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Calculation of the Electromagnetic Field of a Rectangular Waveguide
with Chiral Medium

Islam J. Islamov1, *, Elshad G. Ismibayli1, Mehman H. Hasanov2,
Yusif G. Gaziyev1, Simnara R. Ahmadova1, and Rashid S. Abdullayev1

Abstract—A rectangular metallic waveguide with a chiral medium is considered in this article. The
field distribution inside a rectangular waveguide is investigated. The task is considered in a full vector
setting. The mixed finite element method is used to calculate the rectangular waveguide with a chiral
medium.

1. INTRODUCTION

The intensive development of various areas of the radio-electronic industry requires the development
of fundamentally new materials, strongly interacting with electromagnetic waves. Metamaterials are
artificial substances whose interaction with the electromagnetic field is significantly different from the
interaction of ordinary natural materials. Among the new metamaterials of particular interest are
bianisotropic, biisotropic, in particular, artificial media with strong chirality [1–6].

At the same time, metamaterials find wide practical applications, for example, in building integrated
optical devices and microcircuits, various waveguide systems, designing antennas and absorbing coatings
with given electrodynamic properties, as well as in many other areas of radio engineering and applied
electrodynamics.

Biisotropic media are the most common type of linear isotropic medium. The main difference of the
biisotropic medium from the usual dielectric or magnet is the presence of a magneto-electric coupling,
due to which additional terms appear in the material equations [1, 2]:

D = εE + ξH,B = ςE + μH, (1)

where ξ = (k − iχ), ς = (k + iχ).
In these expressions, εis the dielectric constant of the medium; μ is the magnetic permeability; k

is the parameter of Tellegen; χ is the parameter of chirality of the medium. The material equations
are written in the frequency domain for the harmonic time dependence of the form exp(−iωt). An
electric or magnetic field applied to a biisotropic medium simultaneously leads to the appearance of
both electric and magnetic polarization.

An important subclass of biisotropic media is chiral media, for which k ≡ 0. Chirality is
the geometric property of an object not to be combined with its mirror image. A macroscopically
homogeneous material is called chiral if it consists of chiral objects, natural (molecules), or artificial.

Artificial biisotropic and bianisotropic media are created by placing metallic resonant particles
(“molecules”) in a normal medium, whose dimensions are smaller than the wavelength of electromagnetic
radiation in a certain range [1, 2].
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Electromagnetic field {E,H} propagating in a chiral substance splits into two independent
components {E±,H±}, which behave as if they spread in ordinary non-chiral media with effective
parameters ε± = ε(1 ± χr), μ± = μ(1 ± χr), where χr = χ/

√
εμ. One of the waves {E±,H±} becomes

the reverse wave in the case of |χr|> 1 in artificial chiral media.
It should be noted that in the field of chiral insertion the field is hybrid, with the result that with a

certain choice of parameters such a system can serve as a converter of one type of waves into another [7].

2. THE CURRENT STATE OF THE ISSUE

As you know, chiral media waveguides are widely used to transmit electromagnetic energy at a distance.
To date, many scientific studies have been conducted on the propagation of electromagnetic fields of
microwave devices with chiral media. The classical method of separation of variables solved scattering
problems on a homogeneous chiral circular cylinder [8], a sphere [9], a spherical layer [10], a multi-
layer circular cylinder [11], a chiral-metal cylinder [12], and an impedance sphere with a layer of chiral
coatings [13]. In [14], the method of surface integral equations was used to solve the problem of scattering
of an electromagnetic wave on a homogeneous two-dimensional chiral cylinder of arbitrary cross section.
A variant of the discrete source method is proposed for solving the problem of electromagnetic scattering
on a three-dimensional homogeneous chiral body bounded by a smooth surface of an arbitrary shape [15].
In [16], this version was generalized to the case of a structure that was an ideally conducting body covered
by a homogeneous chiral shell.

As can be seen from the above work, questions on the study of electromagnetic fields inside a
rectangular waveguide with chiral media using the finite element method have not been studied.

