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On the Classical Electrodynamics in Dispersive Time-Dependent
Linear Isotropic Media

Victor Nijimbere*

Abstract—The goal of this study is to conduct an analytical study of the properties (permittivity
and permeability or refractive index) of a dispersive time-dependent linear isotropic medium interacting
with electromagnetic fields. It is found that the permittivity and permeability of the time-dependent
dispersive medium may either have an exponential profile in time or a sinusoidal profile in time.
The permittivity and permeability can vanish or can be negative as in metamaterials. Therefore,
the refractive index can vanish, so the electromagnetic wave can propagate at an infinite speed
(c � 3 · 108 m/s). It is also shown that the permittivity and the permeability can simultaneously be
negative as in left-handed metamaterials (LHM). The general electric field and magnetic field solutions
are derived, and the electric and magnetic flux densities are evaluated. The wave dispersion relation
is also analysed. The obtained solutions can be used to validate experimental results by applying the
initial and boundary conditions which are appropriate to the experimental setup.

1. INTRODUCTION

The study of phenomena involving electromagnetic field interactions in dispersive and nondispersive
time-dependent material media continues to attract attention of electrodynamists who seek to improve
our understanding of the interactions between the matter and radiation in nature [4, 10]. On the
other hand, the study of phenomena involving electromagnetic field interactions in dispersive and
nondispersive time-dependent material media continues to attract attention of engineers and applied
physicists who seek to improve our understanding of the interactions between the matter and the
radiation for application purposes [1, 6, 9].

With these objectives in mind, Pedrossa et al. [5] considered three profiles of time-dependent
permittivity, a linear function of time, an exponential growth with time, and a sinusoidal function of
time, and then obtained solutions to the wave equations in a time-dependent dynamic media in the
absence of electric charges. In the two first configurations, they were able to write the wave solutions
in terms of Bessel functions, while they have used numerical integration in the configuration with
a sinusoidal time-dependent permittivity. Their solutions were limited to dielectric materials (zero
conductivity) and non-ferromagnetic materials (constant permeability).

In [3, 4], ionosphere was modeled as an isotropic medium with weakly-random fluctuations in time
considering that both the permittivity and permeability are time-dependent weakly-random variables.
It was shown in [3, 4] that an isotropic medium with weakly-random fluctuations in time can behave as
direct current electric dynamo, and some applications relevant to the ionospheric electrodynamics were
given.

It is known that when suddenly photoionized, a gase (dispersive medium) which has a refractive
index ∼ 1 becomes a plasma, and its refractive index becomes smaller than 1 (∼ 0), see Yablonovitch [10].
In that case, the light propagates at a very high speed compared to that in the free space (c � 3·108 m/s).
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A similar behavior may take place in semi-conductors whose refractive indices can rapidly drop from 3
to a value smaller than 1 (∼ 0) as a result of a sudden creation of electron-hole pairs [10].

Material media with zero refractive index, known as metamaterials, can now be designed and
fabricated [1, 7, 9]. Metamaterials are designed to have optical features that ordinary materials found
in the nature do not have. They can also have either a negative permittivity or negative permeability.
In that case, the refractive index is complex, and the electromagnetic wave is damped as it propagates
through the material medium [7]. In the special case where both the permittivity and permeability are
negative at the same time, the material is called a left-handed metamaterial (LHM), Veselago [8]. In
such a material medium, the refractive index can be negative. As a result, the phase velocity and group
velocity become antiparallel [7].

The present work is devoted to the classical electrodynamics in linear dispersive time-dependent
media, with or without charge source, which can be either conducting or nonconducting. In Section 2,
the wave equations are derived, and these equations are solved in Section 3. It is shown in Section 3 that
the permittivity or permeability can be either an exponential function of time or a sinusoidal function
of time, and that a dispersive time-dependent medium can exhibit the characteristics of metamaterials
depending on how the medium properties’ initial conditions are set up. The electric and magnetic flux
densities are evaluated as well, and the wave dispersion relation is also investigated. In Section 4, a
summary of the results is given.

2. ELECTROMAGNETIC WAVE EQUATIONS IN THE TIME-DEPENDENT
DISPERSIVE MEDIA

The equations for electromagnetic fields are derived from Maxwell’s equations,

∇× E = −∂B
∂t

, (1)

∇× H = J +
∂D
∂t

, (2)

∇ · D = ρ (3)

and
∇ ·B = 0, (4)

complemented by the continuity equation

∂ρ

∂t
= −∇ · J, (5)

where E and H are the electric and magnetic field vectors; D and B are the electric and magnetic flux
densities; J is the current density; and ρ is the charge density.

