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Fast Transient Simulations for Multi-Segment Transmission Lines
with a Graphical Model

Joel B. Harley1, *, Mashad U. Saleh2, Samuel Kingston2,
Michael A. Scarpulla2, and Cynthia M. Furse2

Abstract—This paper studies a computationally efficient algebraic graph theory engine for simulating
time-domain one-dimensional waves in a multi-segment transmission line, such as for reflectometry
applications. Efficient simulation of time-domain signals in multi-segment transmission lines is
challenging because the number of propagation paths (and therefore the number of operations) increases
exponentially with each new interface. We address this challenge through the use of a frequency-
domain, algebraic graphical model of wave propagation, which is then converted to the time domain
via the Fourier transform. We use this model to achieve an exact, stable, and computationally efficient
(O(NQ), where N is the number of segments and Q is the bandwidth) approach for studying one-
dimensional wave propagation. Our approach requires the reflection and transmission coefficients for
each interface and each segment’s complex propagation constant. We compare our simulation results
with known analytical solutions.

1. INTRODUCTION

This paper discusses the use of algebraic graph theory for simulating time-domain signals with multiple
reflections in multi-segment transmission lines. We use multi-segment electrical transmission lines as an
example, but the approach is generalizable to other modalities of one-dimensional wave propagation. For
example, this simulation work could be applied to structural ultrasound [1, 2], medical ultrasound [3],
or electrical diagnostics systems [4]. In these modalities, we often analyze one-dimensional wave
propagation behavior to better understand the characteristics of waves traveling in complex structural,
biological, and electrical systems [5].

Techniques such as spread spectrum time domain reflectometry [4, 6] transmit wideband signals into
electrical transmission lines and measure reflection amplitudes and delays to detect and locate faults.
Characterizing faults can often be accomplished by solving an inverse problem. Yet, for multi-segment
transmission lines, solving these inverse problems often require a reliable and fast simulation engine.

In general, simulation techniques become less attractive as the transmission line grows and as
more interfaces are added [7, 8]. For example, finite element [9], finite difference time domain [10],
and transmission line matrix [11] models are very powerful but have several challenges. Specifically,
these methods yield approximate solutions, and their stability depends on choosing appropriate spatial
sampling or meshing parameters [12]. The transfer matrix [13] method represents an alternative
approach for modeling wave propagation. In geophysics, optics, and acoustics, the transfer matrix
method [14] represents the wave behavior across each segment with matrices. These matrices
are multiplied together to determine the aggregate behavior. While this approach is reliable, the
computational cost increases exponentially with the number of segments [15]. The computational
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complexity of many grid or mesh based simulation methods scale with N , the number of voltage
nodes/values in the model, and Q, the bandwidth of the signal [16]. For example, the finite element
method [17] has a computational complexity of O(NQ2). Yet, the number of nodes is often very large.
For example, the finite difference time domain (FDTD) method requires a minimum density of 10 nodes
per wavelength [18] to accurately simulate waves. This further increase computational costs.

As a result, we present a computationally efficient simulation engine based on knowledge of reflection
and transmission coefficients and propagation coefficients (velocities and attenuations). We use an
algebraic graphical model to derive our approach and demonstrate a computational complexity of
O(NQ), where N is the number of graphical nodes, and Q is the bandwidth of the excitation signal.
Unlike methods like FDTD, N only needs to be proportional to the number of segments or interfaces
in the transmission line. The graphical model we use is similar to signal flow graphs in the microwave,
control, and electromagnetics literature [19–22], where each node in the graph corresponds to voltages
traveling in a known direction. In the signal processing literature, algebraic graph theory [23] has
seen much research with studies into the interconnectedness of complex systems [24, 25]. In addition,
advances in computing with large, sparse data sets [26, 27] has enabled computationally efficient methods
for solving inverse problems in algebraic graph structures [28, 29].

From the perspective of algebraic graph theory, we demonstrate how graphs can efficiently model
time-series information propagating in a one-dimensional transmission line. From the perspective of
wave theory, we demonstrate a computationally efficient method for simulating wave propagation in
multi-segment transmission lines. We prove that our approach has guaranteed convergence and stability.
We also demonstrate that the simulations match theory.

2. BACKGROUND

In this section, we provide the necessary background for defining a multi-segment transmission line as
an algebraic graphical model. We will use these concepts to create our simulation method. We also
describe the theoretical reflection and transmission behavior with one and two interfaces. We will later
demonstrate that our graphical model matches this theory.

