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Exact Non-Reflecting Boundary Conditions with an FDTD Scheme
for the Scalar Wave Equation in Waveguide Problems

Wim A. Mulder? 2 *

Abstract—Modeling wave propagation often requires a truncation of the computational domain to a
smaller subdomain to keep computational cost reasonable. The mere volume of papers on absorbing
boundary conditions indicates that a perfect solution is not available. A method is proposed that is
numerically exact, at least in the case of a time-domain finite-difference scheme for the scalar wave
equation. The word ‘exact’ is used in the sense that there is no difference between a computation on
the truncated domain with this method and one on an enlarged domain with reflecting boundaries that
are placed so far away that their reflections cannot reach the original domain within the modeled time
span. Numerical tests in 1D produce stable results with central difference schemes from order 2 to 24
for the spatial discretization. The difference with a reference solution computed on an enlarged domain
with the boundary moved sufficiently far away only contains accumulated numerical round-off errors.
Generalization to more than one space dimension is feasible if there is a single non-reflecting boundary
on one side of a rectangular domain or two non-reflecting boundaries at opposing sides, but not for a
corner connecting non-reflecting boundaries. The reason is that the method involves recursion based on
translation invariance in the direction perpendicular to the boundary, which does not hold in the last
case. This limits the applicability of the method to, for instance, modeling waveguides, or exactness
has to be partially given up.

1. INTRODUCTION

The numerical simulation of wave propagation on infinite domains often requires truncation to a domain
of finite size to make the computation tractable. This leads to non-physical boundary conditions that
go by names like artificial, absorbing, transparent, transmitting, radiation, open, or non-reflecting. The
vast body of literature on the subject indicates that this is not an easy problem. For references, the
reader is referred to one or more of several review and comparison articles [1-7].

The focus of this paper is on exact boundary conditions. The name ‘perfectly matched layer’
(PML) [8] suggests that these already exist. However, this type of boundary condition requires damping
or absorption. The problem with a damping layer is that it produces reflections, similar to and sometimes
indistinguishable from a variation in wave speed [9]. As a result, this type of boundary cannot be perfect.
Another type of exact boundary condition is based on Green’s second identity [10], but has a long-term
instability that can be repaired by adding some dissipation to the time stepping scheme [11]. An
alternative is a boundary integral formulation [12].

In this paper, ‘exact’ is used in a different sense: the difference between the numerical solution on
the truncated domain and on an infinite domain should be zero. In practice, the infinite domain will
be finite but large enough to prevent the reflections from the boundary to reach the truncated domain.
In addition, the difference will not be zero but equal to the accumulated numerical round-off errors. To
extend a wave speed model given in the original truncated domain into the enlarged domain, piecewise
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constant extrapolation of the value on the boundary is assumed in 1D. In more than one dimension,
this extrapolation is accomplished in the direction perpendicular to the boundary. When carried out
sequentially per coordinate, corners are handled automatically.

Numerical exactness is in fact overdone. It is sufficient if spurious reflections generated by an
imperfect boundary are much smaller in amplitude than the numerical errors produced by the spatial
and temporal discretization of the interior scheme. Usually, one of the classic absorbing boundary
conditions [13-15] in combination with a carefully tuned PML strip [8,16] will provide satisfactory
results. In some cases, when studying very weak reflections in the presence of strong incoming waves,
this careful tuning may be cumbersome and the proposed boundary condition can offer an alternative.

The exposition in the next section alternates between an explanation of the method and an
illustrative example. It starts with a description of the proposed exact method for the lowest-order
time-domain finite-difference approximation of the scalar wave equation in one space dimension. This
is followed by its generalization to higher-order spatial schemes. Then, the lowest-order 2-D case on
a rectangular domain with three reflecting and one non-reflecting boundary condition is considered.
This requires a further generalization of the method. Finally, a rectangular domain with two adjacent
non-reflecting boundaries is examined. At that point, the generalization fails. The section ends with
estimates of the method’s computational complexity. The last section summarizes the main conclusions.