Therefore, the study of electromagnetic fields inside a rectangular waveguide with chiral media
using the finite element method is very new.

3. PROBLEM STATEMENT

Let us consider a rectangular waveguide with infinite ideally conducting walls located at the distance a
from each other and an inhomogeneity in the form of an insert from a chiral substance (Fig. 1). The
insert is located in area z ∈ [0, z0].

Figure 1. Waveguide with chiral insert.

Let the insertion material be characterized by parameters ε, μ and χ, and the waveguide filling
material in the region outside the insert — by parameters ε0 and μ0.

We investigate the problem of diffraction of an electromagnetic wave incident on an insert from
the region z = −∞. Suppose that the incident wave is one of the normal waveguide waves or
a linear combination of them. In order to formulate a boundary value problem in region D =
{x ∈ [0, a], z ∈ [0, z0]}, it is necessary to set boundary conditions at z = 0 and z = z0.

Normal waves of TE-type in the considered waveguide have the form [17–28]:

Em
n,± = (iωμ0/c)

√
2/a exp (±iγ̂nz) (πn/a) sin (πnx/a) ey, (2)

Hm
n,± = ∓iγ̂n

√
2/a exp (±iγ̂nz) (πn/a) sin (πnx/a) ex + (πn/a)2

√
2/a exp (±iγ̂nz) cos (πnx/a) ez, (3)
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where γ̂n =
√
k2

0 − (πn/a)2, k2
0 = ε0μ0ω

2/c2, n = 1, 2, . . . , and the normal TM-type waves are:

Ee
n,± = ∓iγn exp (±iγnz)

√
2/a (πn/a) cos (πnx/a) ex + (πn/a)2

√
2/a exp (±iγnz) cos (πnx/a) ez,(4)

He
n,± = (iωε0/c)

√
2/a exp (±iγnz) (πn/a) cos (πnx/a) ey, (5)

where γn =
√
k2

0(πn/a)2, n = 1, 2, . . .
In region z ∈ (0, z0), the electromagnetic field satisfies the Maxwell system of equations.{

rotE = (iω/c)B, divD = 0,

rotH = − (iω/c)D, divB = 0
(6)

and material equations
D = εE − iχH, B = μH + iχE (7)

Since the planes bounding the waveguide are ideally conducting, the boundary conditions for x = 0
and x = a are as follows:

Ey |x=0 = Ey|x=a = 0, Ez |x=0 = Ez|x=a = 0. (8)

At z = 0 and z = z0, we use the conjugation conditions

[ez,E] |z=0 =
[
ez,Eext

] |z=0, [ez,E]
∣∣
z=z0 =

[
ez,Eext

]∣∣
z=z0

, (9)

[ez,H ] |z=0 =
[
ez,H

ext
] |z=0, [ez,H ]

∣∣
z=z0 =

[
ez ,H

ext
]∣∣

z=z0
, (10)

where {Eext,Hext} is the field outside the insert.
Since in the considered problem, the exciting waveguide wave {Eins

+ ,Hins
+ }, which is one of the

normal waves or some combination of them, falls on an insert from region z = −∞, in the region to the
left of the insert, i.e., at z < 0, field Eext is a combination of incident and reflected waves:

Eext =
∞∑

n=1

{
Rm

n Em
n,− +Re

nE
e
n,−

}
+ Eins

+ , Hext =
∞∑

n=1

{
Rm

n Hm
n,− +Re

nH
e
n,−

}
+ Hins

+ (11)

In the area to the right of the insertion, i.e., at z > z0, the Eext field is a combination of transmitted
waves:

Eext =
∞∑

n=1

{
Tm

n Em
n,+ + T e

nEe
n,+

}
, Hext =

∞∑
n=1

{
Tm

n Hm
n,+ + T e

nH
e
n,+

}
. (12)

