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Scintillation Effects in the Magnetized Plasma

George Jandieri1, *, Akira Ishimaru2, Jaromir Pistora1, and Michal Lesnak1

Abstract—Statistical characteristics of scattered electromagnetic waves in the turbulent magnetized
plasma caused by electron density fluctuations are calculated using complex geometrical optics
approximation taking into account both diffraction effects and polarization coefficients. Scintillation
level normalized on the variance of the phase fluctuations is analyzed analytically and numerically for
small-scale plasma irregularities using the experimental data. New properties of the electromagnetic
wave scintillations have been revealed. It is shown that splashes arise in the ionosphere leading to the
turbulence and generation of new oscillations (waves and/or Pc pulsations) propagating in space and
the terrestrial atmosphere. Turbulence extending in the lower atmospheric layers can influence on the
meteorological parameters leading to climate change.

1. INTRODUCTION

Ionospheric scintillation study is one of the important problems of the formation of ionospheric plasma-
density irregularities and in space communication. The phenomenon referred to the scintillation of radio
signal in the ionosphere was well studied and widely described in the scientific literature [1–3]. Plasma
irregularities cause random modulation of the wave front of an incident signal giving rise random phase-
modulation of a transmitted wavefront that effects the signal phase and amplitude, polarization, and
angle of arrival. Ionospheric scintillation models contain the worldwide climatology of the ionospheric
plasma density irregularities that cause scintillation.

The presence of the geomagnetic field leads to the birefringence and anisotropy. Ionospheric
irregularities have typical spatial dimensions ranging from several kilometers to few meters, are mainly
field-aligned and causing scintillation. Scintillation effects of scattered ordinary and extraordinary waves
in the ionospheric plasma for both power-law and anisotropic Gaussian correlation functions of electron
density fluctuations have been investigated in [4–7].

The second-order statistical moments are calculated in this paper using the complex geometrical
optics approximation taking into account polarization coefficients of both ordinary and extraordinary
waves and diffraction effects. Numerical calculations are carried out for small-scale ionospheric plasma
irregularities using anisotropic Gaussian 3D spectral function containing both anisotropy factor and
slope angle of elongated plasma irregularities with respect to the lines of forces of the geomagnetic
field. Scintillation level is estimated in three zones: the non-fully developed diffraction pattern, the
fully developed pattern and in the transition area connecting these two regions. Numerical calculations
are based on experimental data.

2. FORMULATION

Wave equation for the electric field in the collision magnetized plasma(∇i∇j − Δδij − k2
0εij(r)

)
Ej(r) = 0, (1)
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contains components of the second-order permittivity tensor [8]:

εxx = 1 − Δg, εxy = −εyx = iΔ
√

uL, εxz = −εzx = −iΔ
√

uT , εyy = 1 − Δ
(
g2 − uT

)
/g,

εyz = εzy = Δug
√

uLuT , εzz = 1 − Δg
(
g2 − uL

)
,

(2)

where Δ = v/(g2 − u), uL = u cos2 α, uT = u sin2 α, ωp(r) = [4πN(r)e2/m]1/2 is the plasma frequency;
u(r) = (eH0/mcω)2 and v(r) = ω2

p(r)/ω2 are the magneto-ionic parameters; N(r) is the electron density;
e and m are the charge and the mass of electron, respectively; g = 1 − is, s = νeff /ω, νeff = νei + νen

is the effective collision frequency of electrons with other plasma particles; α is the angle between
the Z-axis (the direction of the wave propagation) and the ambient geomagnetic field H0 in the yz-
plane. Ionospheric structures smaller than the first Fresnel scale

√
λL (where λ represents the signal

wavelength, and L is the distance between the irregular layer and the observation points) imparts both
phase and amplitude modulations of the wavefront undergoing refraction or diffraction [9]. We introduce
diffraction parameter μ = k⊥/k0 [10].

For the solution of Equation (1) we use the complex geometrical optics approximation representing
the wave field as Ej(r) = E0j exp{Φ(r)}, where Φ(r) is the complex phase, Φ(r) = ϕ0 + ϕ1(r),
ϕ0 = ik0x + ik⊥y (k⊥ � k0), ϕ1(r) is a random function of the spatial coordinates.