We consider a multi-segment transmission line and all of its multi-path components, as illustrated
in Fig. 1. That is, we consider a one-dimensional transmission line that can be divided into multiple
segments, each with potentially different wave propagation characteristics. We define each segment
by two quantities: its characteristic impedance Z0(ω) and complex propagation coefficient γ(ω). The
characteristic impedance is a frequency-dependent measure of the ratio of the electric to magnetic
fields in a transmission line. The propagation coefficient represents the complex frequency-dependent
wavenumber/velocity and attenuation of a propagating wave. Note that the S-parameters for each
interface (i.e., the reflection and transmission coefficients) are directly related to the characteristic
impedances of the two adjoining segments.

Figure 1. Illustration of a multi-segment transmission line with many paths that waves can travel. We
assume the first and last segments are infinitely large.

2.1. Single Segment: Propagation

The propagation coefficient describes how waves travel in a segment, between two interfaces. We
represent this in the frequency domain as

H(ω) = e−γ(ω)(Δd),
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where Δd is the travel distance across the segment. Note that, in general, γ(ω) is composed of an
imaginary part representing the wavenumber of the propagating wave, which controls the frequency-
dependent phase shift, and a real part representing the attenuation of the propagating wave. When
γ(ω) is a purely imaginary value and linear with respect to frequency, H(ω) corresponds to a time-delay.

2.2. Single Interface: Reflection and Transmission

We represent our transmission line as a series of sequential segments. The only sources of reflections
are from the interfaces between segments. For example, consider an interface between two segments,
labelled segment 0 and segment 1 (with characteristic impedances Z0(ω) and Z1(ω), respectively). This
is illustrated in Fig. 2(a). The reflection coefficient Γ0|1(ω) for a wave arriving from segment 0 can be
described by

Γ0|1(ω) =
Z1(ω) − Z0(ω)
Z1(ω) + Z0(ω)

.

If we reverse the direction of propagation from the 0|1 direction to the 1|0 direction, we get the
relationship

Γ1|0(ω) = −Γ0|1(ω).

Therefore, the reflection coefficient in either direction can be represented with one function.

(a) Single interface (b) Two interfaces

Figure 2. Illustration of a two-interface transmission line with labels illustrating different quantities
used considered in our simulation engine. Note that we assume the first and last segment to be infinite
in length.

Similarly, the transmission coefficient from segment 0 to 1 for the same interface (assuming no
absorption at the interface) can be described by

T0|1(ω) =
2Z1(ω)

Z1(ω) + Z0(ω)
= 1 + Γ0|1(ω). (1)

If we reverse the direction of propagation from the 0|1 direction to the 1|0 direction, we get the
relationship

T1|0(ω) = 1 − Γ0|1(ω). (2)

Therefore, the reflection and transmission coefficients for traveling in either direction across an interface
can be expressed by the reflection coefficient Γ0|1(ω).

2.3. Two Interfaces: Reflection, Transmission, and Propagation

When there are two interfaces, waves will reflect and propagate between both interfaces in a recursive
manner. That is, reflections from one interface will reflect off another interface. In this subsection, we
theoretically derive this behavior as an illustrative example. In our results section, we demonstrate that
our graphical model produces the same result.

Consider a transmission line with two interfaces, as illustrated in Fig. 2(b). We consider three
segments, labeled: −, 1, and + with two interfaces: −|1 and 1|+. In this notation, −|1 implies the
wave is travelling from segment − to segment 1 and 1|− implies the wave is travelling from segment 1
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to segment −. The − and + segments are considered infinitely long. As a result, the characteristic
impedances Z−(ω) and Z+(ω) can be considered the output impedance and input impedance for the
transmission line, respectively.

Given this model, we consider the effective transfer function S−|1,1|+(ω) corresponding to the sum
of all waves originating at the −|1 interface and traveling to the right and ending at the 1|+ interface.
This transfer function is defined by

S−|1,1|+(ω) = e−γ1(ω)d1 + e−γ1(ω)d1

(
Γ1|−(ω)Γ1|+(ω)e−γ1(ω)2d1

)
+ e−γ1(ω)d1

(
Γ1|−(ω)Γ1|+(ω)e−γ1(ω)2d1

)2

+ · · ·=e−γ1(ω)d1

∞∑
n=0

[
Γ1|−(ω)Γ1|+(ω)e−γ1(ω)2d1

]n
(3)

where γ1(ω) and d1 are the propagation coefficient and length of segment 1, respectively. The terms
represent propagation and reflection in the first segment, followed by the reflections recursively traveling
a distance of 2d1 between the 1|+ and −|1 interfaces. The term n represents the number of times the
wave has traveled across the segment.

