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Bayesian Approach for Indoor Wave Propagation Modeling

Abdullah Al-Ahmadi*, Yazeed Qasaymeh, Praveen R. P., and Ali Alghamdi

Abstract—This paper presents a parsimonious Bayesian indoor wave propagation model for predicting
signal power in multi-wall multi-floor complex indoor environments. The received power is modeled as
a Bayesian multiple regression model. The parameters of the model are assessed and validated using
a two-tier validation strategy in which Bayes factor and posterior probability are used in the first tier
and second tier, respectively. The performance of the two-tier strategy is then assessed using Bayesian
information criterion. The proposed indoor propagation model is tested in a two-storey building with
access points operating at 2.4 GHz.

1. INTRODUCTION

With the expanding of wireless communication technologies in the recent years, it is becoming
increasingly difficult to ignore the fact that these technologies have become more complex to design and
more expensive to install and maintain. In the new global economy, cost has become a central issue for
developing such technologies. A major area of interest within the field of minimizing the cost of wireless
communication systems is by reducing the human intervention. A considerable amount of literature
has been published on this matter. Some of the studies emphasize the propagation of Radio Frequency
(RF) and multipath phenomenon, where RF signals arrive at the receiver from multiple directions due
to reflection, diffraction, and scattering. By incorporating the knowledge of RF propagation, researchers
were able to reduce the human interference factor by using theoretical propagation models instead of
empirical methods. However, a major problem with this kind of propagation models is their accuracy
compared to empirical methods.

More recently, literature has emerged, which offers extremely meritorious findings about the use
of Bayesian models in various applications. In location determination systems, Bayesian models are
used to significantly reduce the size of the data set required for model training [1–3], in predicting the
popularity of a tweet in social media [4], in record linkage and duplication detection [5], in the field of
blind image deconvolution [6], and many more. Three essential operations are needed in Bayesian data
analysis [7]. The first step is defining a probability model composed of observed variables and hidden
causes, then conditioning on these observed variables in the second step, and lastly evaluating the fit of
the model.

The objective of this study is to design a Bayesian model that is capable of predicting the signal
power level in a complex multi-floors and multi-walls indoor environments. This study aims to contribute
to this growing area of research by integrating Bayesian models with the field of signal propagation.

This study is divided into four sections. Section 2 provides a literature review on the area of wave
propagation modeling. Section 3 introduces the proposed model and describes the methods used to
validate the model. Section 4 shows the results and performance analysis of the model, and Section 5
describes summary and conclusion.
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2. CLASSIFICATION OF INDOOR PROPAGATION MODELS

Generally, indoor propagation models can be divided into two categories, Empirical models where the
received power is reported with mean and variance reflecting their accuracy, and Deterministic models
where the estimation of received power is based on simulating the physics of radio wave propagation [8].

Tarng & Liu [9] proposed a deterministic site-independent hybrid model where the path loss is
determined using direct transmitted ray along with the support of ray tracing technique. At first, the
system searches for the direct Line-of-Sight (LoS) to determine whether the transmitted ray was blocked
by an obstacle then traced to a predetermined reference direction.

Ray launching model [10] is a deterministic type propagation model for small-cell areas. A number
of angle-separated rays are broadcasted in various directions interacting with the obstacles surrounding
the receiver. A ray is terminated either by reaching a predetermined number of obstacles or if it declins
below a predetermined threshold. The received ray r(t) is formulated as a sum of phase-shifted Dirac
functions:

r(t) =
n∑

k=1

γk · δ(t − τk) · ejΦk (1)

where γ is the amplitude, τ the time-of-arrival, and Φ the phase-of-arrival. However, the downside of
this approach is the increased probability of rays missing obstacles as the separation between transmitter
and receiver increases.