Express the coefficients of reflection and passage through the values of the desired field E at the
boundaries of the chiral insert. To do this, consider in more detail the conjugation conditions (9) at
z = 0 and z = z0:

eyEx |z=0 − exEy|z=0 =
∞∑

n=1

{
−exR

m
n E

m
y,n,−

∣∣
z=0 + eyR

e
nE

e
x,n,−

∣∣
z=0

}
+ eyE

ins
x,+

∣∣
z=0 − exE

ins
y,−

∣∣
z=0

. (13)

Comparing the right and left sides of equality (13), we obtain(
Eins

x,+ +
∞∑

n=1

Re
nE

e
x,n,−

)∣∣∣∣∣
z=0

= Ex |z=0 ,

(
Eins

y,+ +
∞∑

n=1

Rm
n E

m
y,n,−

)∣∣∣∣∣
z=0

= Ex|z=0, (14)

We substitute into these equalities explicit expressions for the components of the electric field of normal
waves

Eins
x,+ (x, 0) −

∞∑
n=1

Re
niγn

√
2/a (πn/a) cos(πnx/a) = Ex(x, 0), (15)

Eins
y,+ (x, 0) +

∞∑
n=1

Rm
n (iωμ0/c)

√
2/a (πn/a) sin(πnx/a) = Ey(x, 0). (16)
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From Equation (16) we get

Re
n = (ia/γnπn)

√
2/a

∫ a

0

[
Ex (x, 0) − Eins

x,+ (x, 0)
]
cos (πnx/a) dx, (17)

Rm
n = − (ica/ωμ0πn)

√
2/a

∫ a

0

[
Ey (x, 0) − Eins

y,+ (x, 0)
]
sin (πnx/a) dx. (18)

Similarly, we find the relationship of the transmission coefficients T e
n and Tm

n with the values of
the components of field E on the boundary z = z0 of the chiral insert. Consider pairing conditions at
z = z0: ∞∑

n=1

T e
nE

e
x,n,+ |z=z0 = Ex |z=z0 ,

∞∑
n=1

Tm
n E

m
y,n,+ |z=z0 = Ey |z=z0 . (19)

Substituting into these equalities the explicit form of the components of the electric field of normal
waves, we obtain

∞∑
n=1

T e
niγn exp (iγnz0)

√
2/a (πn/a) cos (πnx/a) = Ex (x, z0) , (20)

∞∑
n=1

Tm
n (iωμ0/c) exp (iγ̂nz0)

√
2/a (πn/a) sin (πnx/a) = Ey (x, z0) , (21)

where we find the expressions for the transmission coefficients:

T e
n = − (ia/γnπn) exp (−iγnz0)

√
2/a

∫ a

0
Ex (x, z0) cos (πnx/a) dx, (22)

Tm
n = − (ica/ωμ0πn) exp (−iγ̂nz0)

√
2/a

∫ a

0
Ey (x, z0) sin (πnx/a) dx. (23)

It should be noted that when a plane electromagnetic wave is reflected from a chiral layer inside a
rectangular waveguide, a cross-polarization (depolarization) phenomenon occurs. In a chiral medium, a
plane electromagnetic wave is converted into two waves with right-round polarization and left-handed
polarization, with different angles of refraction. The structure of the reflected field includes components
with perpendicular (falling) and parallel (cross) polarizations. As a result, the reflected electromagnetic
wave will have elliptical polarization.

It should be noted that the traveling wave mode is obtained in a line only if it is loaded with an
active resistance equal to the wave one. At a different value of the load resistance in the line, a more
complex process is obtained. Consider the case when the line is open at the end, that is, when the load
resistance is infinitely large. Since there is no load resistance at the end of the open line, the energy
of the traveling wave cannot be absorbed at the end of the line, but the wave cannot continue to move
away from the generator because the line is broken. The traveling wave, having reached the end of the
open line, is reflected and moves back to the generator. Thus, two traveling waves propagate in the line:
one — the incident one — moves from the generator to the end of the line, and the other — reflected
one — moves in the opposite direction.