2. METHOD AND EXAMPLES

2.1. 1D, Second Order

The scalar wave equation reads
1 0%u 0%u
- . 1
2 ot Ox? +f (1)

The solution u(t, z) depends on time t and position x. The wave speed ¢(x) may vary over the domain.
The forcing function f(¢,x) injects a signal into the computational domain. An example is a point
source at position s with source signature w(t), represented by f(t,z) = w(t)é(x — xs).

For the finite-difference discretization, a grid on the domain [Zmyin, Tmax] With N points is defined
by z; = Tmin + (1 — %)Aw, i=1,...,N, Az = (Tmax — Tmin)/N. The boundary condition at the left,
at Tmin, 18 taken as zero Neumann, and the one at the right, at xp.x, should be non-reflecting. The
standard second-order finite-difference scheme in space and time is given by

1 _ 1
g (W =20 ) = o (- 2uf ) + A (2)
(3

g N

where time is discretized as t, = to + nAt. The wave speed ¢; = ¢(x;). The discrete solution is
ul’ = u(ty, ;) and runs up to some value tmax = to + N:At. An optional forcing function is denoted
by fI* = f(tn,z;). The time step At should obey cmaxAt/Az <1 for stability, with cmax = max; ¢;. A
zero Neumann boundary condition can be imposed by symmetric mirroring, letting ug = w1, and a zero
Dirichlet boundary condition by anti-symmetric mirroring with ug = —u;y.

Consider the boundary on the right with the interior grid point x next to it. To avoid reflections,
we can extend the domain to the right with the wave speed ¢y at the last grid point. If the boundary
is moved sufficiently far away, its reflections will not be able to reach . Note that the numerical wave
speed for a second-order scheme is one grid spacing Az per time step, so an extension with a size of at
least N, = %(tmax — tg)/At grid points will do, resulting in a grid with N, = N + N, points.

We can try to reduce the cost of the enlarged domain by ‘learning’. Consider the grid point at x
and define a unit spike in the original, interior domain:

v; = 0i, NOn,0, 1<i<N, (3)
where the Kronecker delta is used. Here, the symbol v replaces u to avoid confusion further on. The
discrete time stepping scheme in the exterior domain provides

ot =207 — P 4o (Ul — 207 +0,), i >N, (4)
with ¢ = (eyAt/Az)?. The wave speed should be set to cy in the enlarged domain, with i =
N +1,...,N.. We then start time stepping from the initial values at n = —1 and n = 0 on the
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full domain, setting v = 0, for all 1 <7 < N and n > 0 after each time step. In that case, the wave
speed in the interior can also be set to ¢y, as long as At is not changed. Alternatively, we can perform
the time steps of Equation (4) in the exterior domain only, using the unit spike as a boundary value.
The values of the boundary Green function at ¢ = N 4 1 can be recorded and used to predict those at
the point zx 4+ Ax for another problem with solution u', 7 = 1,..., N, defined in the interior, in the
original domain. The recorded values are denoted by g" = vy, forn=1,..., N

Of course, the computation of g™ in this way is as expensive as finding the solution on an enlarged
domain. Below, an alternative approach based on recursion will be presented, but let us first assume
that we have ¢g" available. Given a value ) for the interior problem, we can predict its contribution
to future points uf, |, m > n, just outside the domain by

U = ufNg 9" Uy, m=n+1,...,N. (5)

uRy;; must have been initialized to zero for all n = 0,..., N;. After each update, it can be used in
Eq. (2) for the next step. Instead of predicting into the future, we can predict from the past with

