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A Dual-Mesh Microwave Reconstruction Method Based on
Compressive Sampling Matching Pursuit Algorithm

Huiyuan Zhou and Ram M. Narayanan*

Abstract—In this paper, the Compressive Sampling Matching Pursuit Algorithm (CoSaMP) is applied
to microwave reconstruction of a 2-dimensional non-sparse object. First, an adaptive discretization
method, DistMesh method, is applied to discretize the image domain based on the region of interest.
The dual-mesh method is able to provide denser and smaller discretized cells in more important areas
of the object and larger cells in other areas, thereby providing more details in the interest domain and
keeping the computational burden at a reasonable level. Another benefit of using the dual-mesh method
is that it automatically generates size functions and adapts to the curvature and the feature size of the
geometry. In addition, the size of each cell changes gradually. Next, the inverse scattering problem is
solved in frame of Distorted Born Iterative Method (DBIM). During each iteration of DBIM, the near
field scattering problem is modeled as a set of linear equations. Furthermore, a compressive sensing (CS)
method called the Compressive Sampling Matching Pursuit Algorithm is applied to solve the nonlinear
inverse problem. During this process, two innovative steps are applied. First, for the reconstruction
of the non-sparse object, the signal input to our algorithm is processed via a wavelet transformation
to obtain sparsity. Second, as the dual-mesh method discretizes more important cells in smaller sizes,
these cells have high potential to be filtered by the threshold of CoSaMP. As a result, a regularization
matrix is introduced to reduce the effect of size. Finally, we present numerical experiment results based
on our dual-mesh method combined with the regularized CoSaMP algorithm.

1. INTRODUCTION

Microwave image reconstruction arises in various engineering applications, such as medical imaging [1],
ground penetration radar detection, and other non-invasive testing [2, 3]. The main challenge
for microwave reconstruction algorithms stems from the nonlinear and ill-posed properties of the
problem [4]. For the microwave inverse imaging problem, the estimation of permittivity and conductivity
from the object can provide information for further application and processing.

Recently, various inversion algorithms have been developed to obtain stable and robust
reconstruction results. At the early stage, conventional optimization methods are fully developed to be
applied to microwave imaging, such as Gauss-Newton (GN) optimization algorithms [5–7], conjugate
gradient methods [8, 9], and level set methods [10, 11]. Recently, algorithms inspired by compressed
sensing (CS) theory [12], which have been developed for efficient reconstruction of sparse signals in image
processing applications, have garnered more attention and gained popularity. Before its application to
microwave imaging, CS methods have been widely developed and applied in signal and image processing
applications, as they are able to recover a sparse signal from a lower dimensional measurement, i.e.,
the number of measurements is much less than the number of signal entries. These compressive
sensing methods, known as sparsity regularization techniques, are currently becoming more popular
in microwave imaging research.
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By using different types of thresholding techniques iteratively for the sparse signal, various CS
methods have been proposed. There are many possible algorithms that have been developed for
recovering an estimate of signal from a small number of measurements, as the orthogonal matching
pursuit (OMP) algorithm [13, 14], iterative hard threshold (IHT) algorithm, and iterative method with
adaptive thresholding for compressive sensing (IMATCS) [15, 16]. In [17, 18], the iterative hard threshold
algorithm is described. Meanwhile, an Iterative Method with Adaptive Thresholding for Compressed
Sensing was proposed with adaptive thresholding function at each iteration for the sparse signal input
to the algorithm. In addition, compressive sampling matching pursuit (CoSaMP) [19], which is based
on OMP, has been developed as a fast algorithm for convex relaxation. The CoSaMP method is able
to identify components during each iteration, which makes it work fast on many types of signals.

