into a new neighborhood around g.

identity element e. This latter statement can be checked or analyzed by means of the theory developed
for the nucleus. We have established the following fact about topological groups:

Theorem E.1 Homogeneity is a topological invariant.

As a further illustration of the previous facts, let us introduce the following definition. A topological
space is called locally connected if every neighborhood of any point in this space contains a connected
open neighborhood. It follows immediately then that a topological group is locally connected if it is
locally connected at the identity. Suppose that G is locally connected at e. Then, there exists an open
connected set V containing e. Now, take any other element g ∈ G. The left translated set Lg(V )
containing g is also open and connected (since Lg is a homeomorphism.) Then G is locally connected
at g. QED.

Let U be any subset U ⊆ G of the topological group G. We call the smallest subgroup containing
U the subgroup generated by U .

Theorem E.2 In any locally connected group G, the component of the identify G0 is generated by any
connected neighborhood of the identity e.

Consider the topological group GL(n, C). Since it is a metric space topology, it is locally connected.
It follows that given any microwave circuit m, there exists a connected open set Um containing m. In
metric spaces, connected sets are path connected. Then, we can continuously match m with any circuit
within Um. However, this set may be “small” in the sense that practically we cannot detect those circuits
that can be matched to m. We need then to introduce the measure of distance in the topological (Lie)
group to quantify how “close” two microwave circuits are to each other. The usual metric defined on
GL(n, C) should do the job.��

APPENDIX F. HOMOTOPY

Homotopy is of fundamental importance in topology since it provides a natural methodology for the
investigation of the connectivity properties of various topological spaces. In this paper, homotopic path
is shown to be the essential deciding factor in whether two given microwave networks can be continuously
deformed to match each other. A curve is a continuous map from the real interval I = [0, 1] to a given
topological space S. A path joining two points p and q is defined as a continuous map t : I −→ S such
that t(0) = p and t(1) = q. Consider two curves t1 = t1(s) and t2 = t2(s) that are continuous functions
on the parameter s ∈ [0, 1] with a common end points, i.e., we have t1(0) = t2(0) and t1(1) = t2(1). The
two curves are said to be homotopic to each other if there exists a continuous function t(r, s) defined on
the intervals 0 ≤ r, s ≤ 1, such that t(0, s) = t1(s) and t(1, s) = t2(s). It follows then that if two curves
�� The subject of topological homogeneous space (sometimes called uniform spaces) is covered in [21, 28, 48].
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are homotopic to each other, then one is obtained from the other by a contentious deformation in the
parameter r. The above definition aims then to capture in rigorous manner the intuitive conception of
how two paths can be matched to each other in a continuous fashion. The set of all curves homotopic
to a given curve t is called the homotopy class of t and is designated [t].§§
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