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Abstract—An algorithm named MUSIC-like algorithm was previously proposed as an alternative
method to the MUltiple SIgnal Classification (MUSIC) algorithm for direction-of-arrival (DOA)
estimation. Without requiring explicit model order estimation, it was shown to have robust performance
particularly in low signal-to-noise ratio (SNR) scenarios. In this letter, the working principle of a
relaxation parameter β, a parameter which was introduced into the formulation of the MUSIC-like
algorithm, is provided based on geometrical interpretation. To illustrate its robustness, the algorithm
will be examined under symmetric α-stable distributed noise environment. An adaptive framework is
then developed and proposed in this letter to further optimize the algorithm. The proposed adaptive
framework is compared with the original MUSIC-like, MUSIC, FLOM-MUSIC, and SSCM-MUSIC
algorithms. A notable improvement in terms of targets resolvability of the proposed method is observed
under different impulse noise scenarios as well as different SNR levels.

1. INTRODUCTION

Symmetric α-stable (SαS) distribution is a sub class of stable distributions that is practical for modelling
noise due to its ability to encompass the behavior of both Gaussian and Non-Gaussian noises (specifically
impulse noise). Such scenarios can be found in real applications such as the atmospheric noise due
to thunderstorms, under-ice and shallow water noise in sonar and submarine communication, sea
clutter ambient noise, faulty sensors, and other man-made noises [1]. The α-stable distribution can
be characterized by several parameters S(α, β, γ, μ) which are the characteristic exponent 0 < α ≤ 2,
the skewness parameter β, the scaling parameter γ, and the location parameter μ. In this letter, the
distribution is assumed to have no skewness (β = 0), and hence the characteristic function of the SαS
distribution can be expressed by ϕ(t) = exp(jμt − γ|t|α) [1]. The distribution is also assumed to have
zero mean (μ = 0). The isotropic SαS distribution is now characterized mainly by α and γ, where
α indicates the likelihood of outlier occurrence, and γ functions in a similar fashion as the standard
deviation (σ) in a Gaussian process.

The MUSIC algorithm [2] is a well-known eigenstructure-based method with super resolution
performance [3] which has been employed in various contemporary applications from automotive
radars [4], unmanned aerial vehicle (UAV) localization [5], and underwater sonar to problems in joint
sparse signal recovery [6–8] and anomaly detection [9–11]. In certain scenarios when an impulse
noise is present, the characteristic exponent is characterized with a value less than 2 (α < 2). In
such case, it is known that only moments of order less than or equal to α is finite [1]. Under such
circumtances, the model order estimators which are based on the second-order moment such as the
Akaike Information Criterion (AIC) and the Minimum Description Length (MDL) are likely to produce
inaccurate estimation. As such, performance degradation of the MUSIC algorithm is expected. Several
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non-iterative methods which can be regarded as 1-step M-estimator (a class of weighted covariance
matrix) [12] were proposed in the literature to extract valuable information from the data matrix in
case when a complete knowledge of accurate second-order moment is unavailable [13–15].

• Fractional Lower Order Moment (CFLOM): The fractional lower order moment (FLOM) technique
was investigated and reported to have comparable performance to the robust covariation technique.
With M−element sensors, each element of an M × M FLOM matrix is defined as

CFLOM
ik = E[xi(t)|xk(t)|p−2x∗

k(t)], (1)

where 1 < p < α ≤ 2, and xk(t) are the data sample obtained from ith and kth sensors, and E[·]
denotes the expectation operation. Note that the term |xk(t)|p−2 plays a key role in reducing the
effect of the outlier produced by an impulse noise by mean of re-scaling each data point in x∗

k(t)
with the re-scaling factor |xk(t)|p−2.

• Spatial Sign Covariance Matrix (CSSCM): The spatial sign covariance matrix (SSCM) is an intuitive
and effective method that can also be used. With M -element sensors, each element of the M ×M
SSCM is defined as

CSSCM
ik = E

⎡
⎣( M∑

i=1

|xi(t)|2
)−1/2

xi(t)

(
M∑

k=1

|xk(t)|2
)−1/2

x∗
k(t)

⎤
⎦ , (2)

where the SSCM approach simply normalizes each data point by the l2-norm within its data
snapshot. Comparing the re-scaling factors of FLOM and SSCM, it can be seen that each element of
CSSCM has a more symmetrical structure than CFLOM . Both xi(t) and xk(t) were being re-scaled
in the case of SSCM while either xi(t) or xk(t) is being re-scaled in the case of FLOM.