In this paper, we propose a dual-mesh method to discretize the image domain by applying the
Distmesh technique [20]. The majority of microwave reconstruction methods use a uni-mesh method,
which leads to the fact that even for the area of non-interest, the discretized cells have the same size as
the cells in the region of interest [21, 22]. As a result, for high resolution imaging, the image domain has
to be uniquely discretized by small cells in solving the forward problem, which introduces a very heavy
computational burden for the algorithms. In addition, the Distmesh discretization method can avoid
large variations in element sizes by a mesh size function, which is used to determine the equilibrium
lengths of the edges. Compared to the typical Delaunay refinement algorithm, this algorithm forces
equilibrium and tends to give much higher values of the mesh quality. The combination of distance
function representation and node movements from forces turns out to be good for the dual-mesh scheme
of inverse scattering. After applying the dual-mesh method, the smaller cells describe the area where we
have more interest and have relatively lower estimated value due to their smaller size. To compensate
the size difference and to maintain the efficiency and accuracy of our algorithm, a regularization matrix
is introduced before applying the CoSaMP algorithm.

After the discretization of the non-sparse image, a novel wavelet transformation, called the Non-
Decimated Wavelet Transformation (NDWT) [23], is applied to obtain sparsity to the 2-dimensional
non-sparse object. NDWT has the advantages of time-invariance and redundancy, compared to the
standard orthogonal wavelet transformations. In addition, NDWT matrix is able to efficiently map a
signal from an acquisition domain to the wavelet domain with simple matrix multiplication and without
the requirement of the total number of the signal [24].

In this paper, a new method for applying CoSaMP for the numerical solution of 2-dimensional
non-sparse inverse scattering problem is proposed. During the Method of Moment (MoM) process, the
non-sparse object is discretized by Distmesh method to obtain robust dual-mesh grid for emphasis and
enhancement of the information in the region of interest. Then, the ND-Wavelet (NDW) transformation
method is applied to input signal for sparsity in the wavelet domain. Afterwards, we combine the DBIM
method and CoSaMP to iteratively recover the sparse signal. In the end, using the inverse ND-wavelet
transformation, the final reconstruction results are obtained.

This paper is organized as follows. A review of EM inverse scattering and dual-mesh method for
discretization are given in Section 2. The theory of CoSaMP and ND-Wavelet theory are introduced
in Section 3. Afterwards, a representative set of results from numerical experiments is presented in
Section 4 to assess its accuracy, effectiveness, and efficiency. Finally, some conclusions are reported in
Section 5.

2. PROBLEM STATEMENT

2.1. EM Inverse Scattering Model

In this paper, we propose a method to reconstruct 2-dimensional dielectric profile of non-sparse object.
In this section, we briefly introduce the microwave scattering theory and model for 2-dimensional
situation for completeness and better understanding.

Generally, for 2-dimensional microwave scattering theory, there are two main methods based on
differently polarized incident signals. One is TE polarization, and the other is TM polarization. For
computational efficiency and simplicity of model, we choose the TM polarization model. In the TM
case, the incident field is set to be a TM-polarized electric field. As shown in Fig. 1, an object with
arbitrary cross-section shape is described in 2-D situation. The image in x-y plane is divided into two
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Figure 1. Illustration of EM inverse scattering scenario.

domains. The inside part containing the object and surrounding homogeneous background medium is
named as the image domain and denoted by S in the x-y plane and oriented along the z-axis. The
outside part including the circularly placed transmitter and receivers is named the measurement domain
and denoted as M. As we consider a TM polarization problem, the transmitter is modeled by a current
source along z-axis. As shown in Fig. 1, M antennas are placed at a same radius around the object,
denoted as subscript m ∈ [1,M ]. Each antenna acts as a transmitter sequentially, and the remaining
M−1 antennas act as the receivers simultaneously. We denote the transmitting antenna using subscript
l ∈ [1, L]. Let r(x, y) be the coordinates of a spatial point in the imaging domain. We denote the complex
permittivity at point r(x, y) as ε(r),

ε (r) = ε′ (r)− jε′′ (r) = ε0

(
εr (r)− j

σ(r)

ωε0

)
(1)

where ε′ and ε′′ are the real and imaginary parts of dielectric permittivity respectively; ε0 is the
permittivity of free space; and εr is the relative permittivity.