This transfer function, or effective reflection coefficient, can be simplified by applying the definition
of a geometric series such that

S−|1,1|+(ω) =
e−γ1(ω)d1

1 + Γ−|1(ω)Γ1|+(ω)e−γ1(ω)2d1
, (4)

where we use the property that Γ−|1(ω) = −Γ1|−(ω) to standardize the reflection coefficient notation to
correspond to waves traveling from left-to-right (i.e., the forward direction). This form demonstrates
that the effective transmission coefficient has a direct term (the numerator) and a recursive term (the
denominator). Note that this expression is guaranteed to be stable (i.e., the time domain response
converges to zero) as long as Γ1|+(ω) < 1, Γ−|1(ω) < 1, and �{γ(ω)} ≥ 0 for all ω. This always holds
true in practical transmission line scenarios.

While this approach nicely models the infinite number of reflections between two interfaces, it is
not trivial to extend the closed-form solution to more than two interfaces. In the following section, we
build an extension of this concept through the use of an algebraic graphical model and linear algebra.
While the underlying mathematics is different, the overall derivation process is similar.

3. GRAPHICAL MODEL OF WAVE PROPAGATION

3.1. Graph Representation

We represent the transmission line with a directed graph G = {V, E}. The graph contains vertices (or
nodes) vn ∈ V and edges that connect the nodes εij ∈ E . Each node has a frequency-dependent value,
which represents the frequency-dependent voltage in a transmission line before or after an interface. The
edges connect nodes and possess complex weights. When a value (i.e., wave voltage) travels between
nodes via an edge, the source node value vn is multiplied by the edge weight εij and then placed into
the destination node. This process, known as a graph shift [30], occurs simultaneously for all nodes.

Figure 3 illustrates two-interface and three-interface systems and their corresponding graphical
models. The values next to each edge correspond to the fixed edge weights. These complex values
represent the reflection coefficients, transmission coefficients, and propagation delays in the frequency
domain. We assume an output impedance Z−(ω) (i.e., the impedance of the left-most, infinitely long
segment) and input impedance Z+(ω) (i.e., the impedance of the right-most, infinitely long segment).
Each segment has a characteristic impedance Zi(ω), propagation constant γi(ω), and length di for all i.

This model is similar to signal flow graphs found in the microwaves, control, and electromagnetics
literature [19–22]. That is, the graphical model describes how voltage flows from one part of the
transmission line to another. The nodes at the top of the graph correspond to forward traveling waves,
and the nodes at the bottom correspond to backward traveling waves. Each node contains a direction-
dependent voltage at one side of a boundary or interface. The sum of the vertically aligned nodes
represents the voltage at that location.
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(a) Two interface (b) Three interfaces

Figure 3. Illustration of a graphical model for (a) a two-interface transmission line and (b) a three-
interface transmission line. Each node in the graphical model represents one immediate side of a
boundary, where we can generate or measure waves. The value (e.g., voltage) in each node is multiplied
by the edge weights as they travel throughout the graph.

Each edge indicates how the wave travels across a homogeneous transmission line segment or how
the wave changes at an interface. Horizontal lines represent transmission across a segment or interface.
Vertical lines represent reflection at an interface. Hence, a vertical line transitions forwarding-traveling
voltages into backward-traveling voltages or vice-versa. This allows us to model multiple reflections
in the transmission line. Each edge has a complex frequency-dependent weight corresponding to a
transmission coefficient, reflection coefficient, or phase shift.

Through the graph, the wave propagation is represented by a dynamical model. That is, we specify
a relationship between each node at frequency ω by

v(i)(ω) = A(ω)v(i−1)(ω) (5)

where A(ω) is an adjacency matrix, v(i)(ω) represents a vector of node values (i.e., all forward and
backward traveling waves voltages) at step i,

v(i)(ω) =
[
v

(i)
1 (ω) · · · v

(i)
N (ω)

]T
, (6)

where 1 ≤ n ≤ N/2 corresponds to nodes with forward traveling values, and N/2 + 1 ≤ n ≤ N

corresponds to nodes with backward traveling values. Hence, v
(i)
1 (ω) + v

(i)
N/2+1(ω) represents the total

voltage at node 1 during step i. These nodes are illustrated in Fig. 3. Note that alternative ordering
of the nodes can be used. Also note that the order of steps corresponds to an order of events but does
not explicitly correspond to time. Instead, time is encoded through the frequency-domain phase shifts,
i.e., e−γ(ω)d.