Physically, the reflection process can be explained as follows. When the incident wave reaches the
end of the line, charges begin to accumulate there, and consequently, an additional potential difference
arises. It acts like the voltage of some generator and excites a new traveling wave in the line, moving
from the end of the line to its beginning, i.e., the reflected wave.

Neglecting losses in the line, we can assume that the energy of the reflected wave is equal to the
energy of the incident wave. As a result of the addition of two waves having the same amplitude and
moving towards each other, so-called standing waves arise, which differ sharply from traveling waves.

4. GENERALIZED STATEMENT OF THE INITIAL TASK

For numerical solution of the problem by the method of mixed finite elements, a generalized formulation
of the problem is necessary. To obtain it, we rewrite the Maxwell equations using the material equations
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of the chiral medium

rotH = − (iω/c) (εE − iχH) , rotE = (iω/c) (μH + iχE) . (24)

Eliminating the vector H from Equation (24), we get

rot
1
μ
rotE +

ω

c
rot

χ

μ
E +

ω

c

χ

μ
rotE − ω2

c2

(
ε− χ2

μ

)
E = 0. (25)

Let us take such sufficiently smooth test functions E∗ that satisfy the boundary conditions (8). Let
us multiply Equation (25) by the vector E∗ and integrate the result over the domain D:∫∫

D

E∗rot
1
μ
rotEdS +

ω

c

∫∫
D

E∗rot
χ

μ
EdS +

ω

c

∫∫
D

E∗χ
μ
rotEdS − ω2

c2

∫∫
D

(
ε− χ2

μ

)
E∗EdS = 0. (26)

Let’s transform the first integral on the left side of equality (26):∫
D

E∗rot
1
μ
rotEdxdz =

∫
D

1
μ
rotE∗rotEdxdz −

∫
∂D

1
μ

(n, [E∗, rotE]) dl

=

z0∫
0

a∫
0

1
μ
rotE∗rotEdxdz−

a∫
0

1
μ

[ez,E∗] rotE |z=z0dx+

a∫
0

1
μ

[ez,E∗] rotE |z=0dx . (27)

Similarly transform the addend∫
D

E∗rot
χ

μ
rotEdS =

∫
D

χ

μ
ErotE∗ −

∫
∂D

χ

μ
(n, [E∗,E]) dl

=

z0∫
0

a∫
0

χ

μ
ErotE∗dxdz −

a∫
0

χ

μ
[ez,E∗] ·E |z=z0 dx+

a∫
0

χ

μ
[ez,E∗] ·E |z=0dx . (28)

So, Equation (26) takes the form
z0∫

0

a∫
0

1
μ
rotE∗rotEdxdz +

ω

c

z0∫
c

a∫
0

χ

μ
ErotE∗dxdz +

ω

c

z0∫
0

a∫
0

χ

μ
E∗rotEdxdz

−ω
2

c2

z0∫
0

a∫
0

(
ε− χ2

μ

)
E∗Edxdz −

a∫
0

1
μ

[ez,E∗]
{
rotE |z=z0

z=0 +
ω

c
χE |z=z0

z=0

}
= 0. (29)

We use the conjugation conditions (9)–(10) with z = z0 and z = 0 in order to transform the last
integral in equality (29). We use Maxwell’s equations

rotE = (iω/c) (μH + iχE) , z ∈ (0, z0) , (30)

rotEext = (iω/c)μ0Hext, z ∈ (−∞, 0) ∪ (z0,+∞) . (31)

Multiply these equations vector by ez and rewrite them in the form

[ez, (rotE + (ωχ/c)E)] /μ = (iω/c) [ez,H] , z ∈ (0, z0) ,[
ez, rotEext

]
/μ0 = (iω/c)

[
ez,Hext

]
, z ∈ (−∞, 0) ∪ (z0,+∞) .

