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Abstract—Recently, modern wireless communication applications are extended to call high frequency
bands including millimeter waves for 5G systems. Therefore, the propagation properties of such
waves in different media have attracted many researchers. In this work, the results of the S-
parameters measurements of mortar with four thicknesses are obtained using a nondestructive free space
measurement technique for the frequency bands from 8 GHz up to 32 GHz. The obtained results of the
dielectric properties and loss factors for the prepared mortar samples are realized. The variation in both
the reflection and transmission coefficients and the dielectric properties with curing time conditions of
mortar structure is examined. The dielectric properties of water are realized using the proposed method
to subtract the effects of water contents from the prepared mortar samples. The effects of the sample
thickness and relaxation frequency are considered. The obtained measurements are compared to the
simulated results based on a full wave simulation software package of CSTMWS algorithms. Finally,
excellent agreements are achieved between the simulated and measured results.

1. INTRODUCTION

Cement based materials, such as cement paste, mortar, and concrete, are extensively used in many
structures in the construction filed [1]. The understanding of knowing the physical properties of such
materials is important for evaluating the quality of signal propagation in many mobile communication
systems including 5G networks [2]. For illustration, one of the most important parameters linked with
mortar is curing time conditions, which relies on the water to cement ratio factor [3]. Microwave
nondestructive technique has revealed immense interest for determining the properties and water
contents in many materials [4]. In contrast, the electromagnetic characterization is needed in
propagation related area, for instance, microwave propagation modeling to develop indoor wireless
communication systems [2]. This is because the reflection and transmission characteristics of buildings
and walls are relatively affected by materials dielectric properties [5]. It is obviously recognized that the
dielectric properties of cement-based materials change during the curing time [4]. During the hydration
process, water and cement molecules are joined chemically into a binder, transforming the initial free
water into bound water; therefore, the dielectric properties of such composition are significantly affected
[6].

Recently, several investigations have been established the capability of microwaves to identify the
state and degree of hydration in cement-based materials [4]. By using a near-field microwave inspection
technique, a strong correlation was shown between the magnitude of the reflection coefficients and
the water-cement ratio [7]. Although the results are promising, only reflection properties of smooth
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plane surfaces of the specimen can be investigated by this contacting method. Besides, reflection and
transmission properties of such materials are not obtained. Based on the free space method given in [6],
penetration of microwaves in lossy specimens with smooth, rough, and non-plane surfaces and their
reflection and transmission properties can be investigated. Nevertheless, at high frequencies, millimeter
wave ranges above 20 GHz, and the penetration through cement specimens is very difficult [7]. In
practical applications, it is very striking to determine the dielectric properties of materials by using
only amplitudes of the reflection and transmission coefficients [8].

In this paper, a simple and inexpensive measurement technique is invoked for the reflection and
transmission spectra measurements of mortar. The effects of changing the mortar thicknesses on the
relative retrieved dielectric properties with the proposed measurement technique are illustrated briefly.
The main findings of this research have also been discussed. Finally, the concluding remarks of this
work are highlighted.

2. MATERIALS AND SAMPLE PREPARATION

In this section, the sample preparation for this work is presented. The mortar sample is made in different
thicknesses to observe the variation of curing time which may occur during the hydration process. Four
samples with 1.1, 2.2, 3.3, and 4.4 cm thicknesses are prepared and fixed to one sample holder in order
to be placed between the horn antennas. All the samples are prepared from constant ratios of cement,
sand, and water. In Table 1, the outlined ratios of cement, sand, and water for the four prepared
samples are listed. The mortar samples cross size is fixed to 28 cm × 28 cm × 4.4 cm. The volume of
water is set to 350 g for the mortar sample.

Table 1. Table 1 illustrates the ratios of sand, cement and water for four different thicknesses of mortar
sample.