3.2. The Wave Adjacency Matrix

For a general graph, the weighted adjacency matrix that represents the connections between nodes is
expressed by an N × N block matrix

A(ω) =
[
T+(ω) R+(ω)
R−(ω) T−(ω)

]
(7)
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The (N/2) × (N/2) submatrices correspond to forward-traveling behavior T+(ω), backward-traveling
behavior T−(ω), forward-to-backward reflection behavior R−(ω), and backward-to-forward reflection
behavior R+(ω). The submatrices are specifically defined by

[T+(ω)]ij =

⎧⎨
⎩

e−γk(ω)dk , k = i/2, j = i − 1, i ∈ {2, 4, . . . , N/2}
Tk|k+1(ω), k = (i − 1)/2, j = i − 1, i ∈ {3, 5, . . . , N/2 − 1}
0, otherwise

(8)

[T−(ω)]ij =

⎧⎨
⎩

e−γk(ω)dk , k = i/2, i = j − 1, j ∈ {2, 4, . . . , N/2}
Tk+1|k(ω), k = (i − 1)/2, i = j − 1, j ∈ {3, 5, . . . , N/2 − 1}
0, otherwise

(9)

[R+(ω)]ij =

⎧⎨
⎩

Γ1|−(ω), i = j = 1
Γk+1|k(ω), k = (i − 1)/2, i ∈ {3, 5, . . . , N/2 − 1}
0, otherwise

(10)

[R−(ω)]ij =

⎧⎨
⎩

Γk|k+1(ω), k = i/2, i ∈ {2, 4, . . . , (N − 1)/2}
ΓN/2|+(ω), i = j = N/2
0, otherwise

(11)

where the notation [A(ω)]ij denotes the ith row and jth column of A(ω). Note that dk is strictly positive
in this setup. As mentioned in the previous section, all of the transmission and reflection coefficients
can be written in terms of forward-travelling reflection coefficients. Therefore, for the three-interface
example illustrated in Fig. 3(b), the corresponding matrices are expressed as

T+(ω) =

⎡
⎢⎢⎣

0 0 0 0
e−γ1(ω)d1 0 0 0

0 1 + Γ1|2(ω) 0 0
0 0 e−γ2(ω)d2 0

⎤
⎥⎥⎦ (12)

T−(ω) =

⎡
⎢⎢⎣
0 e−γ1(ω)d1 0 0
0 0 1 − Γ1|2(ω) 0
0 0 0 e−γ2(ω)d2

0 0 0 0

⎤
⎥⎥⎦ (13)

R+(ω) =

⎡
⎢⎣
−Γ−|1(ω) 0 0 0

0 0 0 0
0 0 −Γ1|2(ω) 0
0 0 0 0

⎤
⎥⎦ (14)

R−(ω) =

⎡
⎢⎣
0 0 0 0
0 Γ1|2(ω) 0 0
0 0 0 0
0 0 0 Γ2|+(ω)

⎤
⎥⎦ (15)

Figure 4 illustrates the absolute value of the adjacency matrix for N = 80 nodes or, equivalently,
20 segments. The image shows that the matrix is highly sparse and very structured. As a result of this
sparsity and structure, the matrix can be constructed relatively quickly.

3.3. Numerical Simulation with Graphical Model

The adjacency matrix represents the transition between values at our previous state v(i−1)(ω) and our
current state v(i)(ω). This transition includes all time/phase delays in the form of multiplications with
complex frequency-domain exponentials. Note that while each step represents an ordered event, it does
not represent actual time. Therefore the final signal we observe is represented by the sum of all steps
(from 0 to ∞) through the graph.
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Figure 4. Example of an 80-node/20-segment adjacency matrix. The image demonstrates the
significant sparsity of the matrix.