n n—1
Uy = Z gruy" = Z g ", n>0. (6)
m=1 m=0

2.2. Recursion

The computation of g can be simplified as follows. We will need two grid points in the exterior next
to the boundary, so define an array G}, i = 1,2 and n = 1,..., N; such that ¢" = G7. Initialize G?
at ¢ = 1 and 2, which correspond to the earlier N 4+ 1 and N + 2, to zero. Then (4) leads to G% =0
and G3 = 0. More precisely, if we set the index for boundary point zy at i = 0 for convenience, then
v8 = 1 is the unit spike and the other values are zero, providing v = o and v3 = 0. The next time
step produces G = 2(1 — 0)G} and G% = 0G1. Note that we now have a time stepping problem with
a constant wave speed and a zero Dirichlet boundary condition at the left. The wave energy spreads
to the right at each time step. If we would extend G7' to the right, then G}, = O'GZ:% = o" would
be the farthest non-zero solution value at time level n > 0. We can truncate the domain, however, by
reusing Eq. (6), realizing that not all values are yet available. This step hinges on the fact that the
wave speed is assumed to be constant and equal to the value on the boundary in the enlarge domain,
that is, ¢; = ¢y for i > N. The result is the recursion

n—1

Gy = > GrFah, n>1, (7a)
k=1

Gl =2G7 ' =G 40 (Gy ' —2G77Y), n>1, (7b)

starting from GY = 0, Gi = o and G3 = 0. With g" = G} available, we can apply Equation (5) or (6)
in one or more simulations.

2.3. 1-D Example

The method was tested on the dimensionless wave speed model shown in Figure 1(a). The forcing
function was a point source f(t,z) = w(t)d(x — zs) at position z, = 0.4 with a source signature

Puw
w(t) = 2% [4%(1 - ﬁ)} for 0 < t < Ty, and zero otherwise. Its duration was T;, = 0.25 with a

power p,, = 12. This results into waves proportional to its time integral that travel to the left and right,
as shown in Figure 1(b).

The numerical solution at time t,,x = 2 was compared to one obtained on a much larger domain
with a Neumann condition on the right boundary. The grid spacing was Az = 0.005 and the time step
At = 0.004, at 80% of the maximum value allowed for stability. The observed maximum absolute error
of around 3 x 10~ was caused by accumulated numerical round-off errors, effectively demonstrating
the correctness of method and code.
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Figure 1. (a) Wave speed model. (b) Time evolution of the wavefield for a point source at x5 = 0.4.
The Neumann boundary condition at the left generates symmetric reflections. The boundary at the
right is perfect.

2.4. 1D, Higher Order

Higher-order schemes are usually more efficient than lower-order schemes, because they require less
points per wavelength to reach the same accuracy, which should more than compensate for their higher
cost. This is in particular true for smoothly varying wave speed models. If there are many large
variations on small length scales, however, the lowest computational cost to reach a given accuracy
occurs for lower-order schemes. With large discontinuities in the wave speed, a finite-element method
with elements that follow the jumps will be a better choice than a finite differences [17,a.0.], but for
now, we stay with the latter.

A finite-difference scheme of higher order M, M even, requires a stencil of M + 1 points wide. The
discrete second derivative L;(u) at point x; of the solution represented by the vector u is given by

M/2

—Az?L;(u) = wou; + Z Wk (Wi k + Ui—k), (8)
k=1

with weights [17, 18]

M2 M/2 N2
2 & 2 (41 1
;132 Jz::kﬁ (G =R+ E)! 2
Unit spikes now have to be placed at %M points xnx_(j_1), J = 1,..., %M: v = 0 N—(j—1)0n,0 for all
1<i< N andn. Foreach j =1,..., %M , a separate run on an enlarged domain is required. Because

the numerical wave speed is now %M points per time step, the number of extra points on the enlarged
domain has to be at least N, = iM (tmax — to). For each run numbered by j, we can record the values
9o = VN Withm =1, S M.
For another run on the original domain with solution ', we can then either find the %M values
just outside the domain by predicting into the future with
M/2

_ . 1
UN 14 :=uTNn+i+ZgZ‘j "UN_ (1) ]:1,...,§M, m=n+1,..., Ny, (10)
j=1
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or from the past with

n M/2
~ . 1
Uy = mZ::l ; Ny i= Lo, gM, >0, (11)

With these extra values, uly,;, the second derivatives can be computed up to the last interior point at
N.