(32)

Using the conjugation conditions (10), from relations (32) we obtain the equality

μ0 [ez, (rotE + (ωχ/c)E)] |z=0,z0 = μ
[
ez, rotEext

] |z=0,z0 . (33)
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Therefore, Equation (29) takes the form
z0∫

0

a∫
0

1
μ
rotE∗rotEdxdz +

ω

c

z0∫
0

a∫
0

χ

μ
ErotE∗dxdz +

ω

c

z0∫
0

a∫
0

χ

μ
E∗rotEdxdz

−ω
2

c2

z0∫
0

a∫
0

(
ε− χ2

μ

)
E∗Edxdz +

a∫
0

1
μ0

E∗ [ez, rotEext
] ∣∣∣∣∣z=z0

z=0 dx = 0. (34)

Using an explicit expression for field Eext

rotEext =

⎧⎪⎪⎨
⎪⎪⎩

rotEins
+ +

∞∑
n=1

{
Re

nrotE
e
n,− +Rm

n rotE
m
n,−

}
,

∞∑
n=1

{
T e

nrotE
e
n,+ + Tm

n rotE
m
n,+

}
,

{
z < 0,
z > z0,

(35)

we get[
ez, rotEext

] ∣∣
z=0

= ey

{
−∂E

ins
y,+

∂z
−

∞∑
n=1

Rm
n

∂Em
y,n,−
∂z

} ∣∣∣∣∣
z=0

−ex

{
∂Eins

x,+

∂z
− ∂Eins

z,+

∂x
+

∞∑
n=1

Re
n

(
∂Ee

x,n,−
∂z

− ∂Ee
z,n,−
∂x

)}∣∣∣∣∣
z=0

= ey

⎧⎨
⎩−∂E

ins
y,+

∂z

∣∣∣∣∣
z=0

+
2i
a

∞∑
n=1

γ̂n sin
πnx

a

a∫
0

(
Ey

(
x′, 0

)− Eins
y,+

(
x′, 0

))
sin

πnx′

a
dx

⎫⎬
⎭

−ex

⎧⎨
⎩
(
∂Eins

x,+

∂z
− ∂Eins

z,+

∂x

)∣∣∣∣∣
z=0

− k2
0

2i
a

∞∑
n=1

1
γn

cos
πnx

a

a∫
0

(
Ex

(
x′, 0

)−Eins
x,+

(
x′, 0

))
cos

πnx′

a
dx′

⎫⎬
⎭ (36)

and [
ez, rotEext

] |z=z0 = −ey

∞∑
n=1

Tm
n

∂Em
y,n,+

∂z

∣∣∣∣∣
z=z0

− ex

∞∑
n=1

T e
n

{
∂Ee

x,n,+

∂z
− ∂Ee

z,n,+

∂x

}

= −ey
2i
a

∞∑
n=1

γ̂n sin
πnx

a

a∫
0

Ey

(
x′, z0

)
sin

πnx′

a
dx′

= exk
2
0

2i
a

∞∑
n=1

1
γn

cos
πnx

a

a∫
0

Ex

(
x′, 0

)
cos

πnx′

a
dx′. (37)

Using equalities (36) and (37) and writing down the vectors E and E∗ in Equation (34) by component,
we obtain a generalized formulation of the problem: find a vector E ∈ H(rot,D), such that for any
vector E∗ ∈ H(rot,D),satisfying the boundary conditions (8), the equality