The One-Slope Model (1SM) [8] considers only the separation distance between the transmitter
and the receiver, and assumes a linear dependence on the path loss (Lp)

Lp = L0 + 10n log(d) (2)

where L0 is the first-meter path loss, n the path loss index, and d the distance in meters (m) between
the transmitter and the receiver. The main drawback of the 1SM model is that it does not address
the very complex characteristics of the indoor environments. Instead, it only relies on the distance
to calculate the path loss. The Multi-Wall Model (MWM) [8] suggests that Floor Attenuation Factor
(FAF) has a nonlinear relationship with the number of floors between transmitter and receiver.

Lp = LFS + Lc +
I∑

i=1

nwiLwi + n

[
nf +2

nf +1
−β

]

f Lf (3)

where LFS is the free space loss between transmitter and receiver, Lc a constant loss, nwi the number
of penetrated walls of type i, nf the number of floors penetrated, Lwi the loss of type i wall, Lf the loss
between neighboring floors, β an empirical parameter, and I the number of wall types. Multiple linear
regression is used to calculate Lc for wall losses which usually approaches zero. The model depends on
the number and type of walls for the total wall attenuation between transmitter and receiver. Linear
Attenuation Model (LAM) [11] assumes linear association between separation distance and path loss:

Lp = LFS + α × d (4)

where α is the attenuation coefficient, and d is the distance from transmitter in meters. A major
drawback for this model is the need for large data set and a complete propagation model for a small
testbed area.

Malnar and Jevtic [12] proposed a site-dependent multi-room multi-obstacle indoor propagation
model. The multi-parameter model integrates total attenuations caused by rooms, wall, windows, and
doors.

Lp = LLoS + Lrooms + Lobstacles (5)

where LLoS is the path loss caused by first room encountered while signal travels from transmitter
towards the receiver, Lrooms the total power loss caused by passing through the walls of all rooms,
and Lobstacles the total obstacles power loss. However, this system requires a detailed site knowledge by
categorizing rooms into different types based on their usage and specifying walls materials and thickness.



Progress In Electromagnetics Research M, Vol. 83, 2019 43

3. BAYESIAN INDOOR PROPAGATION MODEL

The Bayes’ Theorem describes the joint probability between random variables α and β as:
P (α, β) = P (α|β) P (β) = P (β|α) P (α) (6)

The conditional probability of α given β is called the posterior probability which can be obtained
by arranging Equation (6):

P (α|β) =
P (β|α) P (α)

P (β)
(7)

where P (α|β) is the marginal probability of the prior P (α) multiplied by the likelihood P (β|α):
posterior ∝ prior × likelihood

The Bayes Factor (BF) states that for any two models M1 and M0, the BF is [13]:

BF =
P (Data|M1)
P (Data|M0)

(8)

where M1 is the candidate model, and M0 is the null model. Table 1 lists the interpretation of BF
values [14].

Table 1. Interpreting Bayes factors.

BF10 Evidence
< 1 Supports the null model M0

1 to 3 Anecdotal evidence for M1

3 to 12 Moderate evidence for M1

12 to 150 Very strong evidence for M1

> 150 Extreme evidence for M1

Based to the parsimony principles, in model selection there is a tradeoff between bias and
variance [14]. As the number of model’s parameters increases so does the average error between measured
and estimated values.

Table 2. Model comparison.

Models P (M) P (M |Data) BF10 R2

Null model 0.125 3.921e − 10 1.000 0.000
Floors + Distance + Walls 0.125 0.894 2.279e + 9 0.869

Floors + Walls 0.125 0.091 2.333e + 8 0.817
Walls 0.125 0.012 2.955e + 7 0.753

Distance + Walls 0.125 0.002 5.456e + 6 0.754
Floors + Distance 0.125 0.001 3.028e + 6 0.742