In a time-dependent dispersive medium, the relationships between D and E, B and H, and J and
E take the forms [2],

D(r, t) =
d

dt
(ε(t) ∗ E(r, t)) = ε(0)E(r, t) +

t∫
0

dε(τ)
dτ

E(r, t − τ)dτ, (6)

B(r, t) =
d

dt
(μ(t) ∗ H(r, t)) = μ(0)H(r, t) +

t∫
0

dμ(τ)
dτ

H(r, t − τ)dτ (7)

and

J(r, t) =
d

dt
(σ(t) ∗ E(r, t)) = σ(0)E(r, t) +

t∫
0

dσ(τ)
dτ

E(r, t − τ)dτ, (8)

where ∗ represents the Laplace convolution integral, ε the permittivity of the medium, μ the permeability
of the medium, and σ the conductivity of the medium.
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The convolution integrals have to reach some stationary states t → ∞ in order to satisfy the
principle of causality. We consider that the properties of medium ε, μ ,and σ evolve with time and are
unknown dependent variables of time which have to be evaluated along with the electromagnetic field
properties E and H in order to completely describe the electromagnetic field.

For simplification purpose, approximate expressions (without convolution integrals), for
∂D
∂t , ∂2D

∂t2 , ∂B
∂t and ∂2B

∂t2 , are derived in Appendix A and are given by Eqs. (A5), (A6), (A7), and (A8)
respectively. They are used in the derivation of the wave equations instead of their exact ones. Therefore,
the solutions of the wave equations are approximate solutions. The principle of causality has been used
to get rid of the convolution integrals.

Now, applying the curl operator to Eq. (1) and using Eqs. (2) and (A7) yields

∇×∇× E = −∇× ∂B
∂t

= −∇×
[
μ(0)

∂H
∂t

(r, t) +
dμ(t)

dt
H(r, 0) +

dμ(0)
dt

H(r, t)
]

= −μ(0)
∂∇× H

∂t
(r, t) − dμ(t)

dt
∇×H(r, 0) − dμ(0)

dt
∇× H(r, t)

= −μ(0)
∂

∂t

[
J(r, t)+

∂D
∂t

(r, t)
]
− dμ(t)

dt

[
J(r, 0)+

∂D
∂t

(r, 0)
]
− dμ(0)

dt

[
J(r, t)+

∂D
∂t

(r, t)
]

.(9)

Expanding the right hand side of Eq. (9) and using the vector formula ∇×∇×A = ∇(∇ · A) −∇2A
for some vector field A yields

∇(∇ ·E) −∇2E = −μ(0)
∂2D
∂t2

(r, t) − dμ(0)
dt

∂D
∂t

(r, t) − dμ(t)
dt

∂D
∂t

(r, 0)

−μ(0)
∂J
∂t

(r, t) − dμ(0)
dτ

J(r, t) − dμ(t)
dt

J(r, 0). (10)

Using the expression for ∂D
∂t given by (A5) and the expression for ∂2D

∂t2 given by Eq. (A6) and rearranging
terms gives the wave equation for the electric field,

∇(∇ ·E) −∇2E = −μ(0)ε(0)
∂2E
∂t2

(r, t) −
[
ε(0)

dμ(0)
dt

+ μ(0)
dε(0)

dt

]
∂E
∂t

(r, t) − dμ(0)
dt

dε(0)
dt

E(r, t)

−dμ(t)
dt

[
ε(0)

∂E
∂t

(r, 0) +
dε(0)
dt

E(r, 0)
]
−
[
μ(0)

d2ε(t)
dt2

+
dμ(0)

dt

dε(t)
dt

]
E(r, 0)

−μ(0)
∂J
∂t

(r, t) − dμ(0)
dt

J(r, t) − dμ(t)
dt

J(r, 0). (11)

Applying the curl operator to Eq. (2) and using Eq. (1) yields

∇×∇× H = ∇× J + ∇× ∂D
∂t

= ∇× J + ∇×
[
ε(0)

∂E
∂t

(r, t) +
dε(t)
dt

E(r, 0) +
dε(0)
dt

E(r, t)
]

= ∇× J + ε(0)
∂∇× E

∂t
(r, t) +

dε(t)
dt

∇× E(r, 0) +
dε(0)
dt

∇× E(r, t)

= ∇× J + ε(0)
∂

∂t

[
−∂B

∂t
(r, t)