Based on the scalar wave equation and boundary conditions, the scalar electrical field integral
equation (EFIE) is given by

El (r) = Ei
l (r) + ω2μ

∫∫
S
Δε(r′)El(r

′)Gr(r, r′)dr′ (2)

where E and Ei are, respectively, the total EM field and incident EM field, and Δε(r) = ε(r)− εb is the
unknown contrast permittivity compared with the exterior background medium complex permittivity.
Then, the contrast Δε(r) is given as

Δε (r) =

{
ε (r)− εb if r ∈ S
0 if r /∈ S (3)

In Equation (2), Gr(r, r′) is the two dimensional free space Green’s function, given by Gr(r, r′) =
(i/4)H

(1)
0 (kext|r − r′|) [25]. The scattered field received by the antennas is calculated using

Esc
l (sm) = ω2μ

∫∫
S
Δε

(
r′
)
El

(
r′
)
Gs

(
sm, r

′) dr′ (4)

where Gs(sm, r
′) is Green’s function between image domain and measurement domain.

Equations (2) and (4) describe the forward scattering process which is used to calculate the scattered
field with the information of the incident field and predicted dielectric properties. The forward problem
is computed every time during the inverse iteration process [26]. After discretizing the image domain,
the forward problem is able to be presented in discrete form. Equations (2) and (4) are recast as

[I −GrΔε]El = Ei
l (5)
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Esc
l = GsElΔε (6)

where Gr is an N × N matrix of the integrated Green’s functions for incident field and total field on
each cell; Gs is an M × N matrix of the integrated Green’s function for total field on each cell and
scattered field at different receivers; and N is the total number of the discretized cells. During each
iteration, the Green’s function is updated by the Distorted Born Iterative method (DBIM) [27].

2.2. Dual-mesh Discretization of Object Using DistMesh

Based on the microwave scattering theory described above, the matrix form forward problem is generated
and needs to be solved using the computational electromagnetic method. Based on [2], various solving
methods are available, as the Finite-Difference Time Domain method (FDTD), Finite Element method
(FEM), and Method of Moment (MoM). In this paper, we choose MoM as it easily exploits the matrix
form integral relation we introduce above.

Under the scheme of MoM, the imaging domain S is discretized in small discrete cells. The center
of each cell is chosen as the position of the entire cell.

Conventionally, the object is discretized in rectangular uni-size cells. As shown in Fig. 2, in the
rectangular mesh scheme, the mesh grid is not able to align along the boundary of image domain.
In addition, in the dual-mesh situation, the denser mesh grid changes sharply. As the result, in this
paper, for enhanced resolution in the interest area, we apply the Distmesh method, a kind of triangular
discretized method. Its advantages, compared to the traditional rectangular mesh grid, are that the
image domain changes along the boundary of object, and the cells’ size changes gradually, as shown in
Fig. 3.

(a) (b)

Figure 2. Rectangular mesh results for (a) uni-mesh and (b) dual-mesh scheme.

Based on [20], any set of points in the x-y plane can be triangulated by the Delaunay algorithm.
For a triangular cell, the bar which is the edge of the triangle cell has a force displacement relationship
described by f(l, l0), which depends on its current length l and its unextended length l0. The external
forces on the structure come at the boundaries. At every boundary node, there is a reaction force acting
normal to the boundary. The positions of the joints are found by solving for a static force equilibrium in
the structure. As the lengths of all the bars at equilibrium will be nearly equal, we can get a well-shaped
triangular mesh. For the 2-D situation [20], the force vector is given as

F (r) = [Fint, x (r)Fint, y (r)] + [Fext, x (r)Fext, y (r)] (7)

where Fint contains the internal forces from the bars, and Fext are the external forces, which act from
the boundaries. In addition, r is an N × 2 array, containing x and y component values.