Instead of modeling on an enlarged domain, recursion can be applied to find g;';. The initialization
at the first time level, n = 1, is given in terms of the finite-difference weights by

1 1

gij=—owi; 1, i+j<1+ 5M, i=1,....,M, j= 1,...,§M, (12a)
and zero otherwise. Note that the stability limit for o depends on the order of the scheme [17]. For the
subsequent time levels (n > 1), the discrete partial differential equation can be used for i =1,..., %M .

Defining v; = gzj_l fori=1,..., M and assuming 9?,]' =0 and v; =0 for ¢ < 1, we have

_ _ ) 1
gy =205 = g o Li(v), =105 M, (12b)
The values for i = %M +1,..., M can be obtained by recursion:
Iinryij = Z Zg LM~ (k—1) 9k, (12¢)
m=1 k=1

Note that the wave speed c¢; has to be constant in the last %M points for this to work, that is, cy_; = cn
fori =0,..., %M — 1. If not, an extra buffer zone of width %M — 1 with constant wave speed c(zy)
can be added.

The above was verified with the same example as before for orders M = 2 to M = 24, running at
50% of the order-dependent maximum allowable time step. Again, the difference with a simulation on
the enlarged domain was determined by accumulated round-off errors. Figure 2 displays the wavefield
with non-reflecting boundaries at both sides, using a spatial discretization of order 24. Note how
numerical round-off errors slowly accumulate as time increases in this double-precision computation.

No stability problems of the kind reported by [11] were observed when ¢, was increased from 2
to 20 for all orders from 2 to 24.
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Figure 2. (a) Time evolution of the wavefield for a point source at s = 0.4 with non-reflecting
boundaries at the left and right of the domain and with a 24th-order scheme in space. (b) Difference
with a solution computed on an enlarged domain, consisting in accumulated numerical round-off errors.
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2.5. 2D, Second Order, One Side

For the generalization to more than one space dimension, we first consider the 2-D case with a finite-
difference scheme of lowest order. As a start, a rectangular domain with only one non-reflecting
boundary is considered.

The 2-D domain has € [Tmin, Tmax] a0d ¥ € [Ymin, Ymax]. Neumann boundary conditions are
imposed at all sides except at * = Zmax. The domain is discretized on a grid with N, x N, points and
spacings Ar = (Tmax — Tmin)/Nz and AY = (Ymax — Ymin)/Ny in the z- and y-coordinates, respectively.
With that, the grid points are z; = i + i(Az — %) fori=1,...,N; and y; = yYmin + Jj(Ay — %) for

j=1,...,N,.
The discrete time stepping scheme in 2D is
Uty q — 2w+ g u g — 2w+
1 -1 2 +1, 1 1+l 1
uptt = 2ul s — St + (e AL ( s S Ay2 b4 f{g) . (13)

The scheme is stable for cAt\/Ax=2 + Ay=2 < 1.

As in the 1-D case the response of a unit spike on the boundary at xy, can be computed, but now

for different Yjo: jo = , INy. For each jo, let v]'; = &; n,6j, jo0n,0 and consider the initial/boundary
value problem in the domaln extended to right, Wlth i =Ny +1,...,N. and N, sufficiently large to
avoid reflections from zy, returning to xn, + Ax. For each jo = 1,..., Ny, this defines a set of discrete

solutions in space and time denoted by G in the enlarged domain [Zpin, TN, ] X [Ymin, Ymax) s

or actually [Zmax, TN,] X [Ymin, Ymax]-
We select a subset g7 ;= 7Vz‘l’17j§Nzyj07 with n >0 and j = 1,..., Ny, from the first point in the

enlarged domain. Prediction into the future now involves an additional summation over jj:

i35 Noyjo I

Ny
k k
uNx‘l’L] : uNx‘l‘l]—l_Zg] jo Nx,jo’ k:n—l-:l,...,Nt. (14)
Jjo=1
Here, ufy .4 ; must have been initialized to zero for all n = 0,..., NV, and the updated values can be

used in Eq. (13) for the next time step at t,41. Alternatively, prediction from the past lets

n
ullmeLJ Z Z gJ Jjo ijo (15)

m=1 jo=1
For the expressions based on recursion, it is convenient to define o} = (en,,jAt/Az)? and
o = (cn,, jAt/Ay)?.  The wave speed in the exterior is assumed to be obtained by piecewise

constant extrapolation from the boundary values in the direction perpendicular to the boundary, letting
Cij =CN,,jfori> Ny and j=1,..., N,.
At the first time level, n = 1, initialize lez 41, Nusjo = 070jo,j- Using translation invariance in
for x > xn,, we can apply recursion to determine
n—1 Ny
Not2,5iNedo = D D Gt gy Ne hGN 1 ki e 1> 1 (16)
m=1 k=1
The discrete wave equation produces

n n—1 T n—1 n—1
GNm‘l’lvj;vajO 2GNar+1 J3s Nz, Jo GNac‘l‘l 73 Nz, Jo —l— 0-.7 ((;Jvar‘l'2 J3 Nz, Jo 2GN9¢+1 7 Nam]O)

Y n—1 n—1 n—
To; (GNx'l'Lj'l‘l;Nwm 26N i Nejo TGN, 1, Nx,ao) : (17)

Note that the boundary conditions at j = 1, dealing with yyin, and j = Ny, for ymax will produce slightly
different results than given here for the last term on the right-hand side, which represents the second
spatial derivative in y.

Figure 3(a) shows a simple but nontrivial wave speed model on which the method was tested. The
domain [0, 1] x [0,0.4] was discretized by 250 x 100 points and spacings Az = Ay = 0.004. A point



Progress In Electromagnetics Research M, Vol. 91, 2020 45

0.4 1
0.35 0.9
0.3 0.8
0.25 073
[0
o
>~ 02 06 ¢
>
©
0.15 052
0.1 0.4
0.05 1 0.3
0 .
0 0.2 0.4 0.6 0.8 1
X
(a)
04 x10™
’ 6
0.35F
4
0.3
0.25 2
>~ 0.2 0
0.15 2
0.1
-4
0.05
-6

0 0.2 0.4 0.6 0.8 1
X

()

Figure 3. (a) Wave speed model. (b) Wavefield at time 2 for a point source. The Neumann boundary
conditions at the left, top and bottom generate symmetric reflections. The boundary at the right is
perfect. (c¢) Difference with a run on an enlarged domain.

source was placed at x5 = 0.4 and y; = 0.1. Its spatial part is a delta function mimicked by an amplitude
1/(AzAy) on one grid point. The temporal source signal was —<[4(¢/T,)(1 — t/T,,)P if t € [0, T,,)]
and zero otherwise, with a power p,, = 12 and duration T3, = 0.261. The time stepping scheme ran up
t0 tmax = 2, with a time step at 80% of the stability limit. Figure 3(b) shows the wavefield at time ¢y,ax.
The difference between a run with the exact non-reflecting boundary conditions and one an enlarged
domain is displayed in Figure 3(c) and is dominated by numerical round-off errors.

2.6. 2D with Corners

The generalization of the above to a boundary at one side in 3D is straightforward. The same is true
for an additional boundary at the opposite side, at * = xmin. Non-reflecting boundaries at more sides,
however, pose a problem. Consider, for instance, a problem with such boundaries all around the domain.
If the domain is enlarged, waves entering into the exterior, the extended part of the domain, may travel
around a corner, and even around more than once. A generalization of the expressions in Eq. (14)
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or (15) remains valid. Unit spikes can be put next to the boundary in the original domain and their
response can be recorded in the enlarged domain just outside the boundary, while the interior values
are kept at zero. To keep the notation simple, we use a single flat index jiy for the points just inside
the boundary. This involves unit spikes at Ny = 2(N, + N,)) interior points, namely, (1, j) and (N, )
for j=1,...,Ny and (i,1) and (i, N,) for i = 1,..., N,. Let these be enumerated by jin;. For each of
those, a simulation on an enlarged domain can produce g7 . by recording values at points indexed
by jext- These involve (0, j) and (N +1,7) for j =1,..., N, and (4,0) and (i, N,+1) fori =1,..., N,.
Then, a simulation on a different problem can have exact non-reflecting boundary conditions by using