]
+

dε(t)
dt

[
−∂B

∂t
(r, 0)

]
+

dε(0)
dt

[
−∂B

∂t
(r, t)

]
. (12)

Applying the vector formula ∇×∇× A = ∇(∇ ·A) −∇2A as before yields

∇(∇ ·H) −∇2H = −ε(0)
∂2B
∂t2

(r, t) − dε(0)
dt

∂B
∂t

(r, t) − dε(t)
dt

∂B
∂t

(r, 0) + ∇× J. (13)
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Using the expression for ∂B
∂t given by Eq. (A7) and that for ∂2B

∂t2
given by Eq. (A8), taking into

consideration Eq. (4) and rearranging terms gives the wave equation for the magnetic field

∇2H = μ(0)ε(0)
∂2H
∂t2

(r, t) +
[
ε(0)

dμ(0)
dt

+ μ(0)
dε(0)

dt

]
∂H
∂t

(r, t) +
dμ(0)

dt

dε(0)
dt

H(r, t)

+
dε(t)
dt

[
μ(0)

∂H
∂t

(r, 0) +
dμ(0)

dt
H(r, 0)

]
+
[
ε(0)

d2μ(t)
dt2

+
dε(0)
dt

dμ(t)
dt

]
H(r, 0) −∇× J.(14)

Without charge source (ρ = 0) and if the medium is not conducting (J = 0), Equations (11) and
(14) become

∇2E − μ(0)ε(0)
∂2E
∂t2

(r, t) −
[
ε(0)

dμ(0)
dt

+ μ(0)
dε(0)

dt

]
∂E
∂t

(r, t) − dμ(0)
dt

dε(0)
dt

E(r, t)

−dμ(t)
dt

[
ε(0)

∂E
∂t

(r, 0) +
dε(0)
dt

E(r, 0)
]
−
[
μ(0)

d2ε(t)
dt2

+
dμ(0)

dt

dε(t)
dt

]
E(r, 0) = 0. (15)

and

∇2H − μ(0)ε(0)
∂2H
∂t2

(r, t) −
[
ε(0)

dμ(0)
dt

+ μ(0)
dε(0)

dt

]
∂H
∂t

(r, t) − dμ(0)
dt

dε(0)
dt

H(r, t)

−dε(t)
dt

[
μ(0)

∂H
∂t

(r, 0) +
dμ(0)

dt
H(r, 0)

]
−
[
ε(0)

d2μ(t)
dt2

+
dε(0)
dt

dμ(t)
dt

]
H(r, 0) = 0. (16)

We observe that Eqs. (15) and (16) are obtained in any configuration where

∇(∇ ·E) = −μ(0)
∂J
∂t

(r, t) +
dμ(0)

dt
J(r, t) − dμ(t)

dt
J(r, 0) (17)

and
∇× J = 0. (18)

The conductivity σ(t) may be obtained using Eqs. (17) and (8).
We note that the general solutions for Eqs. (15) and (16) can be derived for any form of the time-

dependent electric permittivity ε(t) and any form of the time-dependent magnetic permeability μ(t).
Here, we rather consider a special case where ε(t) and μ(t) satisfy

μ(0)
d2ε(t)
dt2

+
dμ(0)

dt

dε(t)
dt

= 0 and ε(0)
d2μ(t)

dt2
+

dε(0)
dt

dμ(t)
dt

= 0, (19)

and discuss some configurations where this case may find applications in the next section (Section 3.1).
In that case, Eqs. (15) and (16) are reduced respectively to

∇2E − μ(0)ε(0)
∂2E
∂t2

(r, t) −
[
ε(0)

dμ(0)
dt

+ μ(0)
dε(0)

dt

]
∂E
∂t

(r, t)

−dμ(0)
dt

dε(0)
dt

E(r, t) − dμ(t)
dt

[
ε(0)

∂E
∂t

(r, 0) +
dε(0)
dt

E(r, 0)
]

= 0. (20)

and

∇2H − μ(0)ε(0)
∂2H
∂t2

(r, t) −
[
ε(0)

dμ(0)
dt

+ μ(0)
dε(0)

dt

]
∂H
∂t

(r, t)

−dμ(0)
dt

dε(0)
dt

H(r, t) − dε(t)
dt

[
μ(0)

∂H
∂t

(r, 0) +
dμ(0)

dt
H(r, 0)

]
= 0. (21)