Mathematically, if v(0)(ω) represents the initial conditions (including direction), then wave events
progress according to

v(i)(ω) = Ai(ω)v(0)(ω) (16)
To incorporate all reflections and transmissions in our model, we sum the results over all steps,

v(ω) =
∞∑
i=0

Ai(ω)v(0)(ω) (17)

This can then be simplified through application of the Neumann series (the matrix equivalent of the
geometric series), which states that

∞∑
k=0

Ak(ω) = (I − A(ω))−1 , (18)

where I is the identity matrix. When this expression is used, the sum can be represented as

v(ω) = [I − A(ω)]−1 v(0)(ω). (19)
Hence, we are able to compute the infinite sum as a matrix inverse. The resulting matrix

S(ω) = [I − A(ω)]−1 (20)
corresponds to the transfer function between any two nodes. That is, S(ω) at row i and column j
represents the transfer function for waves starting at node j and ending at node i.

3.4. Time-Domain Calculation

Each element of S(ω) corresponds to a frequency-domain transfer function. To compute the associated
time-domain impulse responses from any of these frequency-domain responses, we first sample
frequencies according to

fq =
(

q

Q

)
Fs for −

⌊
Q

2

⌋
≤ q ≤

⌊
Q − 1

2

⌋
,

where �Q/2� denotes the floor operation; Fs is the desired sampling rate in time; and Q is the number
of frequencies. The variable q represents each frequency used in the simulation. To get the time-domain
signal, we compute the inverse fast Fourier transform of the simulated values at those frequencies. Note
that if Q is not sufficiently large, we may observe significant temporal aliasing.



74 Harley et al.

3.5. Solution Convergence

In general, the Neumann series is valid if and only if the underlying dynamical system v(i)(ω) =
A(i)(ω)v(i−1)(ω) approaches the vector 0 as i → ∞. To demonstrate that our method satisfies this
condition, we observe that a graphical dynamical system approaches 0 as i → ∞ when every set of
nodes and edges in a graph cycle C satisfies ∣∣∣∣∣

∏
i∈C

εi

∣∣∣∣∣ < 1, (21)

where εi is each edge weight in the cycle C.
To understand this, recognize that (assuming that each weight is εi < ∞) the node values in a

directed graph can only grow non-stop through some recursive process (i.e., a graph cycle). As wave
amplitudes travel along the cycle, they are multiplied by the weights in that cycle. Therefore, if the
weights of every cycle reduce the strength of the initial input condition (i.e., the magnitude of the
product is < 1), then the values in each node will converge to zero.

Any cycle in the graph will contain pairs of reflection coefficients, pairs of propagation coefficients,
and pairs of transmission coefficients. Due to the conservation of energy, we know that the reflection
coefficients and propagation coefficients satisfy

∣∣Γi|j(ω)
∣∣ < 1 and

∣∣e−γm(ω)dm
∣∣ < 1 for every node pair

i, j and every segment m. When Γi|j(ω) is negative, the transmission coefficients can be greater than
one. However, every cycle must contain a forward transmission coefficient Ta|b(ω) = 1 + Γa|b(ω) and an
associated backward transmission coefficient Tb|a(ω) = 1 − Γb|a(ω). The product of these values is

Ta|b(ω)Tb|a(ω) =
(
1 + Γa|b(ω)

) (
1 − Γa|b(ω)

)
(22)

= 1 − Γ2
a|b(ω) (23)

< 1 (24)
Hence, the product of all coefficients in a cycle must be less than one. As a result, our numerical method
converges to an exact solution for any initial condition v(0)(ω).

3.6. Computational Complexity

Our graphical solution in Equation (19) is computed by solving a highly sparse system (i.e., most
coefficients are zero) of linear equations, I − A(ω). Solving sparse linear systems has been a topic
of significant research [31, 32] because it allows us to solve very large computational problems with
great computational and storage efficiency. In general, sparse linear system solvers can achieve a O(N)
computational complexity, where N is the number of nodes in the graph. As a reference, traditional
matrix inversion has O(N3) computational complexity. Filling the inverse matrix with an assumed
known (and dense) closed-form solution has a computational complexity of O(N2).

We solve this system of equations for each frequency. Therefore, the computational complexity
across every frequency is O(NQ), where Q is the number of frequencies. However, we can decrease this
computational complexity by considering only frequencies of importance. For example, a steady state
excitation at 10 MHz only requires us to solve the system of linear equations for that frequency.