Equation (7) is then solved for a set of equilibrium positions r. In [20], the desired edge length
distribution is provided by the user as an element size function h(x, y). It gives the relative distribution
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(a) (b)

Figure 3. Distmesh results for (a) uni-mesh and (b) dual-mesh scheme.

over the domain. To find the scaling factor SF, we compute the ratio between the mesh area from the
actual edge length li and the desired size using

SF =

( ∑
l2i∑

h(xi, yi)
2

)1/2

(8)

where h(x, y) is specified by the user, or it could also be created using adaptive logic to implement the
local feature size, which is roughly the distance between the boundaries of the region.

3. THE COSAMP RECONSTRUCTION ALGORITHM

Compressive sensing deals with an incomplete linear equations, which projects the original signal onto
a set of measurement vector, as shown in Equation (9),

y = Φs (9)

where Φ is an M ×N matrix and called the measurement matrix; s is the processed signal with length
N ; and y is the measurement vector of size M . Combining with the discussion in Section 2, in 2-D
microwave reconstruction process, the measurement matrix Φ is formed by Green’s functions Gr, Gs,
incident field Ei

l , and contrast complex permittivity function Δε. Also, y represents the measured data
of scattered field in vector form.

In the compressive sensing method, to solve the incomplete linear equation in Equation (9), the
unknown vector is required to have few nonzero entries relative to its dimension. Especially for a
non-sparse object, we need to introduce sparsity into the original signal. As a result, an appropriate
transformation method to transfer the non-sparse signal to a domain where it can be represented by
a sparse signal needs to be applied before the compressive sensing process. In this paper, we choose
non-decimated wavelet transformation to process the original signal forehand to induce sparsity in the
signal in the wavelet domain. The transformation process is described as

s = Ψx (10)

where Ψ is known as the wavelet transformation dictionary.
Then, the reformulation result of the linear equation is described as

y = ΦΨx = Ax (11)

where A = ΦΨ. Based on Equation (11), further compressive sensing process operates on the sparser
signal x generated by ND-wavelet transformation matrix, instead of operating on the original input
signal s.
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3.1. Non-Decimated Wavelet Transformation

Based on [23], with an assumption that a multiresolution framework is specified, φ and ψ are denoted
as the scaling and wavelet functions, respectively. A data vector y = (y0, y1, ..., ym−1) of size m
forms a function f in terms of shifts of the scaling function at some multiresolution level J such that
J − 1 < log2m ≤ J , as

f (x) =
∑m−1

k=0
ykφJ,k(x) (12)

where φJ,k(x) = 2J/2φ(2J (x− k)). The data interpolating function f can be represented as

f (x) =
∑m−1

k=0
cJ0, kφJ0, k (x) +

∑J−1

j=J0

∑m−1

k=0
djk2

j/2ψjk

(
2j(x− k)

)
(13)

where
φJ0, k (x) = 2J0/2φ(2J0(x− k)) (14)

and
ψjk (x) = 2j/2ψ(2j(x− k)) (15)

Coefficients cJ0, k and djk represent the NDWT of vector y, wherein coefficient cJ0, k serves as
the coarsest approximation of the data, and djk serves as the detail coefficients. J0 is the coarsest
decomposition level. For a 2-D signal of size m × n, p1 and p2 level decompositions along rows
and columns are obtained by NDWT matrix multiplication from the left and its transpose from the
right. When expressing the NDWT in matrix form, the transform results in a 2-D signal B of size
(p1 + 1)m× (p2 + 1)n. Hence the NDWT matrix form can be summarized as shown in Equations (16)
and (17),

B = W p1
m ×A×W p2′

m (16)

A = W p1′
m × T p1

m ×B × T p2
m ×W p2

m (17)

where A is the original signal matrix, and B is the wavelet transformation result. T p1
m , T p2

m are the

rescaling matrices. W p1
m and W p2

m could be constructed by different wavelet filters, and W p2′
m and W p1′

m

are the complex conjugates of matrices W p2
m and W p1

m , respectively.