We observe that if ε and μ are constants, then Eqs. (20) and (21) become the standard wave
equations.
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3. ANALYTICAL SOLUTIONS IN AN ISOTROPIC DISPERSIVE
TIME-DEPENDENT MEDIUM

3.1. Temporal Evolution of the Properties of the Medium

The initial or boundary conditions determine the form of ε(t) and μ(t). Here, we solve Eq. (19) subject
to the complex initial conditions

ε(0) = ε1 + iε2,
dε(0)
dt

= ε̇1 + iε̇2, μ(0) = μ1 + iμ2 and
dμ(0)

dt
= μ̇1 + iμ̇2, (22)

where the dots may be interpreted as time derivatives, and the value of ε̇1 and that of μ̇1 have to be
positive in order for ε(t) and μ(t) to reach some steady states as the time becomes large (t → ∞). Thus,
solutions to Eq. (19) are

ε(t) = ε(0) +
dε(0)
dt

μ(0)[
dμ(0)

dt

] [exp
(
− 1

μ(0)
dμ(0)

dt
t

)
− 1
]

= ε1 + iε2 + (ε̇1 + iε̇2)
μ1 + iμ2

μ̇1 + iμ̇2

[
exp
(
− μ̇1μ1 + μ2μ̇2 + i(μ̇2μ1 − μ̇1μ2)

μ2
1 + μ2

2

t

)
− 1
]

(23)

and

μ(t) = μ(0) +
dμ(0)

dt

ε(0)[
dε(0)
dt

] [exp
(
− 1

ε(0)
dε(0)
dt

t

)
− 1
]

= μ1 + iμ2 + (μ̇1 + iμ̇2)
ε1 + iε2

ε̇1 + iε̇2

[
exp
(
− ε̇1ε1 + ε2ε̇2 + i(ε̇2ε1 − ε̇1ε2)

ε2
1 + ε2

2

t

)
− 1
]

. (24)

In Figure 1, (dε(0)/dt)/ε(0) and (dμ(0)/dt)/μ(0) are real and positive, while in Figures 3 and
4, (dε(0)/dt)/ε(0) and (dμ(0)/dt)/μ(0) are complex and have positive real parts. The choice of initial
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Figure 1. (a) δε(t) = ε(t)/ε(0) = 1 + αε(e−0.2t − 1) as a function of time t (in µs) and (b)
δμ(t) = μ(t)/μ(0) = 1 + αμ(e−0.1t − 1) as a function of time t (in µs). In this case, αε =
((dε(0)/dt)/ε(0))(μ(0)/(dμ(0)/dt)) = 2 while αμ = 1/αε = 0.5. The permittivity damping factor
is (−dμ(0)/dt)/μ(0) = −0.2 · 106 s−1 while the permeability damping factor is (−dε(0)/dt)/ε(0) =
−0.1 · 106 s−1.
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Figure 2. δ(t) = ε(t)/ε(0) = 1 + (e−0.1t − 1) = μ(t)/μ(0) as a function of time t (in µs). In this
case, the permittivity damping factor equals the permeability damping factor, (−dε(0)/dt)/ε(0) =
(−dμ(0)/dt)/μ(0) = −0.1 · 106 s−1.
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Figure 3. The permittivity and the permeability are complex. (a) The real part of δε = ε(t)/ε(0),
Re{δε(t)} as a function of time t (in µs), and (b) the imaginary part of δε = ε(t)/ε(0), Im{δε(t)} as a
function of time t (in µs). (dμ(0)/dt)/μ(0) = (0.2+ i)106 s−1 while (dε(0)/dt)/ε(0) = (0.1+0.5i)106 s−1.

conditions, which gives the results in Figures 1, 3 and 4, is such that the permittivity ε becomes negative
as it evolves with time while the permeability μ remains positive. A material medium having either a
negative permittivity or a negative permeability can be fabricated, and as mentioned before, it is called
a metameterial [7, 9]. An application involving spontaneous photon production in a time-dependent
material with a near-zero complex permittivity can be in found in [6]. The initial conditions that will
make the permeability evolve to negative values while the permittivity remains positive may also be
chosen. The refractive index n(t) = (εr(t)μr(t))1/2 is thus complex. The temporal evolutions of real
and imaginary parts of the refractive index, corresponding to the configuration in Figures 3 and 4, are
shown in Figures 5(a) and 5(b), respectively.
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Figure 4. The permittivity and the permeability are complex. (a) The real part of δμ = μ(t)/μ(0),
Re{δμ(t)} as a function of time t (in µs), and (b) the imaginary part of δμ = μ(t)/μ(0), Im{δμ(t)} as a
function of time t (in µs). (dμ(0)/dt)/μ(0) = (0.2+ i)106 s−1 while (dε(0)/dt)/ε(0) = (0.1+0.5i)106 s−1.
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Figure 5. (a) The real part of the index of refraction Re{n(t)} = Re{c0/c(t)} as a function of time t
(in µs), and (b) the imaginary part of the index of refraction Im{n(t)} = Im{c0/c(t)} as a function of
time t (in µs). (dε(0)/dt)/ε(0) = (0.2 + 1i)106 s−1 while (dμ(0)/dt)/μ(0) = (0.1 + 0.5i)106 s−1.