To circumvent the subspace partitioning requirement altogether, an algorithm called MUSIC-like
algorithm can be used as an alternative method [16]. The additional relaxation parameter (β) introduced
into the algorithm has enabled the algorithm to achieve high resolution performance comparable to
the MUSIC algorithm without requiring explicit model order estimation. Theoretical aspect of the
algorithm was analyzed in [17], and experimental studies with real data under controlled environment
were conducted in [11, 18]. In order to generalize the applicability of the MUSIC-like algorithm to a
broader range of scenarios and applications, the algorithm will be examined under SαS distributed
noise in this letter. A framework for directional adaptive MUSIC-like is then developed and proposed
with an objective to further optimize its performance.

Major contributions of this letter can be concisely summarized into three points as follows. Firstly, a
geometrical interpretation of the MUSIC-like algorithm is provided as a complimentary to its theoretical
counterpart which was provided in [17]. To demonstrate its robustness under different noise distributions
(Gaussian and heavy-talied), the algorithm will be examined under SαS distributed noise in this letter.
Secondly, we show that the algorithm can be further optimized through an adaptive framework where we
propose directional adaptive β-selection method (βθ). The difference between original formulation and
the proposed method is reflected in the relaxation parameter βθ where it is now direction-dependent.
The value of relaxation parameter βθ can now be automatically readjusted corresponding to each look
direction instead of a fixed value that was used in the original formulation (β). Lastly, performance of
the MUSIC-like algorithms (fixed β and adaptive βθ) are compared against the performance of MUSIC
algorithm with and without preconditioned covariance matrix (weighted covariance matrix).

2. PROBLEM FORMULATION

Consider an M -sensor uniform linear array (ULA) with half-wavelength spacing situated in the far field
with K narrowband signal sources s(n) ∈ CK×1 impinge along the direction ΘK = [θ1, . . . , θK ]T . The
sensor’s snapshot x(n) can be modelled as

x(n) = A(ΘK)s(n) + v(n), (3)

where A(ΘK) = [a(θ1), . . . ,a(θK)] ∈ C
M×K is an array manifold comprises K steering vectors

corresponding to each source direction, and v(n) ∈ C
M×1 denotes additive uncorrelated noise vector
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with zero mean. Each steering vector a(θ) is a function of direction θ, which can be expressed as

a(θ) =
1√
M

[
exp

(
jkT

θ r1

)
, . . . , exp(jkT

θ rM )
]T

, (4)

where ri incorporates the location information of the ith sensor; kθ = 2πf/vuθ denotes the wave
number; and uθ is the unit vector along the wave propagation direction. The signal frequency and
propagation speed are denoted as f and v, respectively. Under the assumption that the signal sources are
uncorrelated and that infinite number of snapshots can be obtained, the covariance matrix R = E[XXH ]
can be decomposed into two orthogonal subspaces by eigendecomposition. The covariance matrix
can be expressed as R = UsΛsUH

s + UnΛnUH
n , where Us ∈ C

M×K denotes the signal subspace
matrix which comprises the eigenvectors corresponding to the dominant eigenvalues in the matrix Λs =
diag{σ2

s1
+σ2

v1
, . . . , σ2

sK
+σ2

vK
}, and Un ∈ C

M×M−K denotes the noise subspace matrix which comprises
the eigenvectors corresponding to the noise eigenvalues in the matrix Λn = diag{σ2

vK+1
, . . . , σ2

vM
}. The

pseudospectrum of the MUSIC algorithm can be obtained by PM (θ) = 10 log10(1/a(θ)HUnUH
n a(θ)).

The MUSIC-like algorithm was proposed in [16] as an optimization problem for each look direction
defined as

min
w

wHRw (5)

s.t. wHa(θ)a(θ)Hw + β||w||22 = c, (6)

where w is the weight vector solution of the optimization problem in Eq. (5); a scalar value β is a
relaxation parameter; and c is any constant value. It was shown in [16] that the weight vector solution
w is the eigenvector corresponding to the minimum eigenvalue λmin of the generalized eigenvalue problem
Rw = λ(a(θ)a(θ)H+βI)w, and hence the spatial spectrum of the MUSIC-like algorithm can be obtained
by PMlike(θ) = 10 log10(1/|wHa(θ)|2). The bound for β was proposed in [17] as

max
θ∈Θ

λR,min

(a(θ)HR−1a(θ))−1︸ ︷︷ ︸
βmin

< β < min
θ/∈Θ

λR,min

(a(θ)HR−1a(θ))−1︸ ︷︷ ︸
βmax

, (7)

with the choice of β to be a value between βmin and βmax defined as

β = (1 − ξ)βmin + ξβmax, (8)

where 0 < ξ < 1 can be chosen by ξ = βmin/βmax.