4. RESULTS AND EXAMPLES

In this section, we test and verify our simulation engine. We first verify that our engine’s solution
matches that of the two-interface transmission line in Section 2. We then demonstrate three examples
of wave propagation in different multi-segment transmission lines. The first example simulates a
frequency-dependent velocity and attenuation. The second example simulates multiple interfaces and
multiple characteristic impedances. The third example simulates a spatially-dependent velocity (i.e.,
the velocities change across many small, individual segments). For each example, note that the real part
of the propagation coefficient corresponds to attenuation, and the imaginary part of the propagation
coefficient is equal to

Im {γ(ω)} = k(ω) =
ω

c(ω)
,
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where k(ω) is the wavenumber and c(ω) is the phase velocity.
For demonstration purposes, we will simulate more interfaces than necessary (each that exhibit no

change in impedance or propagation constant). This is done to illustrate how simulated waves spatially
change. With the exception of the third example, this is not necessary for accurate time-domain
simulations. It is necessary for the third example since the waves constantly change in space.

4.1. Verifying Solution with Two Interfaces

In Section 2, we derived a reflection coefficient for two interfaces. In this subsection, we verify this
result with our graphical approach. We derive the closed-form solution for the Neumann series and
demonstrate that it achieves the same result.

When we consider the two interface problem, as shown in Fig. 3, the adjacency matrix can be
expressed by

A(ω) =

⎡
⎢⎢⎣

0 0 −Γ−(ω) 0
e−γ1(ω)d1 0 0 0

0 0 0 e−γ1(ω)d1

0 Γ+(ω) 0 0

⎤
⎥⎥⎦ (25)

The closed-form expression for the Neumann Series solution with this adjacency matrix is expressed by

S(ω)=[I− A(ω)]−1

=

⎡
⎢⎢⎢⎣

S−|1,−|1(ω) S1|+,−|1(ω) S1|−,−|1(ω) S+|1,−|1(ω)
S−|1,1|+(ω) S1|+,1|+(ω) S1|−,1|+(ω) S+|1,1|+(ω)
S−|1,1|−(ω) S1|+,1|−(ω) S1|−,1|−(ω) S+|1,1|−(ω)
S−|1,+|1(ω) S1|+,+|1(ω) S1|−,+|1(ω) S+|1,+|1(ω)

⎤
⎥⎥⎥⎦

=
1

1 + Γ−(ω)Γ+(ω)e−γ1(ω)2d1

=

⎡
⎢⎢⎣

1 −Γ−(ω)Γ+(ω)e−γ1(ω)d1 −Γ−(ω) −Γ−(ω)e−γ1(ω)d1

e−γ1(ω)d1 1 −Γ−(ω)e−γ1(ω)d1 −Γ−(ω)e−γ1(ω)2d1

Γ+(ω)e−γ1(ω)2d1 Γ+(ω)e−γ1(ω)d1 1 e−γ1(ω)d1

Γ+(ω)e−γ1(ω)d1 Γ+(ω) −Γ−(ω)Γ+(ω)e−γ1(ω)d1 1

⎤
⎥⎥⎦(26)

This matrix contains every set of transfer functions for the system. For example, the value in row 2 and
column 1 represents S−|1,1|+(ω), the transfer function between node 1 (the −|1 interface) and node 2
(the 1|+ interface). This is exactly equal to the two-interface reflection coefficient in (4), as derived in
Section 2.

4.2. Frequency-Dependent Velocity and Attenuation (Dispersion)

We now simulate a one-dimensional transmission line with frequency-dependent characteristic
impedances and velocity characteristics. In this example, we are effectively modeling a transmission
line with dispersion [33]. Fig. 5 illustrates the two-interface transmission line that we consider. Fig. 6

Figure 5. Illustration of a one-dimensional, two-interface transmission line with frequency-dependent
impedances and velocities.
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shows how the attenuation (Fig. 6(a)) and wave velocity (Fig. 6(b)) vary with distance and frequency.
The characteristic impedance is relatively constant across frequency at Z1(ω) = 153Ω.

Figure 7 illustrates the time-domain impulse response of the reflections at node 1 (i.e., the location of
excitation). Fig. 7(a) shows the full simulation, while Fig. 7(b) magnifies the first arrival. In Fig. 7(a), we
observe several signal reflections. In Fig. 7(b), we confirm that the high frequencies arrive later (travel
slower) than the lower frequencies and observe that the dispersion significantly affects the impulse
response.