Distance 0.125 5.624e − 7 1434.402 0.477
Floors 0.125 7.159e − 11 0.183 0.001

Table 2 lists all 2p possible models’ combinations where p is the number of explanatory variables. A
total of 8 models are considered in this study with BF10 compared to the null model in the fifth column
where 6 of these models have extremely high BF10 values. BF10 of the null model is equal to 1 since
M1 = M0, and it is considered a better model candidate than a single “Floors” explanatory variable
model. Hence, the posterior probability is used to pick and choose from multiple candidates with high
BF as:

P (Mi|Data) =
P (Data|Mi) P (Mi)

k∑
j=1

P (Data|Mj) P (Mj)

(9)
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where k is the number of candidate models. The third column in Table 2 shows the posterior probability
for candidate models, here we only consider the top 6 models with BF higher than 150.

Bayesian Information Criterion (BIC) is another strategy used to select and validate predictor
variables to be used in the model. This technique leverages the model’s likelihood and the size of the
data set for parameters selection as follows:

BIC = ln (n) (p + 1) − 2 ln
(
L̂

)
(10)

where n is the number of observations in the data set, p the number of parameters, and L̂ the maximum
likelihood value. Table 3 shows the marginal inclusion probability for the Bayesian model predictors
(Floors, Distance and Walls) in addition to the intercept. It is clear that all predictors have a high
inclusion probability that exceeds 0.5 with p(Floors) = 0.986, p(Distance) = 0.897 and p(Walls) = 0.999
indicating the contribution of each predictor on the final model as shown in Figure 1 using the Bayesian
Adaptive Sampling (BAS) package for R [15].

Table 3. Posterior summaries of coefficients.

Coefficient Mean SD P(incl) P(incl—data) BFinclusion

Intercept 65.488 1.187 1.000 1.000 1.000
Floors 15.773 3.338 0.500 0.986 71.856

Distance 1.252 0.396 0.500 0.897 8.703
Walls 6.700 1.352 0.500 0.999 840.953
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Figure 1. The marginal inclusion probability for three variables in addition to the intercept.

Figure 2 shows all possible models where each column corresponds to a unique model combination.
These columns are ordered based on their log posterior odds divided by the null model from highest
score in the left to the lowest in the right. The null model refers to the model that has only the intercept
as a predictor. As shown in Figure 1, the first model which includes all three predictors has the best
performance based on its posterior score of 23.29. The second best model with the posterior score
of 20.983 eliminates only one predictor (Distance) which is marked in Figure 2 by a black rectangle.
Interestingly, the third model with only one predictor (Walls) has a higher posterior probability than the
forth and fifth models with two predictors (Distance and Walls) and (Floors and Distance), respectively.

The correlation between the residuals and fitted values is shown in Figure 3 showing a constant
spread of values with only three outliers. It also proves that the residuals and fitted values are
uncorrelated suggesting that linear regression is a credible approximation.
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Figure 2. Model rank for all possible combinations.
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Figure 3. Residuals vs. fitted values.

4. DATA COLLECTION AND RESULTS

The data are collected using a custom made PC application for wireless interface [16] in a two-storey
building as shown in Figure 4. A user carrying a PC collects data at random location points. The used
data set contains 30 tuples collected at random location points in a two-storey building [17]. 21 of these
tuples are recorded in the first floor of the testbed and 9 in the second floor.

Each tuple comprises six variables, xi, yi, f li,Di, P ri and wi. The model is set as:

Pri = α + β1xfli + β2xDi + β3xwi + εi (11)

where Pri refers to the received power in dBm; fli represents the number of floors between the
transmitter and receiver; Di is the Euclidean distance in meters between the location points and the
APs; wi is the number of walls separation between transmitter and receiver; and εi is the error term of
the ith location point from the Access Point (AP). From Equation (11), the distance Di is:

Di =
√

(X − xi)
2 + (Y − yi)

2 (12)
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(a) (b)

Figure 4. Floor maps for the wireless communication center at Universiti Teknologi Malaysia. (a)
First floor. (b) Second floor.