3.2. Introduction of the CoSaMP Algorithm

The CoSaMP algorithm is developed based on the Orthogonal Matching Pursuit (OMP) algorithm,
which belongs to the greedy pursuit algorithms category. However, the CoSaMP algorithm combines
some enhanced ideas compared to the OMP, such as selecting multiple columns per iteration, pruning
the columns at each step, solving the least squares problem iteratively, and using the restricted isometry
property (RIP) bound. The CoSaMP algorithm selects the K largest entries of a vector by applying a
pseudoinverse to the measurement vector with a hard thresholding [19].

The CoSaMP algorithm starts with initializing all the parameters in the algorithm. During each
iteration, we identify columns of A that are most strongly correlated with the proxy residual ṽ. Then,
we merge the old and new columns into one set to obtain a new set, denoted as T . After that, we
find the best coefficients for approximating the residual with these columns. We retain the k largest
coefficients and update the residual r. The iteration process runs until the stopping criterion holds, and
we obtain the approximate value x̂. The entire process is summarized in Fig. 4.

Reference [28] indicates that both the algorithm performance and theoretical analysis of CoSaMP
require the measurement matrix A to satisfy the RIP with a sufficiently small constant δk ∈ (0, 1),
which is described as √

1− δk ≤ ‖Φs‖2
‖s‖2

≤
√

1 + δk (18)

This condition would not perform well when the dictionary is our chosen ND-Wavelet transformation
matrix, as it is not unitary and highly redundant.
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Figure 4. CoSaMP algorithm calculation process.

As we apply wavelet transformation dictionary Ψ to introduce the sparsity, the RIP of order k is
given as √

1− δk ≤ ‖ΦΨx‖2
‖Ψx‖2

≤
√

1 + δk (19)

with all x satisfying ‖x‖0 ≤ k. This modified CoSaMP requires relatively weaker assumptions and the
k-RIP condition, which is a different and less-restrictive condition than requiring ΦΨ to satisfy the RIP
condition.

3.3. Regularization Matrix

Based on the forward problem discussion in Section 2, the forward calculation results correspond to
the size of the cell size. With the introduction of different cell sizes, especially, the smaller size cells
containing more important information for the user, we need to compensate the forward calculation
process to prevent these elements from being eliminated by the hard threshold in early stages. For
this purpose, a regularization matrix B is introduced into the forward calculation before the wavelet
transformation, which is given as

B = diag

(
f(Θ)

f(max(Θ))

)
(20)

where Θ is a vector of area for all cells; max(·) stands for the operation of choosing the maximum value
of a vector; diag(·) is a function to fill vectors to the diagonal elements of a matrix; and f(·) presents
the operation we choose to preprocess the elements’ area. In this paper, different f(·) operations S are
chosen to compare their performances in Section 4.

Based on [16, 29], the introduction of the regularization matrix B is able to avoid the error during
MoM calculation due to different cell sizes and enhance S the convergence of the CoSaMP algorithm.
After we obtain the reconstructed signal, the inverse of matrix B is applied to the reconstructed result



50 Zhou and Narayanan

Figure 5. CoSaMP algorithm with regularization matrix calculation flow.

to recover the original signal x in Equation (10). The complete process of the algorithm is shown
in the block diagram in Fig. 5. In Fig. 5, blocks B and B−1 are the regularization operations for the
forward problem. W×T andW ∗ blocks describe the ND-wavelet transformation and inverse ND-wavelet
transformations, respectively.

4. RESULTS AND DISCUSSION

In this section, three numerical experiment results are presented to demonstrate the performance of
our algorithm: (1) the CoSaMP reconstruction results with different selected regularization matrices.
In this part, results from different regularization matrices and result from the non-regularized matrix
are compared; (2) the reconstruction of circular phantom with different CoSaMP hard threshold values;
(3) the reconstruction comparison between conventional OMP method and our proposed modified dual-
mesh CoSaMP method with inhomogeneous synthetic data.