(a) Attenuation Map (b) Velocity Map

Figure 6. The frequency and distance variability
for the (a) attenuation and (b) velocity in a two-
interface transmission line.

(a) Impulse Response (b) First Arrival

Figure 7. The (a) impulse response and (b) mag-
nified impulse response for the two-interface trans-
mission line with frequency-dependent character-
istics. This illustrates the resulting velocity dis-
persion (i.e., lower frequencies travel faster) in the
transmission line.

(a) Sinusoid Excitation (b) Pulse Excitation

Figure 8. Illustration of a wave propagating in a two-interface transmission line with frequency-
dependent characteristics. We show two excitations: (a) a 10 MHz sinusoid and (b) a 10 MHz, 10 MHz
bandwidth Gaussian pulse. From top-to-bottom, we show five uniformly separated snapshots in time.
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Figure 8 illustrates the amplitude of the waves across space. We consider two different excitation
signals: a 10 MHz cosine (Fig. 8(a)) and a 10 MHz center frequency, 10 MHz bandwidth Gaussian pulse
(Fig. 8(b)). As expected from Fig. 6, we observe the higher frequencies to travel slower with the
Gaussian excitation. The cosine excitation is unaffected by velocity dispersion since it has only one
frequency. The reflected signal (seen in the fourth and fifth plots) has no change in the polarity since
infinite-length segments have an infinite impedance (i.e., an open circuit in transmission line theory).

4.3. Multiple Characteristic Impedances

We next demonstrate a simulation with four interfaces. We choose four interfaces since this provides
relatively interpretable results. Fig. 9 illustrates the four-interface transmission line. Fig. 10 shows
how the characteristic impedance (Fig. 10(a)) and wave velocity (Fig. 10(b)) vary with distance and
frequency. The attenuation constant and velocity are both relatively constant across frequency and
distance. The first interface is located at the wave excitation location. The remaining 3 interfaces are
placed at 60 meters, 150 meters, and 300 meters from the excitation location. As a result, the impedance
discontinuities introduce an infinite number of interleaving reflections and transmissions.

Figure 9. Illustration of a one-dimensional, four-interface transmission line.

Figure 11 illustrates the time-domain impulse response of the reflections at node 1. Fig. 11(a)
shows the full simulation, while Fig. 11(b) magnifies the first several arrivals. In Fig. 11(a), we confirm
that the reflections repeat over time while attenuating. In Fig. 11(b), we confirm that the first two
reflections (traveling 120 m and 240 m, to and from the second interfaces) experience no polarity change
since they reflect from a higher impedance interface. The third reflection (traveling 300 m, to and from
the third interface) experiences a polarity change since it reflects from a lower impedance interface.

(a) Attenuation Map (b) Impedance Map

Figure 10. The frequency and distance
variability for the (a) impedance and (b) velocity
in a four-interface transmission line.

(a) Impulse Response (b) First Several Arrivals

Figure 11. The (a) impulse response and (b)
magnified impulse response for the four-interface
transmission line. This illustrates the resulting
multiple reflections from the multiple interfaces.

Figure 12 shows the spatial propagation of a 10 MHz sinusoid (Fig. 12(a)) and a 10 MHz center
frequency, 10 MHz bandwidth Gaussian pulse (Fig. 12(b)). Dotted lines are added to the plots to
illustrate the impedance boundaries. Fig. 12 illustrates a greater than 1 transmission coefficient when
the wave moves from a low impedance (≈ 150Ω) into a high impedance (≈ 750Ω). Conversely, the
transmission coefficient is weak when transitioning back into the low impedance region (≈ 150Ω).
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(a) Sinusoid Excitation (b) Pulse Excitation

Figure 12. Illustration of a wave propagating in a four-interface transmission line. We show two
excitations: (a) a 10 MHz sinusoid and (b) a 10 MHz, 10 MHz bandwidth Gaussian pulse. Dashed lines
indicate the location of impedance interfaces. From top-to-bottom, we show five uniformly separated
snapshots in time.

4.4. Spatially-Dependent Velocity

We finally demonstrate wave propagation in a spatial gradient. Specifically, the velocity slowly varies
from approximately 0.632c, where c is the speed of light, at the left-most end of the transmission line to
approximately 0.16c at the right-most end of the transmission line. Unlike the other two examples, the
right-most boundary also has an impedance of 0Ω, a short circuit. Fig. 13 illustrates the transmission
line. Fig. 14 shows how the attenuation (Fig. 14(a)) and wave velocity (Fig. 14(b)) vary with distance
and frequency. The characteristic impedance is relatively constant across frequency at Z1(ω) = 153Ω.