3. GEOMETRICAL INTERPRETATION OF THE ALGORITHM

In this section, a geometrical interpretation of the MUSIC-like algorithm is provided. For ease of
visualization, the two-dimensional plot will be used for illustration purposes. In the case of higher
dimensions, a line can be extended to a hyperplane, and an ellipse can be extended to a hyperellipsoid.

The optimization problem of Capon’s beamformer attempts to minimize the output power as
minw{wHRw} while the weight vector solution is required to satisfy the constraint wHa(θ) = c (where
c = 1 is commonly used) [19]. The constraint of Capon’s beamformer provides a feasible region where
the weight vector solution should belong to, which is on a line (or a hyperplane in high dimensional
spaces) as shown in Fig. 1(a). In contrast, it can be seen in Fig. 1(b) that the constraint of the MUSIC-
like algorithm provides a wider feasible region (ellipsoidal surface) for the weight vector solution to be
resided in. When coupled with minw{wHRw}, the relaxation parameter in MUSIC-like algorithm is
promoting the weight vector solution to be resided in the noise subspace, which is a crucial step in
obtaining the super resolution performance comparable to the MUSIC algorithm.

From Fig. 1(b) and by observing the constraint of the MUSIC-like algorithm, it can be seen that β
parameter plays a key role in regulating the ellipsoidal shape for weight vector solution of the MUSIC-
like algorithm. Further details regarding the adaptability of β parameter corresponding to the ellipsoidal
shape of the covariance matrix are shown in Figs. 2 and 3.

Note that Fig. 3 was obtained from a ULA of M = 10 sensors. Two targets were situated at
ΘK = [50◦, 110◦], and 200 snapshots of data were obtained. For the case of two dimensional spaces as
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(a) (b)

Figure 1. Optimization problems of Capon’s beamformer and MUSIC-like algorithm. (a) Capon. (b)
MUSIC-like.

(a) (b)

Figure 2. Adaptability of the MUSIC-like algorithm under different SNR scenarios. (a) Low SNR. (b)
High SNR.
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Figure 3. Variation of relaxation parameter under different SNR levels.

shown in Fig. 2, the principle axis P1 and the minor axis P2 are the first and second eigenvectors that
were extracted from the covariance matrix R of size 2 × 2. The principle axis Q1 and the minor axis
Q2 are the first and the second eigenvectors that were extracted from the matrix B = a(θ)a(θ)H + βI
of size 2 × 2. When the SNR is low (λR,1 ≈ λR,2) as shown in Fig. 2(a), both axes (P1) and (P2)
are comparable, and hence by following Eqs. (7) and (8), the β value is set to a relatively larger value
than βmin as shown in Fig. 3. This large β is inflating the ellipsoidal surface accordingly as shown in
Fig. 2(a). On the other hand when the SNR is high (λR,1 � λR,2) as shown in Fig. 2(b), the principle
axis (P1) is no longer equivalent to the minor axis (P2). It can be seen in Fig. 2(b) that the contour
plot is now skewed, and by following Eqs. (7) and (8), the value of β parameter is now approaching the
value of βmin as shown in Fig. 3. This small β is deflating the feasible ellipsoidal surface as shown in
Fig. 2(b).

Until recently [11, 18], the value of β has been set according to the SNR of the obtained data
(data-dependent), where it is fixed throughout all look directions (β in Fig. 4). In the next section,
β will be adaptively readjusted not only according to the SNR (data-dependent) but also throughout
each look direction (direction-dependent). This adaptive beta is denoted as βθ.
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Figure 4. Variation of relaxation parameters corresponds to each look direction.

4. THE WORKING PRINCIPLE OF βθ PARAMETER

The constraint of MUSIC-like algorithm in Eq. (5) can be regarded as an inflated hyperellipsoid where
the principle axis of the hyperellipsoid is mainly spanned by a rank 1 matrix a(θ)a(θ)H (for small
β), and the minor axes are dictated by the β value. For each look direction, the distance between
the noise subspace and the hyperplane, and the orientation of the hyperplane itself are varied relative
to each steering vector a(θ). Since the noise subspace Un is not known a priori, the eigenvector uM

corresponding to the minimum eigenvalue of the covariance matrix λR,min is used as an proxy. We now
propose a distance parameter ξθ which approximates the distance between each steering vector and this
proxy. The distance parameter is defined as

ξθ = 1 − ∣∣uH
Ma(θ)

∣∣ , (9)

where ||a(θ)||22 = 1, and the value of ξθ is varied within the range of 0 ≤ ξθ ≤ 1. The new adaptive βθ

can be obtained by substituting Eq. (9) into Eq. (8) which can be reexpressed for each look direction as

βθ = βmax − δβ
∣∣uH

Ma(θ)
∣∣ , (10)

where δβ = βmax − βmin. The working principle of βθ can be summarized as follows. Consider a ULA
with M = 10 sensors. Two targets are situated at ΘK = [50◦, 110◦] where 200 snapshots of data were
obtained with SNR = −5 dB (α = 2). When θ ∈ ΘK , ξθ admits a relatively large value since |uH

Ma(θ)|
is small. Hence, the corresponding βθ is assigned to a large value as shown in Fig. 4. With large βθ, the
ellipsoid is then inflated. In contrast, when θ /∈ ΘK , ξθ admits a relatively small value since |uH

Ma(θ)| is
large. The corresponding βθ is now assigned to a relatively small value. With small βθ, the ellipsoid is
now deflated accordingly.