Applying the modified smooth perturbation method [11, 12] correlation function of the phase
fluctuations of a scattered electromagnetic wave caused by the electron density fluctuations in the
high-latitude polar ionospheric region is:

Wϕ(η, L) =
π

2
k4

0LΥ2
0

∞∫
−∞

dx

∞∫
−∞

dyVn

{
x, y,− [(μ + y)y + T0x

2 + sT1x
]}

exp(−iηxx − iηyy), (3)

where ηy and ηx are the nondimensional distances between observation points spaced apart in the
principle and perpendicular planes, respectively; x = kx/k0, y = ky/k0, T1 = 2P ′

j(μ + y) +

Γ′
j

[
2(1 + μy) + y2

]
, T0 = Γ′′

j

[
Γ′′

j − P ′′
j (μ + y)

]
, Vn(x, y) is the arbitrary 3D spatial spectrum of electron

density fluctuations; the asterisk indicates the complex conjugate; Υ2
0 should be calculated for a given

altitude of the terrestrial ionosphere, and polarization coefficients can be easily calculated in a zero-order
approximation containing the magneto-ionic parameters [8]

〈Ey〉
〈Ex〉 = −i

2
√

uL(g − v)

uT ∓
√

u2
T + 4u2

L(g − v)2
= −iP ′′

j − sP ′
j,

〈Ez〉
〈Ex〉 = −i

v
√

uT

(
g +

√
uLPj

)
gu − g2(g − v) − vuL

= iΓ′′
j + sΓ′

j,

(4)

upper sign (index 1) corresponds to the ordinary wave and the lower sign (index 2) to the extraordinary
wave.

The variance of the phase fluctuations is [11].

〈
ϕ2

1

〉
=

π

2
k4

0LΥ2
0

∞∫
−∞

dx

∞∫
−∞

dyVn(iΩ1 − Ω2), (5)

where Ω1 = Γ′′
j

[
Γ′′

j − P ′′
j (μ + y)

]
, Ω2 = 2P ′

j(μ + y) + Γ′
j

[
2(1 + μy) + y2

]
.

The standard relationship for the weak scattering between the scintillation level S4 and the 2D
phase spectrum describing 2D diffraction pattern on the ground is [13]:

S2
4 = 2

∞∫
−∞

dx

∞∫
−∞

dyWϕ(x, y) sin2

(
x2 + y2

Ξ2
f

)
, (6)

where Ξf = kf/k0 ≡√4π/λL/k0 is the nondimensional Fresnel wavenumber. The double integral in the
wave number space does not depend on the shape of the fluctuation spectrum and does not depend on
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the intensity fluctuations. The sinusoidal term is responsible for oscillations in the scintillation spectrum.
Phase scintillations are usually observed as a phase difference spaced apart receiving antennas or radar
systems.

If “frozen-in” plasma irregularities move relative to the receiver or the satellite, the 3D spectral
function can be transformed into a one-dimensional spectrum. We assume that irregularities drift
transverse to the line of the sight path of the radio signals in the x-axis with the velocity Vx. The power
spectrum PS(ν, L) is computed from the correlation function of the phase fluctuations [14]:

Pϕ(ν) =
2π

k0Vx

∞∫
0

dxWϕ

(
x =

2πν

k0Vx
, y

)
, PS(ν) = 4Pϕ(ν) sin2

(
ν

νf

)2

. (7)

The Fresnel frequency νf = Vx/(πλL)1/2 is directly proportional to the drift velocity Vx of plasma
irregularities normal to the yz -plane and inversely proportional to the Fresnel radius, and ν is the
scintillation frequency.

The standard relationship for weak scattering between the 2D scintillation spectrum PS(x, y) and
the 2D phase correlation function is given by:

PS(x, y) = 4Wϕ(x, y) sin2

(
x2 + y2

Ξ2
f

)
, (8)

Equations (7) and (8) describe 2D diffraction patterns at the ground illustrating the strong attenuation
of the interference pattern.

3. NUMERICAL CALCULATIONS

The incident electromagnetic wave has a frequency of 3 MHz (k0 = 6.28 ·10−2 m−1). Plasma parameters
at an altitude of 300 km are u = 0.22, v = 0.28. The Fresnel radius and Fresnel wavenumber are equal
to 5.5 km and 0.64 km−1, respectively.

The distribution of nighttime irregularities which produce satellite scintillation has been examined
for a midlatitude location using a large array of receivers [15]. The orientation of the axis of elongation,
and movements perpendicular to this axis were measured. It was shown that the irregularities are
aligned along the earth’s magnetic field in the F-region with observable structures as small as a few
hundred meters.

The Gadanki MST radar observations made during the SAFAR (“Study on Atmospheric Forcing
And Responses”) program show that plasma irregularities with scale sizes ranging from a few centimeters
to a few hundred of kilometers are generated [16] due to the Rayleigh-Taylor instability. In Equinox,
they are observed as plume structures, while in summer, they are observed as horizontally stratified
structures. Below 350 km (where the buoyancy force to the plasma bubble motion can be neglected) the
irregularity drift perpendicular to the magnetic field with the velocities 10–100 ms−1 and occasionally
as high as 300 ms−1.