a∫
0

z0∫
0

1
μ

{
∂E∗

y

∂z

∂Ey

∂z
+
∂E∗

y

∂x

∂Ey

∂x
+
∂E∗

x

∂z

∂E

∂z
+
∂E∗

z

∂x

∂Ez

∂x
− ∂E∗

x

∂z

∂Ez

∂x
− ∂E∗

z

∂x

∂Ex

∂z

}
dxdz

+
ω

c

a∫
0

z0∫
0

χ

μ

{
−∂E

∗
y

∂z
Ex+

(
∂E∗

x

∂z
− ∂E∗

z

∂x

)
Ey+

∂E∗
y

∂x
Ez− ∂Ey

∂z
E∗

x+E∗
y

(
∂Ex

∂z
− ∂Ez

∂x

)
+E∗

z

∂Ey

∂x

}
dxdz

−ω
2

c2

a∫
0

z0∫
0

(
ε− χ2

μ

)
E∗Edxdz − 2ik2

0

μ0a

∞∑
n=1

1
γn

a∫
0

E∗
x (x, z0) cos

πnx

a
dx

a∫
0

Ex(x, z0) cos
πnx

a
dx
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−2ik2
0

μ0a

∞∑
n=1

1
γn

a∫
0

E∗
x (x, 0) cos

πnx

a
dx

a∫
0

Ex (x, 0) cos
πnx

a
dx

− 2i
μ0a

∞∑
n=1

γn

a∫
0

E∗
y (x, z0) sin

πnx

a
dx

a∫
0

Ey (x, z0) sin
πnx

a
dx

− 2i
μ0a

∞∑
n=1

γn

a∫
0

E∗
y (x, 0) sin

πnx

a
dx

a∫
0

Ey (x, 0) sin
πnx

a
dx

= − 1
μ0

⎧⎨
⎩

a∫
0

E∗
x (x, 0) ·

(
∂Eins

x

∂z
− ∂Eins

z

∂x

) ∣∣∣∣∣
z=0

dx+

a∫
0

E∗
y (x, 0)

∂Eins
y

∂z

∣∣∣∣∣
z=0

dx

⎫⎬
⎭

−2ik2
0

μ0a

∞∑
n=1

1
γn

a∫
0

E∗
x (x, 0) cos

πnx

a
dx

a∫
0

Eins
x (x, 0) cos

πnx

a
dx

− 2i
μ0a

∞∑
n=1

γn

a∫
0

E∗
y (x, 0) sin

πnx

a
dx

a∫
0

Eins
y (x, 0) sin

πnx

a
dx. (38)

5. SOLUTION OF THE PROBLEM BY THE METHOD OF MIXED FINITE
ELEMENTS

As noted in [29], when solving initial-boundary problems in regions with chiral filling, it is advisable to
use projection methods. When solving waveguide problems using projection-grid methods, nonphysical
solutions may appear [30, 31]. One of the ways to deal with non-physical solutions is to use such
formulations of the initial problem, or such systems of basic functions, which would exclude the
appearance of fictitious solutions. The approach based on the application of the mixed finite element
method [32–34] is appropriate. This method was used in [35] to calculate a plane-parallel waveguide
with a non-chiral insert. Since it turned out to be very effective, it was chosen to calculate the chiral
waveguide under consideration.

We introduce in the waveguide region in the plane Oxz a rectangular grid: zj = j · Δz, j =
0, J , xi = i · Δx, i = 0, I . Select the basic functions of the following form:

Ni(ξ) =

⎧⎨
⎩

(ξi+1 − ξ) / (ξi+1 − ξi) ,
(ξ − ξi−1) / (ξi − ξi−1) ,
0, ξ ∈ (−∞, ξi−1) ∪ (ξi+1,+∞) ,

Pi,i+1 (ξ) =

{
1, ξ ∈ [ξi, ξi+1] ,

0, ξ ∈ (−∞, ξi) ∪ (ξi+1) ,+∞ (39)

We will look for an approximate solution of problem (38) as an expansion in basis functions Ni(ξ)
and Pi,i+1(ξ): ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ex (x, z) =
I−1∑
i=0

J∑
j=0

Ei,j
x Nj (z)Pi,i+1 (x) ,

Ey(x, z) =
I−1∑
i=1

J∑
j=0

Ei,j
y Nj (z)Ni (x) ,

Ez (x, z) =
I−1∑
i=1

J−1∑
j=0

Ei,j
z Pj,j+1 (z)Ni (x) .