Thickness (cm) Sand (g) Cement (g) Water (g)
1.1 1000 500 350
2.2 1000 500 350
3.3 1000 500 350
4.4 1000 500 350

Total 4000 2000 1400

3. RESULTS AND VALIDATION

3.1. Measurement Setup

In this section, the prepared samples are measured using a free space technique by conducting two
horn antennas where the sample is at the model space. The reflection and transmission coefficients in
terms of S-parameters spectra are evaluated. The S-parameters, magnitude of the transmission, and
reflection coefficients within the frequency band from 8 GHz to 32 GHz are obtained using two ports
Anritsu 37369D Vector Network Analyzer 40 MHz–40 GHz OPT 10a. The S-parameters measurements
are represented by S11 and S21, magnitude of reflection and transmission coefficients, respectively. The
two full ports calibration is applied to eliminate the mismatch and phase shit errors in S11 and S21

measurements. The full two ports calibration involves the measurements of open, short, and 50 Ω load
standards for both ports, followed by a through standard, simply achieved by directly connecting the
two supporting cables for each port. In the curing time measurements, the mortar sample is placed
(horizontally) in between a pair of lens horn antennas to avoid any diffraction from the edges of the
sample [9]. For this, the sample area is chosen to be of size 28 × 28 cm2. The sample holder is located
in the middle of two antennas with 10 cm gap between receiver/transmitter antennas to the sample
holder at the far-field scattering [5]. The used models of the horn antennas are 18820-FA with nominal
gain of 25 dBi, and VSWR is less than 2.5, when, 1.515 cm aperture diameter. These antennas are
manufactured and designed by Flann Microwave Limited.
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Now, the dielectric properties in terms of relative permittivity, real part, and loss factor, imaginary
part, measurements are obtained using a commercial probe sensor, Open Ended Coaxial Probe
HP85070B, with frequency band of interest at room temperature (27◦C). The used VNA is a 2-port
Precision Network Analyzer with power range from −30 dBm to −15 dBm at operating temperature of
−40◦C to 200◦C. As a manufacturer recommendation, there are three references of the dielectric for the
calibration process at the open-ended coaxial cable aperture, represented by air, shorting block, and
water, connected to VNA. In the curing time measurements, each thickness of the mortar structure is
measured every 5 hours after the casting process until the mortar obtained totally dry condition after
71 hours [1]. Therefore, it is found that the dielectric constant and loss factor for each mortar sample
depend on the state of drying process. However, the dielectric properties in this work are presented for
dried samples under the ordinary room temperature. Figure 1 shows a block diagram for measuring the
dielectric properties of mortar sample.

Figure 1. VNA with open-ended coaxial probe for measuring the dielectric properties.

3.2. Results and Discussion

Figure 2 shows the relationship between the dielectric constant and loss factor for mortar structure with
different thicknesses for the frequency range from 8 GHz up to 32 GHz while the mean values are listed
in Table 2. It is found that thicker samples exhibit higher values of both dielectric constant and loss
factor due to the increase of skin depth effects of the material density [10]. The mortar sample is made
of 33.33% cement and 66.66% sand; however, samples with thickness above 4.4 cm are not shown as the
dielectric constant and loss factor profiles overlapped with mean values equal to 2.23435 and 0.288226
dielectric constant and loss factor, respectively.

Now, to realize curing time conditions effects on the dielectric properties of prepared samples, water
dielectric properties are discussed firstly. Figure 3 illustrates the variation of the dielectric constant and

Table 2. Mean values of the dielectric constant and loss factor at different thicknesses of mortar
structure.

Thickness, d
The Mean Values

Dielectric Constant (ε′) Loss Factor (ε′′)
1.1 cm 1.914285 0.190155
2.2 cm 2.056326 0.19202
3.3 cm 2.110832 0.189014
4.4 cm 2.23435 0.288226
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Figure 2. (a) Dielectric constant and (b) loss factor for mortar structure.

Figure 3. The dielectric constant and loss factor of water.

the loss factor of water at the same frequency range. It is observed that the dielectric constant is much
higher at the lower frequencies. In contrast, the loss factor increases rapidly with the frequency increase
to be an almost constant value after 17.5 GHz. Such an observation is called the relaxation frequency
which is an important observation that represents the maximum wave attenuation during the frequency
band of interest [11].

3.3. Results Validation

For validation, a K-band waveguide of two ports is used with the VNA to measure S-parameters of
the prepared samples. Therefore, the considered mortar structures are prepared again but with a
different area to suite the internal sectional area of the used waveguide. Later, CSTMWS software
package [12] is invoked to realize the validation for the obtained results from measurements. Nicolson-
Rose Weir (NRW) technique is investigated for bulk material characterizations [13] to realize more
flexibility and deep penetration by S-parameters measurements. The measured complex permittivity
is used as the initial guess to determine the S-parameters in CSTMWS simulations at the K-band.
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Figure 4. S-parameters measurements and simulated results at different thickness: (a) 1.1, (b) 2.2,
(c) 3.3, and (d) 4.4.