The synthetic data used in the first two experiments are collected from the full-wave solver CST
studio. All of the circular phantoms are placed in x-y plane and oriented along z-axis. The simulation
boundary along z-axis is assumed to follow the perfect electrical conductor boundary condition, whereas
all the other boundaries are set up as open conditions. The incident EM fields are generated by a current
source along the z-axis with an amplitude equal to 1A. Probes along z-oriented direction are placed on
the edge of image domain to act as antenna receivers. All the setups described above are to collect 2-D
TM polarized synthetic data from CST.

4.1. Case 1: Modified CoSaMP Algorithm with Different Regularization Matrix

A non-sparse model containing two dielectric circular cylinders is reconstructed by modified dual-mesh
CoSaMP methods at a frequency of 403.5MHz. The chosen frequency needs to balance the penetration
depth and minimum cell size based on [1]. As introduced in Section 2, the image domain denoted by S
is a circular region with radius 60 cm. The image domain is filled with background material which has
the parameters εr = 55 at 403.5MHz. Transmitters and receivers are placed along the image domain
at equal intervals of 5◦. As a result, the total number of receivers is M = 71, and number of source
rotation positions is N = 72. During each scan, the transmitter is placed at one of the receiver position,
and the remaining 71 receivers receive the total field signal. After the transmitter rotates 72 times, we
obtain a data matrix of size 72× 71.



Progress In Electromagnetics Research, Vol. 166, 2019 51

(a) (b)

(c) (d)

Figure 6. Dual-mesh scheme CoSaMP algorithm reconstruction results with circular synthetic
phantom. (a) Initial inhomogeneous circular phantom. (b) Dual-mesh modified CoSaMP algorithm
reconstruction result without regularization matrix. (c) Dual-mesh modified CoSaMP algorithm
reconstruction result with first order regularization matrix. (d) Dual-mesh modified CoSaMP algorithm
reconstruction result with second order regularization matrix.

The circular phantom is shown in Fig. 6(a), where the radius of both dielectric cylinders is 20mm.
The white cylinder has relative permittivity value εr = 60, and the brown cylinder has εr = 48. Applying
Distmesh method for dual-mesh discretization, the denser cells are clustered around the center of the
image domain. The image domain is discretized by 998 elements in this simulation. The reconstruction
result without applying regularization matrix is shown in Fig. 6(b).

The first regularization operation f(·) is chosen as identical operation, which is called first order
operation. Then, Equation (20) is specified as

B = diag

(
Θ

max (Θ)

)
(21)

Furthermore, the second version of f(·) is selected as second order operation. The expression for
the regularization matrix is presented as

B = diag

(
Θ2

(max (Θ))2

)
(22)

The reconstruction results are shown in Fig. 6. The image domain is divided into 998 cells with
different sizes. The area closer to the center of image domain has denser mesh grid, and the cells
close to the boundary have a coarser mesh grid. All the results presented in Fig. 6 have the same
k = 450 values. Fig. 6(b) presents the reconstruction result with CoSaMP algorithm without our
regularization matrix. Although our algorithm with dual-mesh scheme is able to recover the dielectric
profile in the image domain, the noise around the boundary of the image domain is excessive. Fig. 6(c)
presents the reconstruction results with first order regularization matrix. The result shows less noise
element recovered by introducing our regularization matrix. In addition, the area close to center,
which contains smaller cells, has more cells recovered, and the result is closer to the original circular
phantom. Fig. 6(d) shows the second order regularization matrix reconstruction result. This result shows
that all the recovered cells are related to our two small cylinders in the image domain. Furthermore,
the reconstruction result is cleaner than the result without regularization and use of the first order
regularization matrix.
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It is easy to conclude that the second order regularization matrix leads to a better reconstruction
result. As shown in Section 2, during the forward calculation, the dielectric profile is modeled using
Green’s function. The cell size is involved in the calculation of the Green’s function in Equations (5)
and (6). As a result, the second order regularization matrix compensates the forward solving process
better.