An important feature seen in Figures 3 and 4 is that although initially the permittivity and
permeability are complex quantities, their corresponding imaginary parts vanish later in time. Thus,
the permittivity and permeability become real quantities as in Figure 1 later in time.

Figure 2 illustrates that if (dε(0)/dt)/ε(0) = (dμ(0)/dt)/μ(0) > 0, then the temporal evolution of
ε and that of μ are identical. And both ε and μ tend to zero as t becomes large. As a result, the
value of the refractive index tends to zero. This happens in the ionosphere when, for example, a gase is
photoionized and turns into a plasma [10].

The other possibility is to have both permittivity and permeability evolving to negative values in
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time. This is possible if either dε(0)/dt < 0 while dμ(0)/dt > 0 or dε(0)/dt > 0 while dμ(0)/dt < 0.
Material media which are designed to have this feature are called left-handed metamaterial (LHM) [8].

It is worth to point out that if ε(0) = ε0 and μ(0) = μ0 in Figures 1–4, then δε(t) = εr(t) the
relative permittivity while δμ(t) = μr(t) the relative permeability.

The speed of light c(t) = 1/[ε(t)μ(t)]1/2 = c0/n(t) where c0 is the speed of light in free space, and
the refractive index n(t) is given by

n(t) = n(0)

⎧⎪⎪⎨
⎪⎪⎩1 +

μ(0)
ε(0)

[
dε(0)
dt

]
[
dμ(0)

dt

] [exp
(
− 1

μ(0)
dμ(0)

dt
t

)
− 1
]

+
ε(0)
μ(0)

[
dμ(0)

dt

]
[
dε(0)
dt

] [exp
(
− 1

ε(0)
dε(0)
dt

t

)
− 1
]

+
[
exp
(
− 1

μ(0)
dμ(0)

dt
t

)
− 1
] [

exp
(
− 1

ε(0)
dε(0)
dt

t

)
− 1
]}1/2

, (25)

and n(0) being the value of the index of refraction at t = 0.

3.2. Electric and Magnetic Field Solutions in an Isotropic Medium

From Eqs. (15) and (16), each component E of the electric field vector E and each component H of the
magnetic field vector H satisfy, respectively,

∇2E − μ(0)ε(0)
∂2E

∂t2
(r, t) −

[
ε(0)

dμ(0)
dt

+ μ(0)
dε(0)

dt

]
∂E

∂t
(r, t)

−dμ(0)
dt

dε(0)
dt

E(r, t) − dμ(t)
dt

[
ε(0)

∂E

∂t
(r, 0) +

dε(0)
dt

E(r, 0)
]

= 0 (26)

and

∇2H − μ(0)ε(0)
∂2H

∂t2
(r, t) −

[
ε(0)

dμ(0)
dt

+ μ(0)
dε(0)

dt

]
∂H

∂t
(r, t)

−dμ(0)
dt

dε(0)
dt

H(r, t) − dε(t)
dt

[
μ(0)

∂H

∂t
(r, 0) +

dμ(0)
dt

H(r, 0)
]

= 0. (27)

Equations (26) and (27) are symmetric in ε and μ. Once Eq. (26) is solved, solutions to Eq. (27) may
be obtained by interchanging ε and μ.