(a)

(b)

(c)

Figure 5. Measured versus estimated signal power for (a) AP1, (b) AP3 and (c) AP4.
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where xi and yi are the coordinates of the ith location point, and X and Y are the coordinates of AP.
The error term εi is assumed to be Independent and Identically Distributed (iid) with common variance
σ2 as:

εi
iid∼ Normal (0, τ) (13)

From Equation (11), α, β1, β2 and β3 are the priors for the multiple regression model drawn from
a normal distribution with means centered at parameters a, b1, b2 and b3, and τ is Gamma prior
distribution for the precision:

α, β1, β2, β3 ∼ Normal ((a, b1, b2, b3) , τ) (14)

τ ∼ Gamma (g1, g2) (15)

The BAS package for R which provides a predict function using Bayesian Model Averaging (BMA)
is used to test the performance of the proposed model. Three models are built for three individual APs
replicating distinct indoor environments. Each aforesaid model is supplied with a Zellner-Siow Cauchy
prior and a uniform prior. Figure 5 shows the measured and estimated received powers at all location
points from AP1, AP3, and AP4, respectively.

Figure 6 shows the Cumulative Distribution Function (CDF) of estimation error for all APs where
each model is based on data collected from that particular AP. The average of estimation error is 4.87 dB
for AP1, 3.06 dB for AP3, and 3.55 dB for AP4. The marginal posterior values for coefficients α, β1, β2,
and β3 are listed in Table 4 where the received power can be estimated by substituting the values for
each coefficient listed in the table with their associated variables, xfli , xDi , and xwi at the ith location
point. Either β1 or β3 will be ignored if the transmitter and receiver are at the same floor (i.e., xfli = 0),
or there is a direct LoS between the AP and the location point (i.e., xwi = 0).

Figure 6. CDF of estimation error.

Table 4. Marginal posterior summaries of coefficients.

Model Intercept (α) Floors (β1) Distance (β2) Walls (β3)
AP1 65.48 15.15 1.13 7.11
AP3 67.20 5.7 0.83 2.23
AP4 80.11 16.11 0.0023 9.49

Figure 7 shows the performance of AP1 based Bayesian model versus 1SM, MWM, and LAM.
All models are tested in the same environments. The Distance variable in 1SM model is modified to
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Average estimation error

1SM = 20.38 dB
MWM = 11.16 dB
LAM = 10.25 dB
Proposed Model = 4.87 dB

Figure 7. Boxplots of estimation error for the proposed model vs. 1SM, MWM and LAM.

Figure 8. CDF of estimation error for the proposed model versus 1SM, MWM and LAM.

substitute for floors effect. The average estimation error for 1SM is 20.38 dB and 11.16 dB for MWM
and 10.25 dB for LAM in comparison with average estimation error of 4.87 dB for the proposed model.
The attenuation coefficient α for LAM model is set to 2.8. Wall Attenuation Factor (WAF) and FAF in
MWM model are set to 7 dB and 20 dB, respectively. Note that MWM and LAM perform similarly in
terms of average estimation error, but this does not apply to the error variance for both models where
variance for MWM is 49.11 dB and 70.93 for LAM. This is also visible by the CDF plot for all models
in Figure 8.

Figure 9 shows the CDF of estimation error for Bayesian model based on AP1 coefficients listed
in Table 4 with different APs data (AP3 and AP4 in particular) demonstrating system performance in
different environments. With the new data, the system achieves a good performance with an average
estimated error of 9 dB for AP3 and 6.28 dB for AP4 with low variance compared to MWM and LAM.
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Figure 9. CDF of estimation error for AP3 and AP4 based on AP1 model.

5. CONCLUSION

The purpose of the current study is to design a Bayesian model for predicting the signal power in indoor
environments. The proposed model estimates the received power at the receiver in a complex indoor
environment. The parameters of the Bayesian multiple regression model are validated using different
strategies to ensure their suitability to the model.
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