n N
u?ext - Z Z gﬁxt,jintu?i:tm' (18)
m=1 jintzl
Unfortunately, it is not clear how to construct a recursion formula for G it because translation
invariance is lost in the presence of corners.

A workaround consists in combining the numerically exact boundary condition with a classic one,
for instance, the Enquist-Majda [13] or Higdon boundary conditions [2, 14, 19]. In that way, exactness
is lost but the result may still be better than with solely the classic conditions, as will be discussed
elsewhere [20].

2.7. Complexity

Although the proposed method is exact, it is not cheap. Here, its computational cost is estimated. In d
dimensions, the grid has O(N?) points, where there are O(N) number of points per coordinate direction.
The time-stepping stability requires O(N) time steps, resulting in an overall cost of O(N%*t1). With
O(N?1) boundary points, a direct computation of the response functions G' on an enlarged domain
requires O(N??) operations. The recursion approach, as in Equation (17), involves G, which has a size
of O(N?1)O(N;) = O(N?). Each entry costs the same amount of operations, leading to a complexity
of O(N?%), which is rather high in 2D and especially 3D. The evaluation of the discrete PDE as in (16)
has negligible O(N9~1) cost.

Table 1. Computational complexity in d space dimensions for the various methods. The number of
grid points per coordinate direction as well as the number of time steps is O(V).

computation cost
modeling O(N+1)
enlarged domain | O(N9*1)
g", directly O(N?d)
g™, recursion O(N?%)

Table 1 summarizes the cost of each approach. Note that a simulation on the enlarged domain
involves a much larger number of points IV, but since it remains proportional to the original one, the
complexity stays the same. Repeating the computation on the enlarged domain for all spikes on the
boundary leads to the cost for the direct computation of g". Recursion results in the same complexity,
but now with a smaller N.

The response functions can be reused for different problems if the grid, the time step and the
wave speeds near the boundary do not change. For some applications, this may justify their high
cost. Otherwise, as mentioned in the introduction, one of the classic absorbing boundary conditions in
combination with a carefully tuned PML strip will be a good choice.
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3. CONCLUSIONS

A numerical scheme for exact non-reflecting boundaries with the simple wave equation has been
presented. Tests in 1D produce stable results with a second-order central difference approximation
of the spatial second derivative and with higher-order spatial discretizations up to order 24. They only
differ from simulations on an enlarged domains by accumulated numerical round-off errors.

The method requires a precomputation of the response in the exterior for unit spikes at the internal
boundary. The associated recursion formulae are simple but their convolutional character make them
costly. Once the responses are available, they can be applied to more than one modeling problem, as
long as the grid, the time step and the wave speed close to the boundary are not changed. Apart from
the precomputed response functions, the boundary values of the current simulation have to be stored
for all times.

The generalization to 2D involves an additional spatial convolution over boundary values. The
wave speed in the exterior beyond the boundary is assumed to be obtained by piecewise constant
extrapolation in the direction perpendicular to the boundary. However, precomputation by simple
recursion only works with a single non-reflecting boundary on one side or two at opposing sides of a
rectangular domain. The reason is that the recursion assumes translation invariance in the exterior,
which is lost as soon a corner with non-reflecting boundaries at connected sides is involved. As such,
the applicability of the method is limited to, for instance, modeling waveguides — or exactness should
be partially abandoned.