(40)

Unknown coefficients Ei,j
x , Ei,j

y , Ei,j
z will be sought as a solution to a system of algebraic equations

obtained by substituting expressions (40) and test functions E∗ into equality (38), which successively
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take the values

1) E∗ (x, z) = {Nj (z)Pi,i+1 (x)} ex, i = 0, (I − 1), j = 0, J ; (41)

2) E∗ (x, z) = {Nj (z)Ni (x)} ey, i = 1, (I − 1), j = 0, J ; (42)

3) E∗ (x, z) = {Pi,i+1 (z)Nj (x)} ez, i = 1, (I − 1), j = 0, (J − 1). (43)

Imagine the desired vector of field values in grid nodes in the form

ψ =

⎧⎪⎪⎨
⎪⎪⎩

[
Ei,0

x

]︸ ︷︷ ︸
i=0,(I−1)

,
[
Ei,1

x

]
, . . . ,

[
Ei,J

x

]
;
[
Ei,0

y

]
,

[
Ei,1

y

]︸ ︷︷ ︸
i=1,(I−1)

, . . . ,
[
Ei,J

y

]
;

[
Ei,0

z

]︸ ︷︷ ︸
i=1,(I−1)

,
[
Ei,1

z

]
, . . . ,

[
Ei,J−1

z

]
⎫⎪⎪⎬
⎪⎪⎭

T

. (44)

Then the system of equations for finding coefficients can be written in matrix form

Aψ = F, (45)

where F is the column of the right parts, which is determined by the parameters of the electric component
Eins(x, z), incident on the wave insert.

(a) (b)

(c)

Figure 2. Field components inside the insert in case χ = 0.01: Ex-field is (a), Ey-field is (b) and Ez
is (c).
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6. RESULTS OF NUMERICAL SIMULATION

Testing of the proposed algorithm was carried out on a dielectric-filled waveguide. Then, a series of
calculations of the field inside the insert with a nonzero chirality parameter was performed.

In the case when the incident wave is the main (n0 = 1) wave of the TE-type

Eins
+ =

{
0, Eins

y,+, 0
}
, Eins

y,+ (x, z) = A0 exp (iγ̂n0z) sin (πn0x/a) (46)

with a frequency of ω/c = 5, and all the parameters of the waveguide, except the chirality parameter χ,
are unchanged and have the form a = 1, z0 = 3, ε0 = μ0 = 1. The results in Figs. 2–6 were obtained.

(a) (b)

(c)

Figure 3. Field components inside the insert in case χ = 0.5: Ex-field is (a), Ey-field is (b) and Ez is
(c).

Figs. 3 and 4 show the results of calculating the components of the electric field inside the insert
for the values of the chirality parameter approaching the critical value χc =

√
εμ (in the considered case

χc = 1).
As long as the chirality parameter remains below the critical value, the wave fields in the medium

with equivalent parameters ε±, μ± remain direct waves, since they are ε± > 0 and μ± > 0. The result
of the interference of these waves can be seen in Figs. 3 and 4.

Figs. 5 and 6 show the results of calculating the components of the electric field for the values of
the chirality parameter χ exceeding the critical value χc =

√
εμ.
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(a) (b)

(c)

Figure 4. Field components inside the insert in case χ = 0.8: Ex-field is (a), Ey-field is (b) and Ez is
(c).

(a) (b)
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(c)

Figure 5. Field components inside the insert in case χ = 1.01: Ex-field is (a), Ey-field is (b) and Ez
is (c).

(a) (b)

(c)

Figure 6. Field components inside the insert in case χ = 1.1: Ex-field is (a), Ey-field is (b) and Ez is
(c).
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In the case when the incident wave is the main TM-type wave:

Eins
+ =

{
Eins

x,+, 0, E
ins
z,+

}
, (47)

Eins
x,+ (x, z) = Ã0iγn0 (πn0/a) exp (iγn0z) , (48)

Eins
z,+ (x, z) = Ã0 (πn0/a)

2 exp (iγn0z) sin (πn0x/a) (49)

with a frequency of ω/c = 5, and all the parameters of the waveguide, except the chirality parameter χ,
are unchanged and have the form a = 1, z0 = 3, ε0 = μ0 = 1. The results in Figs. 7–11 were obtained.