4.2. Case 2: Reconstruction of Inhomogeneous Dielectric Circular Cylinders Against
Simulated Data with OMP Algorithm and Modified CoSaMP Algorithm

In the second numerical experiment, the synthetic data are collected under the same conditions as
Case 1. In this case, the same synthetic data are reconstructed by two different algorithms: OMP and
proposed CoSaMP algorithms, respectively.

The reconstruction results from OMP and CoSaMP algorithms are shown in Fig. 7. The first
column, namely, Figs. 7(a), (c), and (e), present the reconstruction result from CoSaMP algorithm
without regularization matrix, with first order and with second order regularization matrix, respectively.
The second column, namely Figs. 7(b), (d), and (f) show the same content but for the OMP algorithm.
From each pairwise comparison, we can infer that the CoSaMP algorithm generally performs better than
the OMP algorithm, as the values in certain cells are recovered closer to that of the original phantom,
and the number of non-relative elements recovered is less.

Next, we also compare the robustness to noise of the OMP and the CoSaMP algorithms. Different

(a) (b)

(c) (d)

(e) (f)

Figure 7. Circular phantom reconstructed with dual-mesh CoSaMP and OMP algorithms. (a) Dual-
mesh modified CoSaMP algorithm reconstruction result without regularization matrix. (b) Dual-mesh
modified OMP algorithm reconstruction result without regularization matrix. (c) Dual-mesh modified
CoSaMP algorithm reconstruction result with first order regularization matrix. (d) Dual-mesh modified
OMP algorithm reconstruction result with first order regularization matrix. (e) Dual-mesh modified
CoSaMP algorithm reconstruction result with second order regularization matrix. (f) Dual-mesh
modified OMP algorithm reconstruction result with second order regularization matrix.
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amounts of white Gaussian noise, at signal-to-noise ratios (SNRs) of 0, 5, and 10 dB, are added to
the scattered data. The noise added to the data corresponds to the power of measured signal at the
receivers. The noise added to the measurement signal is calculated as

Pnoise =

1

M

∑M

i=1

∣∣Escatt
meas, i

∣∣2
10SNR/10

(23)

where Escatt
meas, i is the measured scattered data at the i-th receiver. The additive white Gaussian noise is

given by

n =

√
Pnoise

2
(n1 + jn2) (24)

where n1 and n2 are two Gaussian distributed random variables.
The reconstruction results are shown in Fig. 8. Both the OMP and CoSaMP algorithms are able

to recover signal when the SNR equals 10 dB. The CoSaMP algorithm performs a little better at high
SNR value of 10 dB, as shown in Figs. 8(a), (b). However, as the SNR values decrease to 5 and 0 dB,
both algorithms struggle to recover the image. The non-relative noise appearing around the image
domain boundary increases. When SNR drops to 0 dB, the OMP algorithm is not able to reconstruct

(a) (b)

(c) (d)

(e) (f)

Figure 8. CoSaMP and OMP algorithm reconstruction results with different signal-to-noise ratios
(SNRs) 10 dB, 5 dB and 0dB, respectively. (a) CoSaMP method reconstruction results at 10-dB SNR
level. (b) OMP method reconstruction results at 10-dB SNR level. (c) CoSaMP method reconstruction
results at 5-dB SNR level. (d) OMP method reconstruction results at 5-dB SNR level. (e) CoSaMP
method reconstruction results at 0-dB SNR level. (f) OMP method reconstruction results at 0-dB SNR
level.
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a reasonable image. However, the CoSaMP algorithm is still able to recover a heavily distorted image.
The noise around boundary grows bigger and stronger.