The variation of ξθ allows βθ to be adaptively readjusted itself for each look direction, and hence
the hyperellipsoid is automatically inflated or deflated corresponding to each look direction. On the
other hand, the old β (marked as β in Fig. 4) remains constant for each look direction.

5. SIMULATION RESULTS

Consider a ULA with M = 10 sensors. Three targets are situated at ΘK = [50◦, 60◦, 110◦] where 100
data snapshots were obtained. When α < 2, a generalized signal-to-noise ratio (GSNR), which is defined
as GSNR (dB) = 10 log10(E[|s(t)|2]/γα), will be used. A complex SαS distributed noise is considered in
all simulation studies. When α = 2, the GSNR reduces to the traditional SNR where γ plays the same
role as the standard deviation σ in a Gaussian process. To obtain the FLOM matrix as described earlier
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Figure 5. The spatial spectrum of related algorithms with 100 snapshots for M = 10, K = 3, and
GSNR = −2 dB.
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Figure 6. Real part of the complex isotropic SαS distributed noises for α = 2, 1.9, 1.8, and 1.7,
respectively.

that CFLOM
ik = E[xi(t)|xk(t)|p−2x∗

k(t)] (where 1 < p < α ≤ 2), the value of p = 1.1 is set according to
the best result reported in [13]. In Fig. 5, α is set to 1.8 where the GSNR is set to −2 dB. It can be seen
that the MUSIC-like algorithm with adaptive βθ has the ability to differentiate closely spaced sources
better than the MUSIC, FLOM-MUSIC, SSCM-MUSIC, and the original MUSIC-like algorithm with
fixed β.

Next, performance parameters (probability of resolution and average root-mean-squared error
(RMSE)) of related algorithms are studied under the Monte Carlo simulation of 1,000 trials based
on different values of α. To illustrate the effect of each selected α, the real parts of complex isotropic
SαS distributed noise corresponding to α = 2, 1.9, 1.8, and 1.7 are shown in Fig. 6. To obtain
performance parameters, three targets are situated at ΘK = [50◦, 65◦, 110◦] where 100 snapshots of
data were obtained.

The probability of resolution and the average RMSE with different levels of α are shown in Figs. 7
and 8. When α = 2, the SαS distribution reduces to a Gaussian process, and as α decreases (α < 2) the
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Figure 7. The probability of resolution plotted against different levels of GSNR with α = 2, 1.9, 1.8,
and 1.7, respectively.

likelihood of outlier occurrence increases accordingly. It can be seen in Fig. 7 that the proposed method
is able to achieve very good performance for the probability of resolution (best targets resolvability)
especially in low GSNR conditions. Slight improvement from MUSIC algorithm can be obtained from
the SSCM-MUSIC especially when the value of α decreases (e.g., α = 1.7). Performance of the original
MUSIC-like algorithm with fixed β is comparable to the FLOM-MUSIC.

In spite of significant improvement on targets resolvability, we also note a crucial trade-off between
such improvement and the estimation RMSE. It can be seen in Fig. 8 that the proposed method tends
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Figure 8. The average RMSE plotted against different levels of GSNR with α = 2, 1.9, 1.8, and 1.7,
respectively.

to have higher bias than the other methods on estimated directions. Such trade-off would be tolerable
in certain applications such as the source localization under quasi-static environment, where detection
and resolvability are of highest priority, and certain biasness is acceptable [9–11].

6. CONCLUSION

In this letter, geometrical interpretation of the MUSIC-like algorithm is provided which helps to
understand the working principle of relaxation parameter β. Investigations of the original MUSIC-
like algorithm and the proposed method under SαS distributed noise were conducted. The proposed
method was also compared with the MUSIC, FLOM-MUSIC, and SSCM-MUSIC algorithms. Computer
studies highlight a notable improvement of the proposed method over other methods in terms of targets
resolvability. We also note a crucial trade-off between such improvement and the estimation bias which
is inherent in the proposed method. The proposed method is therefore suitable for applications where
detection and targets resolvability are of highest priority, and slight bias is acceptable.
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