We use separation of variables to solve Eqs. (26) and (27). We write the solution to Eq. (26) as
E(r, t) = R(r)T (t), where r is the position vector in two-dimensional space or three-dimensional space,
and t represents time. Then, Eq. (26) gives

∇2R

R
= μ(0)ε(0)

T̈

T
+
[
ε(0)

dμ(0)
dt

+ μ(0)
dε(0)

dt

]
Ṫ

T
+

dμ(0)
dt

dε(0)
dt

+
dμ(t)

dt

⎡
⎢⎣ε(0)Ṫ (0) +

dε(0)
dt

T (0)

T

⎤
⎥⎦ = λ, a constant, (28)

where the superscript dot stands for differentiation with respect to time t. Thus, we obtain

∇2R − λR = 0 (29)

and

μ(0)ε(0)T̈ +
[
ε(0)

dμ(0)
dt

+ μ(0)
dε(0)

dt

]
Ṫ +

[
dμ(0)

dt

dε(0)
dt

− λ

]
T

=
dμ(0)

dt

[
ε(0)Ṫ (0) +

dε(0)
dt

T (0)
]

exp
[
− 1

ε(0)
dε(0)
dt

t

]
. (30)
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The general solution should be a series of products of the functions R(r) and T (t) involving all the
possible values of λ. For simplification purposes, the two-dimensional configuration will be considered.

Equation (30) can be solved using the method of variation of parameter, while Eq. (29) can be
solved using separation of variables. Thus, we obtain
Eλ=0(x, z, t) � Rλ=0(x, z)Tλ=0(t)

=

⎧⎪⎪⎨
⎪⎪⎩a1 exp

[
− 1

ε(0)
dε(0)
dt

t

]
+ a2 exp

[
− 1

μ(0)
dμ(0)

dt
t

]
+

dμ(0)
dt

Ṫλ=0(0) +
1

ε(0)
dε(0)
dt

Tλ=0(0)

μ(0)ϑd

×t exp
[
− 1

ε(0)
dε(0)

dt
t

]}(
a3e

ηz + a4e
−ηz
) (

a5e
iηx + a6e

−iηx
)

+ c.c. (31)

and
Eλ�=0(x, z, t) � Rλ�=0(x, z)Tλ�=0(t)

=
{

b1 exp
[
−1

2

(
ϑu − 1

μ(0)ε(0)

√
ϑ2

d + 4μ(0)ε(0)λ
)

t

]

+b2 exp
[
−1

2

(
ϑu +

1
μ(0)ε(0)

√
ϑ2

d + 4μ(0)ε(0)λ
)

t

]

− 1
λ

dμ(0)
dt

[
ε(0)Ṫ (0) +

dε(0)
dt

T (0)
]

exp
[
− 1

ε(0)
dε(0)
dt

t

]}
(
b3e

√
η2+λ z + b4e

−
√

η2+λ z
) (

b5e
iηx + b6e

−iηx
)

+ c.c., (32)

where ϑd = 1
ε(0)

dε(0)
dt − 1

μ(0)
dμ(0)

dt , ϑu = 1
ε(0)

dε(0)
dt + 1

μ(0)
dμ(0)

dt , c.c. represents the complex conjugate, and
η, λ, ai, and bi, i = 1, . . . , 6 are constants.

Using the fact that Eqs. (26) and (27) are symmetric in ε and μ, we interchange ε and μ in Eqs. (31)
and (32) and obtain the magnetic field solutions

Hλ=0(x, z, t) �

⎧⎪⎪⎨
⎪⎪⎩ā1 exp

[
− 1

ε(0)
dε(0)
dt

t

]
+ ā2 exp

[
− 1

μ(0)
dμ(0)

dt
t

]
+

dε(0)
dt

Ṫλ=0(0) +
1

μ(0)
dμ(0)

dt
Tλ=0(0)

ε(0)ϑd

×t exp
[
− 1

μ(0)
dμ(0)

dt
t

]}(
ā3e

ηz + ā4e
−ηz
) (

ā5e
iηx + ā6e

−iηx
)

+ c.c. (33)

and

Hλ�=0(x, z, t) �
{

b̄1 exp
[
−1

2

(
ϑu − 1

μ(0)ε(0)

√
ϑ2

d + 4μ(0)ε(0)λ
)

t

]

+b̄2 exp
[
−1

2

(
ϑu +

1
μ(0)ε(0)

√
ϑ2

d + 4μ(0)ε(0)λ
)

t

]

− 1
λ

dε(0)
dt

[
μ(0)Ṫ (0) +

dμ(0)
dt

T (0)
]

exp
[
− 1

μ(0)
dμ(0)

dt
t

]}
(
b̄3e

√
η2+λ z + b̄4e

−
√

η2+λ z
) (

b̄5e
iηx + b̄6e

−iηx
)

+ c.c., (34)

where āi and b̄i, i = 1, . . . , 6 are constants.