The measured S-parameters based on NRW technique are compared to those obtained from CSTMWS
simulations. Figure 4 shows an excellent matching between the measured and simulated S-parameters
in terms of S21 and S11 magnitudes spectra with insignificant errors that could be attributed to
undesirable diffractions/reflections from the edges of the sample [14]. The obtained results reveal
excellent agreements validating the obtained results from the previous section.

3.4. Curing Time Effects on the Dielectric Properties and S-Parameters

The measurements of the magnitude of reflection and transmission coefficients (S11, S21) of the mortar
structure at different thicknesses are conducted at the relaxation frequency (17.5 GHz) in ordinary room
conditions. Figure 5 illustrates the relationship between S11 and S21 magnitude variations with respect
to the curing time for the prepared samples. When the period of curing increases, the amount of free
water in mortar decreases attributed to the procedure of cement hydration and evaporation [15]. The
water changes from free to an absorbed state, which reduces ionic polarization and conductivity due
to decreases in ion production [16]. Additionally, the pore sizes become very small, in consequence
making it difficult for the movement of free water remaining in mortar [13]. The reflection coefficient in
Figure 5(a) is a strong function of the dielectric constant of water [16]. It can be clearly observed from
the dielectric properties of water that the dielectric constant of water values was much higher at the
lower frequencies [14]. In contrast, the loss factor increased rapidly with frequency but reaches almost
a constant value above 15 GHz due to the presence of ionic activity at the vicinity of the relaxation
frequency. The latter could be the main reason of the instabilities of the profile of reflection coefficient
with the existence of crisscrossing lines. Figure 5(a) also shows the rapid decrease around the first 40
hours. The decreasing rate becomes small after 40 hours of curing time as a result of the evaporation
of free water from the mortar structure and the hydration process. Figure 5(b) shows the relationship
between transmission coefficient (S21) and curing time at different thicknesses. Generally, the S21 values
increased with increasing curing time and decreased with increasing the thickness of mortar structure.
The results of the measured S21 also showed a rapid increase after several hours of the curing time,
due to the desiccation of water from the whole mortar as an effect of a progressive drying. Reduction
in S21 values at 17.5 GHz was due to the high absorption of water which coincides with its relaxation



96 Jawad et al.

(a)

(b)

Figure 5. Curing time variation with respect
to (a) reflection coefficient and (b) transmission
coefficient at 17.5 GHz.

(a)

(b)

Figure 6. Curing time variation with respect
to (a) dielectric constant and (b) loss factor at
17.5 GHz.

frequency.
The measurements of the dielectric properties using an open ended coaxial probe of the mortar

structure at different thicknesses are continuously conducted during the 71 hours of curing period. It
can be clearly seen from Figure 6(a) that the dielectric constant decreased with increasing curing time
due to evaporation of the water. In Figure 6(b), the loss factor decreased with curing time because the
loss factor of the dielectric properties principally depends on the transmission coefficient described by
S21. The mortar dielectric properties decrease with the increasing water content evaporation. It can be
clearly seen that the high loss factor values corresponded to higher water ratio before hydration [13]. It
is recognized that the higher porosity corresponds to higher water content ratio [12]. It should be noted
that higher relative rate of the loss factor corresponds to higher water content ratio [11]. The values of
the dielectric constant and loss factor have good agreement with the frequency range at 17.5 GHz which
is equal to the relaxation frequency of water.

4. CONCLUSION

The effects of different thicknesses of mortar structure, 1.1, 2.2, 3.3, and 4.4 cm, on the dielectric
constant and loss factor are obtained. It is found that the minimum thickness of samples to have static
values of dielectric constant and loss factor is 4.4 cm instead of 1.89 cm, when using the manufacturer’s
recommended equation. The dielectric constant and loss factor of a typical mortar mixture with 33.33%
cement and 66.66% sand were found to be 2.23435 and 0.288226, respectively. The variation of curing
time with the dielectric properties and the S-parameters using open-ended coaxial probe and free
space technique was distinguished during 71 hours. By monitoring the curing time, it was found that
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the reduction in transmission coefficient values at 17.5 GHz was due to the high absorption of water
coinciding with its relaxation frequency.
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