Furthermore, the normalized residual r̂ of the algorithm is defined as

r̂ =
‖y −Ax̂‖2

‖y‖2
(25)

Here, combined with forward scattering model, the normalized residual is presented as

r̂ =

∥∥∥Escatt
meas −ÂEscatt

recon

∥∥∥
2

‖Escatt
meas‖2

(26)

where Escatt
recon is the recovered scattered field at end of the algorithm process, and Escatt

meas is the measured
scattered data (in this simulation, it is related to the synthetic data). The normalized residuals are
shown in Table 1.

Table 1. Normalized residual.

SNR CoSaMP OMP

10 dB 0.089 0.102

5 dB 0.218 0.436

0 dB 0.524 Does not converge

4.3. Case 3: Reconstruction Result with Fresnel Experimental Data

In this experiment, we apply our proposed algorithm to practical data from the Institute Fresnel,
Marseille. The experimental measurement setup has been described in [30]. The data we selected are
TM-polarized FoamDielExt, FoamDielInt [30]. As shown in Fig. 9(a) and Fig. 10(a), the white cylinder
represents plastic with relative permittivity εr = 3±0.3, and the gray area represents foam with relative
permittivity εr = 1.45±0.15. Based on the description in [25], all the cylinders inside the image domain
are 1.5m long and modelled as infinitely long to obtain 2-D TM data.

The image domain S is set up in a shape of a square of 0.15 × 0.15m2 size, and centered at origin
of the x-y plane. In our simulation, the center of the plastic cylinder is chosen as the center of the

(a) (b) (c)

Figure 9. (a) Experiment object setup description of FoamDielExt [30]. (b) Reconstruction results
from modified CoSaMP algorithm with regularization matrix. (c) Reconstruction results from modified
CoSaMP algorithm without regularization matrix.
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denser mesh. After dual-mesh discretizes the image domain, we get cell number 986 in total. In the
simulation, the hard threshold value is set as 450.

Figure 9 shows the reconstruction results of the relative permittivity using FoamDielExt data.
Fig. 10 shows the reconstruction results of the relative permittivity using FoamDielInt data. Fig. 9(b)
and Fig. 10(b) present the reconstruction results of modified CoSaMP algorithm with second order
regularization matrix. Fig. 9(c) and Fig. 10(c) show the recovery modified CoSaMP algorithm without
regularization matrix. Both experiments show that the regularization matrix helps to reconstruct the
dielectric profile better. However, compared to our synthetic data, the noise in non-object area is more
obvious. This is due to the nonlinear level of the practical data and the threshold number we selected.

(a) (b) (c)

Figure 10. (a) Experiment object setup description of FoamDielInt [30]. (b) Reconstruction results
from modified CoSaMP algorithm with regularization matrix. (c) Reconstruction results from modified
CoSaMP algorithm without regularization matrix.

5. CONCLUSIONS

In this paper, a novel microwave reconstruction imaging method using dual-mesh method and signal
space Compressive Sampling Matching Pursuit (CoSaMP) has been proposed and tested. In addition,
with the introduction of the different sizes of discretized cells, a regularization matrix is proposed
to compensate its effect and to help improve the convergence and robustness of our algorithm. To
demonstrate the method performance, three experiments utilizing synthetic data and real experimental
data are presented. From the results and analysis above, the proposed method is able to reconstruct
the image of a non-sparse object. In addition, compared to other algorithms, our method is faster and
more robust. In the future, we will work on the analysis of relationship between the CoSaMP algorithm
threshold and number of receivers. We also plan to collect more practical data and employ our method in
other applications, such as ground penetration radar imaging and through-barrier imaging. In addition,
we plan to perform deeper research on the dual mesh method benefit on algorithm convergence behavior.
Specifically, we intend to compare the triangular discretized method to the traditional rectangular mesh
grid and plot the convergence performance of the two methods. These results will be communicated in
the future.
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