3.3. Waves and the Group Velocity

If the permittivity ε(t) and permeability μ(t) are real-valued functions of time, then the eigenvalue λ = 0
gives periodic solutions in x which decay exponentially in both time t and z. If, on the other hand, the
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permittivity ε(t) and permeability μ(t) are complex-valued functions, then the eigenvalue λ = 0 gives
superpositions of waves with frequency

ω1 =
μ̇2μ1 − μ̇1μ2

μ2
1 + μ2

2

and ω2 =
ε̇2ε1 − ε̇1ε2

ε2
1 + ε2

2

respectively, propagating in the x direction and decaying exponentially in both time t and z. Those
waves should have one of the following finite phase velocities

c1 =
μ̇2μ1 − μ̇1μ2

(μ2
1 + μ2

2)η
and c2 =

ε̇2ε1 − ε̇1ε2

(ε2
1 + ε2

2)η

according to the problem configuration (the initial and boundary conditions). Indeed, the characteristics
of such waves depend upon initial properties of the time-dependent medium under consideration.
Solutions corresponding to λ = 0 may give a representation of an electric wave propagating in a
conducting material medium.

The other possibility is to have a nonzero complex λ, λ = λre + iλim, as in [4], and write

βre + iβim =
√

η2 + λ =
√

η2 + λre + iλim

=
1√
2

√
η2+λre+

√
(η2+λre)2+λ2

im+sgn(λim)
i√
2

√
−(η2+λre)+

√
(η2+λre)2+λ2

im. (35)

For simplification purpose, let us choose a configuration in which both the permittivity and permeability
are real functions of time as, for example, in Figure 2, and set

Ω = Ωre + iΩim =
√

ϑ2
d + 4μ(0)ε(0)(λre + iλim),

with

Ωre =
{

ϑ2
d + 4μ(0)ε(0)λre +

[(
ϑ2

d + 4μ(0)ε(0)λre

)2
+ 16μ2(0)ε2(0)λ2

im

]1/2
}1/2

and

Ωim =
{
−ϑ2

d − 4μ(0)ε(0)λre +
[(

ϑ2
d + 4μ(0)ε(0)λre

)2
+ 16μ2(0)ε2(0)λ2

im

]1/2
}1/2

.

A solution corresponding to λ 
= 0 which is periodic in x should, for instance, be given by

E(x, z, t) �
{

exp
[
−1

2

(
ϑu +

Ωre + iΩim

μ(0)ε(0)

)
t

]
− 1

λ

dμ(0)
dt

[
ε(0)Ṫ (0) +

dε(0)
dt

T (0)
]

exp
[
− 1

ε(0)
dε(0)

dt
t

]}
× [b3 exp(βrez) exp(iβimz) + b4 exp(−βrez) exp(−iβimz)]

(
b5e

iηx + b6e
−iηx
)

+ c.c., (36)

where βre ≥ 0 and sgn(βim) = sgn(λim), the horizontal wavenumber is kx = η while the veridical
wavenumber is kz = βim. We note that this solution decays exponentially with time, so it will quickly
vanish as the time becomes long. Therefore, we should expect that the photon rapidly vanishes prior
its speed c(t) reaches infinity (c = ∞).

If λ < −η2, then β = βim is purely imaginary. In that case, the fields are sinusoidal oscillations in t
and z but have constant amplitudes (waves with constant amplitudes). This configuration is useful on
a bounded domain. The case λ = −η2 gives oscillations in t which they are independent of z describing
waves propagating in the x direction. If λ is real on the other hand, then β = βre is real. In that
case, if ϑ2

d < −4μ(0)ε(0)λre, then the fields oscillate in t and decay exponentially in z, describing waves
propagating in the x direction which are vertically damped.

The wave angular frequency is given by

ω =
Ωim√

2ε(0)μ(0)
=

1√
2ε(0)μ(0)

{
−ϑ2

d − 4μ(0)ε(0)λre+
[(

ϑ2
d + 4μ(0)ε(0)λre

)2+16μ2(0)ε2(0)λ2
im

]1/2
}1/2

.