Figure 15 illustrates the time-domain impulse response of the reflections at node 1. Fig. 15(a)
shows the full simulation while Fig. 15(b) magnifies the first several arrivals. In Fig. 15(a), we see
that, although the signal is distorted in space, it remains an impulse in time. This is expected since all
variability in the transmission line is spatial. We also observe that the signal polarity repeatedly flips

Figure 13. Illustration of a one-dimensional, two-interface transmission line with spatially varying
velocity characteristics.
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(a) Attenuation Map (b) Velocity Map

Figure 14. The frequency and distance
variability for the (a) impedance and (b) velocity
in a two-interface transmission line with spatially
varying velocity.

(a) Impulse Response (b) First Two Arrivals

Figure 15. The (a) impulse response and (b)
magnified impulse response for the two-interface
transmission line with spatially varying velocities.
This illustrates that the velocity varies with space,
but not time.

(a) Sinusoid Excitation (b) Pulse Excitation

Figure 16. Illustration of a wave propagating in a two-interface transmission line with spatially varying
velocities. We show two excitations: (a) a 10 MHz sinusoid and (b) a 10 MHz, 10 MHz bandwidth
Gaussian pulse. Dashed lines indicate the location of impedance interfaces. From top-to bottom, we
show five uniformly separated snapshots in time.

due to the 0Ω impedance at the right-most interface (i.e., reflection coefficient of −1).
Figure 16 illustrates the amplitude of the waves across space. We again consider two different

excitation signals: a 10 MHz cosine (Fig. 16(a)) and a 10 MHz center frequency, 10 MHz bandwidth
Gaussian pulse (Fig. 16(b)). Fig. 16(a) shows how the spatially varying velocity affects a single frequency.
The wavelength decreases as the velocity decreases. Fig. 16(b) shows a similar effect. The wave returns
to its original wavelength as it travels back to the starting location. We also observe a change in polarity
due to the 0Ω impedance at the right-most interface (i.e., reflection coefficient of −1).
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4.5. Evaluating Computational Complexity

To validate the computational complexity of our engine, we generate M random transmission lines with
N nodes, or N/4 segments. For each random transmission line, we solve the linear system for Q different
frequencies. Therefore, for each N considered, we solve the linear system MQ times. We assess the
mean computation time of the trials to measure the computational complexity of our method.

We perform this test with M = 100 and Q = 1000 for a number of nodes ranging from N = 12
to N = 400. We solve the linear system with the unsymmetric multifrontal method for sparse, non-
symmetric matrices that is built into MATLAB 2018a [34]. Fig. 17 illustrates the mean and standard
deviation error bars of these trials. The mean values have a clear linear fit (R2 = 0.9999) with respect
to the number of nodes. This shows that our approach (for a fixed Q) has a computational complexity
of O(N) and the computational time increases linearly with the number of nodes or interfaces in the
transmission line.

Figure 17. An illustration of the measured computational time per frequency versus the number of
nodes in a transmission line. The error bars indicate one standard deviation in either direction.

5. CONCLUSIONS

Algebraic graph theory has been shown to be effective for modeling a wave propagating in a multi-
segment transmission line. In our graphical model, the nodes represent the location just before and
after a change in the characteristic impedance or propagation coefficient. The edges represent the
transition from one node to another. This model represents one-dimensional wave propagation from
the reflection and transmission coefficients of each interface and the propagation coefficients of each
segment.

The model has a relatively fast computation and low complexity O(N) for simulating all reflections
and transmissions. We proved that our approach is numerically stable and computational fast. We
also demonstrated that the exact solution for a two-interface transmission line matches our numerical
approach. We illustrated this engine by simulating three media with various properties.

The results are promising and can be significantly extended. Specifically, the work could be further
extended to branching networks. Alternatively, the methods could be used to analyze more complex
one-dimensional problems, such as those illustrated by a four- or six-port network.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S. Department of Energys Office of Energy
Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office (SETO) Agreement
Number DE-EE0008169 in collaboration with Livewire Innovation and the National Renewable Energy
Laboratory.



Progress In Electromagnetics Research, Vol. 165, 2019 81

REFERENCES
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