Numerical calculations are carried out for the anisotropic Gaussian 3D spectral correlation function
of the electron density fluctuations. The anisotropic 3D Gaussian spectral function has the following
form [17]:

Wn(k) =
σ2

nl3||
8π3/2χ2

exp

(
−

k2
xl2||

4χ2
− p1

k2
y l

2
||

4
− p2

k2
z l

2
||

4
− p3kykzl

2
||

)
, (9)

where σ2
n is the mean-square fractional deviation of electron density. This spectral function contains the

anisotropy factor χ = l||/l⊥ (the ratio of longitudinal and transverse linear sizes of ionospheric plasma
irregularities) and the inclination angle γ0 of elongated irregularities with respect to the magnetic lines
of forces; p1 = (sin2 γ0 + χ2 cos2 γ0)−1

[
1 + (1 − χ2)2 sin2 γ0 cos2 γ0/χ

2
]
, p2 = (sin2 γ0 + χ2 cos2 γ0)/χ2,

p3 = (1 − χ2) sin γ0 cos γ0/2χ2. Ellipsoidal shape of the plasma irregularities is caused due by the
diffusion processes in the terrestrial ionosphere.



162 Jandieri et al.

By substituting (9) into Equations (5)–(7) and using the saddle-point method we obtain:

S∗ =

∞∫
−∞

dy
[
1 − cos(Υy2)

] · exp
(
− ξ2

4 Θ3

)
∞∫

−∞
dy exp

(
− ξ2

4 Θ5y2
) . (10)

P (⊥)
ϕ (ν) =

G0

ν0
exp(−iηxν∗)

∞∫
−∞

dy exp
{
−ξ2

4

[(p2

16
Θ2

1ν
4
∗ + Θ2ν

2
∗ + Θ3

)
+ sΘ4

(p2

8
Θ1ν

3
∗ + gν∗

)]}

· exp(−iηyy), (11)

where: G0 = σ2
nξ3k0L/16

√
πχ2, ν∗ = ν/ν0, ν0 = k0Vx/2π, g = 1

2p2μ − p3y + 1
4p2y

2, Θ1 =

Γ′′
j

[
Γ′′

j − P′′
j (y + μ)

]
, Θ2 = 1

χ2 + gΘ1, Θ3 = p2

4 y4 + (p2μ − 2p3)y3 + (p1 + p2μ
2 − 4p3μ)y2, Θ4 =

2
[
Γ′

j − P′
jμ + (Γ′

jμ − P′
j)y
]

+ Γ′
jy

2, Θ5 = p1 + p2μ
2 + 4 p3μ.

Figures illustrate log-log plots of the normalized scintillation level S∗ = S4/
√

〈ϕ2
1〉 versus parameter

Υ = 2k2
0/k

2
f for the anisotropic Gaussian irregularities in the magnetized collision plasma at different χ

and γ0 parameters. Left asymptotic area Υ � 1 (first region) is associated with a significant filtering,
non-fully developed diffraction pattern, Υ 	 1 (third region) corresponds to the fully developed pattern.
The shaded area (second region) is the transition region between these two regions. In all the figures
the diffraction parameter μ = 0.08, curve 1 corresponds: χ = 10, γ0 = 5◦; curve 2: χ = 10, γ0 = 10◦;
curve 3: χ = 20, γ0 = 20◦; curve 4: χ = 30, γ0 = 20◦. The scintillation index depends strongly on the
distance between the interferometer elements and characteristic linear scale of plasma irregularities.

Figure 1 depicts log-log plots of the normalized scintillation level at ξ = 80 (l|| = 1.3 km), the
distance between observation points: ηx = 5, ηy = 4; s = 0.01. For the curve 3, no oscillations are in
the transient zone and arise only in the fully-developed diffraction region; four minimums are in the
normalized scintillation level S∗: Υ = 24, 47, 72 and 95. The curve 4 has 15 minimums. All minimums
satisfy the relationship: 1 : 2 : 3 : 4.... In this case, oscillations are not observed for the curves 1 and 2.

Decreasing the anisotropy factor ξ = 60 (l|| = 950 m) (Figure 2), ηx = 3, ηy = 3; s = 10−3

scintillation arising in a transient region is increased in the fully-developed diffraction area (curves 3
and 4). Minimums S∗ are at the same points as in the previous case.

Figure 1. Scintillation level S∗ versus parameter
Υ at ξ = 80, χ = 10 ÷ 30, γ0 = 5◦ ÷ 20◦.

