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Evaluation of the Flux Linkage between Equally Sized Circular
Loops Placed on a Layered Soil

Mauro Parise*

Abstract—This paper presents an efficient method for evaluating the flux linkage between two circular
loops located on the top surface of a plane multilayer soil. The method consists of a rigorous procedure,
which leads to expressing the flux as a sum of products of Bessel functions. First, the integral
representation for the mutual inductance is cast into a form where the integration range is continued
to the negative real axis. Subsequently, the non-oscillating part of the integrand is replaced with a
rational approximation, arising from using a well-known least squares-based fitting algorithm. Finally,
analytical integration is performed by applying the theorem of residues. As a result of the proposed
method, the flux linkage between the loops is expressed as a finite sum of products of Bessel functions.
Since no assumptions are made in the mathematical derivation, the obtained explicit expression is valid
regardless of the operating frequency. Numerical tests are performed to show the advantages of the
proposed method with respect to standard numerical integration techniques. In particular, it is seen
how the use of the derived series representation for the inductance with 50 terms permits to achieve the
same accuracy as conventional Gauss-Kronrod numerical integration technique, with the advantage of
reducing the computation time by at least 8 times.

1. INTRODUCTION

It is well known that the electromagnetic (EM) and geometric properties of the subsurface structure
of a terrestrial area may be inferred by interpreting measurements of the mutual impedance of
a transmitter-receiver loop system through matching with theoretical response curves [1–25]. In
particular, information about the earth structure may be acquired from solving the nonlinear inverse
problem of searching for a layered earth model that can reproduce a recorded finite set of observations,
associated with a discrete set of frequencies [4, 5, 9, 16]. Standard iterative procedures for solving
nonlinear inverse problems imply a number of forward problems to be solved within an optimization
loop [25]. It turns out that the efficiency of the inversion algorithm is strictly related to the availability of
rigorous methods that allow to fast and accurately evaluate the mutual impedance of two loops located
on a layered earth. In spite of the importance of this task, so far no explicit expressions have been derived
which describe the inductive coupling between the loops, not even under the assumption of electrically
and physically small loops [2, 6, 7, 14, 15, 17, 18, 21] or in the quasi-static frequency limit [6, 10, 11, 13, 23],
where the effects of the displacement currents in both the air and the ground are negligible. Thus, to
date, the field integral describing the inductive coupling may be evaluated only by resorting to numerical
integration, but this approach has the disadvantage of being time consuming, especially in the special
case where both the transmitter and receiver are placed on the layered medium [6, 23].

This paper presents a hybrid analytical-numerical procedure that allows to derive an explicit
expression for the mutual inductance between two identical loops lying on the top surface of a layered
conductive soil. The derived expression is not subject to restrictions on frequency and/or the size of
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the loops, and is less time consuming than conventional numerical integration algorithms like Gauss-
Kronrod quadrature rule. The expression is obtained by casting the integral representation for the
mutual inductance into a form where the range of integration is extended to the negative real axis.
Next, the non-oscillating part of the integrand is replaced with its rational approximation according
to the least squares-based fitting procedure proposed by Gustavsen [26]. This leads to expressing the
original semi-infinite integral as a sum of simpler contour integrals around the pole singularities of the
rational approximation. Finally, the theorem of residues is applied to each contour integral, and the
mutual inductance is given as a finite sum of product of Bessel functions. Numerical tests are carried
out to illustrate the advantages of the proposed approach with respect to Gauss-Kronrod quadrature
rule.

2. PROBLEM FORMULATION

The problem under consideration is illustrated in Fig. 1. Two identical thin-wire circular loops, with
radius a, are placed on a conducting N -layer medium and are separated by the radial distance ρ.
The dielectric permittivity and electrical conductivity of the nth layer are indicated with εn and σn,
respectively, while the magnetic permeability is assumed to be everywhere equal to that of free space
μ0. The complete integral expression describing the flux linkage per unit current between the loops is
well known and given by [6]

M = 2πμ0a
2

∫ ∞

0

1
u0 + û1

[J1(λa)]2 J0(λρ)λdλ, (1)

where J0(ξ) and J1(ξ) are respectively the zeroth- and first-order Bessel functions, and t ûn are given
by the recurrence relation

ûn=un
ûn+1 + untanh(undn)
un + ûn+1tanh(undn)

, n=N − 1, . . . , 1, (2)

with d1, d2, . . . , dN−1 being the thicknesses of the N−1 finite layers, and ûN=uN , with

un=
√

λ2 − ω2μ0εn + jωμ0σn. (3)
The scope of the present section is to derive an explicit expression for the integral representation in
Eq. (1). To this end, we first let

f (λ) =
1

u0 + û1
(4)

and substitute in Eq. (1) the identity [27, 28]

J0(λρ) =
1
2

[
H

(1)
0 (λρ) − H

(1)
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]
, (5)
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Figure 1. Two circular loops on a layered ground.
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Figure 2. Integration contour in the complex λ-plane.