(a) (b)

(c)

Figure 7. Field components inside the insert in case χ = 0.01: Ex-field is (a), Ey-field is (b) and Ez
is (c).

In the case of a sufficiently small chirality parameter χ = 0.01, the components Ex and Ez of the
electric field inside the insert vary slightly compared with the corresponding components of the field in
the empty waveguide. In this case, due to the magneto-electric coupling, a non-zero component of the
electric field Ey appears.

Figs. 8 and 9 show the results of calculating the components of the electric field inside the insert
for the values of the chirality parameter approaching the critical value χc =

√
εμ.

Figures 10 and 11 show the results of calculating the components of the electric field for the values
of the chirality parameter χ, which exceeds the critical value χc =

√
εμ, when the parameters of the

equivalent medium ε−, μ− are negative. In this case, the total field inside the insert is made up of
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(a) (b)

(c)

Figure 8. Field components inside the insert in case χ = 0.5: Ex-field is (a), Ey-field is (b) and Ez is
(c).

a direct wave in an equivalent medium with parameters ε+, μ+, and a reverse wave in an equivalent
medium with parameters ε−, μ−.

7. DISCUSSION OF THE OBTAINED NUMERICAL RESULTS

The mode composition of the field in a chiral waveguide is much richer than in a waveguide with non-
chiral filling. If in a hollow metal waveguide the field can be represented as a superposition of fields of
TE- and TM-types, that is, fields for which longitudinal components of the electric or magnetic fields
are zero, then in the chiral waveguides the longitudinal components can vanish only simultaneously,
which leads to the complete disappearance of the field. Therefore, all the modes propagating in the
chiral waveguide are mixed. The cutoff frequencies, that is, the frequencies at which this mode cannot
propagate in the waveguide, are located closer to each other in the chiral waveguide than in the non-
chiral waveguide. At the same time, the lowest (main) cutoff frequency in a chiral waveguide is always
non-zero, that is, there is a frequency domain within which the waveguide will be locked for all types
of modes. The most important property of chiral waveguides is the phenomenon of mode bifurcation:
the dispersion curve begins to split (“branch”). This means that for any given frequency greater than
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(a) (b)

(c)

Figure 9. Field components inside the insert in case χ = 0.8: Ex-field is (a), Ey-field is (b) and Ez is
(c).

(a) (b)
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(c)

Figure 10. Field components inside the insert in case χ = 1.01: Ex-field is (a), Ey-field is (b) and Ez
is (c).

(a) (b)

(c)

Figure 11. Field components inside the insert in case χ = 1.1: Ex-field is (a), Ey-field is (b) and Ez
is (c).
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the cutoff frequency of the main mode, there are a couple of modes, called bifurcated, with different
propagation constants and the same cutoff frequency. Thus, we obtain two values of the propagation
constant for a fixed frequency.

8. CONCLUSION

The paper proposes an algorithm for calculating a flat electromagnetic shielded waveguide with chiral
insertion by the method of mixed finite elements, which prevents the appearance of non-physical
solutions in electromagnetic problems. Studies show that the method of mixed finite elements is very
effective for the numerical solution of mathematical models of wave-guiding systems with chiral filling.

It is shown that in the field of chiral insertion the field is hybrid, with the result that with a certain
choice of parameters such a system can serve as a transducer of one type of wave to another.

The developed algorithm can be fairly easily generalized to the case of biisotropic and bianisotropic
filling, as well as to the case of three-dimensional waveguides of arbitrary cross section.

A program built on the basis of the proposed method can be used as a program module for solving
a direct problem in a general program for solving an inverse problem of synthesizing a waveguide system
with a complex filling that has specified technical characteristics.

Thus, the developed numerical and mathematical method allows to solve problems of modeling
complex biisotropic and bianisotropic materials, which contributes to their use in the development and
study of new devices and systems that have wide practical application.
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