Figure 2. Scintillation level S∗ versus parameter
Υ at ξ = 60, χ = 10 ÷ 30, γ0 = 5◦ ÷ 20◦.
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Figure 3. Normalized scintillation spectrum S∗
versus parameter Υ for 3 MHz incident EM wave;
Curve 1 corresponds to the isotropic case (χ = 10,
γ0 = 5◦), curve 2 (χ = 10, γ0 = 10◦), curve 3
(χ = 20, γ0 = 20◦), curve 4 (χ = 30, γ0 = 20◦).

Figure 4. Power spectrum of the intensity
fluctuations for the extraordinary wave. Curve
1 corresponds to the isotropic case χ = 1 and
γ0 = 0◦, curve 2 depicts χ = 5 and γ0 = 5◦, curve
3: χ = 15 and γ0 = 10◦.

Figure 3 illustrates the log-log plots of the normalized scintillation spectrum S∗ versus parameter
Υ at ξ = 10(l|| ≈ 160 m), ηx = 5 and ηy = 2. Since Υ = 8 powerful splashes arise in the energetic
spectrum transforming their energy into plasma turbulence increasing its intensity. Turbulence has an
influence on the meteorological parameters in the lower atmospheric layers leading to climate change.
Harmonic oscillations are generated in a transient zone due to the collision between the plasma particles
propagating in the terrestrial atmosphere and space as new electromagnetic waves and/or geomagnetic
Pc pulsations (see Table 1).

Knowledge of speed of the movement of ionospheric plasma irregularities allows to calculate the
power spectrum containing the Fresnel frequency νf = V/(πλL)1/2 and sinusoidal term responsible

Table 1.

χ γ0 (in degrees) Υ kf (m−1) Comments

20
0 8 0.0314 Dumped oscillations
10 7 0.0336
20 6 0.0363 Harmonic oscillations

25

0 4 0.0444 Dumped oscillations
10 3.5 0.0475 Harmonic oscillations

20 3.3 0.0489
Nonstationary oscillations

(turbulence) until Y = 40, after
only harmonic oscillations

30

0 2 0.0628 Dumped oscillations

10 1.9 0.0644
Nonstationary oscillations

(turbulence) until Y = 30, after
harmonic oscillations

20 1.9 0.0644
Nonstationary oscillations

(turbulence)
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for oscillations in the scintillation spectrum and calculate the frequencies of the scintillation spectrum.
The drift velocity of scattering irregularities embedded in the ionosphere and the characteristic velocity
derived with the correlation method (the three-station method) have been considered in [18]. The drift
velocity varies in the 84 m/s–102 m/s interval.

Figure 4 depicts the curves of the power spectrum of the intensity fluctuations for the extraordinary
wave in the collision magnetized plasma perpendicular to the principal plane at l|| ≈ 160 m, ηx = ηy = 5.
Numerical calculations show that for the extraordinary wave first minimum is at ν1 = 1.6 Hz, next
minimums are at: 3.2 Hz, 6.1 Hz, 9,4 Hz, 12.6 Hz, thus satisfying the condition: 1 : 2 : 3 : 4 and so
on. Inflection points are: for the curve 1 at ν = 0.5 Hz; for the curve 2 at ν = 2 Hz and 4Hz; and for
the curve 3 at ν = 2 Hz, 5 Hz, 8 Hz, 11 Hz and 14 Hz. The first minimum for the ordinary wave is at:
ν1 = 1.45 Hz, next minimums are at: 3.2 Hz; 6.3 Hz; 9.4 Hz; 12.9 Hz.

4. CONCLUSION

Second-order statistical moments of scattered electromagnetic wave have been obtained for the arbitrary
correlation function of electron density fluctuations using complex geometrical optics approximation
taking into account diffraction effects and polarization coefficients. Scintillation level and the power
spectrum have been analytically and numerically computed for the anisotropic Gaussian correlation
function of anisotropic plasma irregularities containing anisotropy factor and inclination angle with
respect to the geomagnetic lines of force. New properties of the electromagnetic wave scintillations
have been revealed. Analyses of the normalized scintillation level of scattered radiation for an incident
3MHz wave show that splashes and turbulence arise in the terrestrial ionosphere. Extending turbulence
in the lower atmospheric layers can influence the meteorological parameters causing climate change.
Stationary oscillations are generated in the collision magnetized plasma (collision frequency is s ≈ 0.01)
with small-scale plasma irregularities having characteristic spatial scales in the interval 80 m–1.3 km.
Scintillation slump is inversely proportional to the anisotropy factor. Minimums of the power spectrum
of the intensity fluctuations for the extraordinary wave satisfy the condition: 1 : 2 : 3 : 4 and so on.
The theory should be generalized for conductive anisotropic turbulent media using the same approach
as given in this paper.
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