with λ̄ = λ exp(jπ) and H
(1)
0 (·) being the zeroth-order Hankel function of the first kind. It turns out

that

M = πμ0a
2

{∫ ∞
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f (λ) [J1(λa)]2 H

(1)
0 (λρ)λdλ +

∫ 0

∞ ejπ

f
(
λ̄
) [
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)]2
H

(1)
0

(
λ̄ρ

)
λ̄ dλ̄

}

= πμ0a
2

∫
Λ

f (λ) [J1(λa)]2 H
(1)
0 (λρ)λdλ, (6)

where the integration path Λ, shown in Fig. 2, is constituted by the positive real λ-axis plus the upper
shore of the negative real λ-axis. Next, we introduce the rational approximation

f (λ) ∼=
L∑

l=1

cl

jλ2 − αl
, Re[αl] < 0, (7)

arising from applying the least squares-based fitting procedure described in [26]. This allows to deform
the integration contour to the upper infinite semi-circumference of the complex λ-plane, plus a number
of infinitesimal circles surrounding the pole singularities exhibited by Eq. (7) in the upper half of the
complex plane. Since the integrand decays exponentially when increasing |λ| in the first and second
quadrants, it turns out that the contribution to the integral in Eq. (6) due to the semi-circumference is
identically null. As a consequence, Eq. (6) may be rewritten as

M= − jπμ0a
2

L∑
l=1

cl

∫
Λl

1
λ2 + jαl

[J1(λa)]2 H
(1)
0 (λρ)λdλ, (8)

where Λl is the infinitesimal circle around the point λl=
√−jαl, which is the lth pole of Eq. (7) belonging

to the upper half of the complex λ-plane. Analytical evaluation of the lth integral on the right-hand
side of Eq. (8) is straightforward by means of the theorem of residues. It reads∫

Λl

1
λ2−λ2

l

[J1(λa)]2H(1)
0 (λρ)λdλ=2πj lim

λ→λl

λ−λl

λ2−λ2
l

[J1(λa)]2H(1)
0 (λρ)λ=πj [J1(λla)]2 H

(1)
0 (λlρ), (9)

and the flux linkage per unit current between the loops assumes the explicit form

M = μ0π
2a2

L∑
l=1

cl [J1(λla)]2 H
(1)
0 (λlρ). (10)
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3. DISCUSSION

To validate the proposed method, expression (10) is first applied to the calculation of the mutual
inductance between two loops, 1 m in radius, situated on a two-layer medium with ε1=ε2=10ε0,
σ1=1 mS/m, and σ2=100 mS/m. The radial distance ρ between the centers of the loops is taken to
be equal to 15 m, and the mutual inductance is computed as a function of frequency. Four amplitude-
frequency spectra are generated, each one corresponding to a different length of the sum of partial
fractions in Eq. (7) generated by using the fitting algorithm described in [26]. The results of the
calculations, depicted in Fig. 3, are compared with those arising from numerically integrating the
expression in Eq. (1). Numerical integration is carried out by applying a Gauss-Kronrod G7-K15
scheme, originating from the combination of a 7-point Gauss rule with a 15-point Kronrod rule. From
the analysis of the plotted curves it emerges that increasing the order of the rational approximation
of f(λ) improves the accuracy of the result of the computation. In fact, if L grows, the curve arising
from Eq. (10) approaches the outcomes from numerical quadrature, and perfect agreement is achieved
when L=20. This suggests that Eq. (10) converges to the exact solution as the order L of the rational
approximation is increased. Moreover, Fig. 3 also points out that convergence of Eq. (10) is faster at
higher frequencies, where it suffices to use a rational approximation made up of only 7 partial fractions
to achieve highly accurate results. This aspect is confirmed by Fig. 4, which shows the relative error that
originates from applying Eq. (10) rather than the G7-K15 quadrature formula, plotted versus frequency.
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Figure 3. Amplitude-frequency spectrum of the
mutual inductance between two loops.
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from (10) as compared to G7-K15 data, plotted
against frequency.
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Table 1. CPU time comparisons for the computation of M .

Approach average CPU time [s] Speed-Up
Numerical Integration 27.4 -

(10) with L = 10 2.49 · 10−3 11 · 103

(10) with L = 15 6.58 · 10−3 4.16 · 103

(10) with L = 30 9.26 · 10−2 2.96 · 102

(10) with L = 50 3.12 8.78

As seen, for most of the considered values of L the relative error dramatically drops at frequencies higher
than about 1MHz. Opposite conclusions can be drawn when changing the loop radius a in place of
frequency. This point is illustrated in Fig. 5, which depicts profiles of the relative error versus a, under
the assumption that the loop-to-loop spacing is ρ=15 cm and that the operating frequency is 10 MHz.
The same material medium as in the previous example is considered. As can be observed, for any
length L of the sum of partial fractions the error grows monotonically as a is increased. Furthermore,
the curves plotted in Fig. 5 show how increasing L always makes the relative error decrease, even if the
error reduction is less and less pronounced as the loop radius grows. With accuracy being equal, one
would ask if Eq. (10) is advantageous in terms of computation time over numerical integration. This
point is clarified by Table 1, which illustrates the average CPU time taken by the two approaches to
calculate the trends of |M | shown in Fig. 3. Table 1 also shows the speed-up exhibited by the proposed
method, that is the ratio of the time required by the G7-K15 numerical scheme to that taken by Eq. (10).
It is observed that use of Eq. (10) with L=50 terms instead of numerically integrating Eq. (1) makes it
possible to reduce the time cost by at least 8 times.

4. CONCLUSIONS

This paper has presented an efficient method for calculating the mutual inductance of two circular loops
lying on the surface of a plane layered conducting medium. The method leads to expressing the flux as
a sum of products of Bessel functions, and consists of casting the integral representation for the mutual
inductance into a form where the integration range is continued to the negative real axis. Next, the
non-oscillating part of the integrand is approximated by a rational function, and analytical integration
is carried out by applying the theorem of residues. Numerical simulations have been performed to
illustrate the advantages of the proposed technique over standard numerical integration schemes.
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