REFERENCES

1. Givoli, D., “Non-reflecting boundary conditions,” Journal of Computational Physics, Vol. 94, No. 1,
1-29, 1991.

2. Mulder, W. A., “Experiments with Higdon’s absorbing boundary conditions for a number of wave
equations,” Computational Geosciences, Vol. 1, No. 1, 85108, 1997.

3. Tsynkov, S. V., “Numerical solution of problems on unbounded domains. A review,” Applied
Numerical Mathematics, Special Issue on Absorbing Boundary Conditions, Vol. 27, No. 4, 465—
532, 1998.

4. Tourrette, L. and L. Halpern, Absorbing Boundaries and Layers, Domain Decomposition Methods:
Applications to Large Scale Computers, Nova Science Publishers, Inc., 2001.

5. Givoli, D., “High-order local non-reflecting boundary conditions: A review,” Wave Motion, Vol. 39,
No. 4, 319-326, 2004.

6. Antoine, X., E. Lorin, and Q. Tang, “A friendly review of absorbing boundary conditions and
perfectly matched layers for classical and relativistic quantum waves equations,” Molecular Physics,
Vol. 115, Nos. 15-16, 1861-1879, 2017.

7. Gao, Y., H. Song, J. Zhang, and Z. Yao, “Comparison of artificial absorbing boundaries for acoustic
wave equation modelling,” Ezploration Geophysics, Vol. 48, No. 1, 76-93, 2017.

8. Berenger, J.-P., “A perfectly matched layer for the absorption of electromagnetic waves,” Journal
of Computational Physics, Vol. 114, No. 2, 185-200, 1994.

9. Mulder, W. A. and B. Hak, “An ambiguity in attenuation scattering imaging,” Geophysical Journal
International, Vol. 178, No. 3, 1614-1624, 2009.

10. Ting, L. and M. J. Miksis, “Exact boundary conditions for scattering problems,” The Journal of
the Acoustical Society of America, Vol. 80, No. 6, 18251827, 1986.

11. Givoli, D. and D. Cohen, “Nonreflecting boundary conditions based on Kirchhoff-type formulae,”
Journal of Computational Physics, Vol. 117, No. 1, 102-113, 1995.

12. Teng, Z.-H., “Exact boundary condition for time-dependent wave equation based on boundary
integral,” Journal of Computational Physics, Vol. 190, No. 2, 398-418, 2003.

13. Engquist, B. and A. Majda, “Radiation boundary conditions for acoustic and elastic wave
calculations,” Communications on Pure and Applied Mathematics, Vol. 32, No. 3, 313-357, 1979.



48

14.

15.

16.

17.

18.

19.

20.

Mulder

Higdon, R. L., “Absorbing boundary conditions for difference approximations to the multi-
dimensional wave equation,” Mathematics of Computation, Vol. 47, No. 176, 437-459, 1986.

Mur, G., “Total-field absorbing boundary conditions for the time-domain electromagnetic field
equations,” IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 2, 100-102, 1998.
Komatitsch, D. and R. Martin, “An unsplit convolutional perfectly matched layer improved at
grazing incidence for the seismic wave equation,” Geophysics, Vol. 72, No. 5, SM155-SM167, 2007.
Zhebel, E., S. Minisini, A. Kononov, and W. A. Mulder, “A comparison of continuous mass-lumped
finite elements with finite differences for 3-D wave propagation,” Geophysical Prospecting, Vol. 62,
No. 5, 1111-1125, 2014.

Fornberg, B., “Generation of finite difference formulas on arbitrarily spaced grids,” Mathematics
of Computation, Vol. 51, No. 184, 699-706, 1988.

Higdon, R. L., “Numerical absorbing boundary conditions for the wave equation,” Mathematics of
Computation, Vol. 49, No. 179, 65-90, 1987.

Mulder, W. A., “Working around the corner problem in numerically exact non-reflecting boundary

conditions for the wave equation,” Conference Proceedings, 82nd EAGE Conference and Ezxhibition
2020, Amsterdam, The Netherlands, 2020.