The real and imaginary parts of Eq. (35) respectively give

λre = β2
re − β2

im − η2 = β2
re − k2

x − k2
z and λim = 2βreβim = 2βrekz.
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Thus, we obtain the dispersion relation

ω(kx, kz) =
c(0)√

2

⎧⎨
⎩k2

x + k2
z − β2

re −
c2(0)ϑ2

d

4
+

[(
c2(0)ϑ2

d

4
+ k2

x + k2
z − β2

re

)2

+ 4β2
rek

2
z

]1/2
⎫⎬
⎭

1/2

, (37)

where c(0) = 1/
√

ε(0)μ(0). From Eq. (37), we obtain that the vertical component of the group velocity
∂ω/∂kz is

∂ω

∂kz
=

c(0)√
2

kz

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 +

c2(0)ϑ2
d

4
+ k2

x + k2
z + β2

re[(
c2(0)ϑ2

d

4
+ k2

x + k2
z − β2

re

)2

+ 4β2
rek

2
z

]1/2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎧⎨
⎩k2

x + k2
z − β2

re −
c2(0)ϑ2

d

4
+

[(
c2(0)ϑ2

d

4
+ k2

x + k2
z − β2

re

)2

+ 4β2
rek

2
z

]1/2
⎫⎬
⎭

1/2
,

and has the sign of the vertical wavenumber kz. Therefore, the waves will vertically propagate if and
only if kz = βim > 0. In that case, we set b3 = 0 in Eq. (36). To obtain downward propagating waves,
on the other hand, we set b4 = 0 in Eq. (36).

3.4. Evaluation of the Electric Flux Density and the Magnetic Flux Density

In this section, we evaluate the electric flux density D and magnetic flux density B using formulas (6)
and (7), respectively. We also describe a procedure to evaluate the current density J .

For λ = 0, we evaluate the electric flux density by substituting Eq. (31) in Eq. (6), and we obtain

Dλ=0(x, z, t) � ε(0)Eλ=0(x, z, t) +

t∫
0

dε(τ)
dτ

Eλ=0(x, z, t − τ)dτ

= ε(0)Eλ=0(x, z, t) − dε(0)
dt

{
a1

ϑd

[
exp
(
− 1

μ(0)
dμ(0)

dt
t

)
− exp

(
− 1

ε(0)
dε(0)
dt

t

)]

+a2t exp
(
− 1

μ(0)
dμ(0)

dt
t

)
− dμ(0)

dt

Ṫλ=0(0) +
1

ε(0)
dε(0)

dt
Tλ=0(0)

μ(0)ϑ2
d

×
[
t exp

(
− 1

ε(0)
dε(0)
dt

t

)
+

1
ϑd

[
exp
(
− 1

μ(0)
dμ(0)

dt
t

)

− exp
(
− 1

ε(0)
dε(0)
dt

t

)]]} (
a3e

ηz + a4e
−ηz
) (

a5e
iηx + a6e

−iηx
)

+ c.c., (38)

where, as before, ϑd = 1
ε(0)

dε(0)
dt − 1

μ(0)
dμ(0)

dt . Substituting Eq. (33) in Eq. (7) gives the magnetic flux
density,

Bλ=0(x, z, t) � ε(0)Eλ=0(x, z, t) +

t∫
0

dε(τ)
dτ

Eλ=0(x, z, t − τ)dτ

= ε(0)Eλ=0(x, z, t) − dμ(0)
dt

{
ā1

ϑd

[
exp
(
− 1

μ(0)
dμ(0)

dt
t

)
− exp

(
− 1

ε(0)
dε(0)
dt

t

)]

+ā2t exp
(
− 1

ε(0)
dε(0)

dt
t

)
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−dε(0)
dt

Ṫλ=0(0) + 1
μ(0)

dμ(0)
dt Tλ=0(0)

ε(0)ϑ2
d

[
t exp

(
− 1

μ(0)
dμ(0)

dt
t
)

+
1
ϑd

[
exp
(
− 1

μ(0)
dμ(0)

dt
t
)

− exp
(
− 1

ε(0)
dε(0)
dt

t
)]]}(

ā3e
ηz + ā4e

−ηz
) (

ā5e
iηx + ā6e

−iηx
)

+ c.c.. (39)

For λ 
= 0, we substitute Eq. (32) in Eq. (6), and we obtain the electric flux density

Dλ�=0(x, z, t) � ε(0)Eλ�=0(x, z, t) +

t∫
0

dε(τ)
dτ

Eλ�=0(x, z, t − τ)dτ

= ε(0)Eλ�=0(x, z, t) +

{
b1

[
exp
(
− 1

μ(0)
dμ(0)

dt
t

)

− exp
(
−1

2

(
ϑu +

1
μ(0)ε(0)

√
ϑ2

d + 4μ(0)ε(0)λ
)

t

)]

+b2

[
exp
(
− 1

μ(0)
dμ(0)

dt
t

)
− exp

(
−1

2

(
ϑu − 1

μ(0)ε(0)

√
ϑ2

d + 4μ(0)ε(0)λ
)

t

)]

+
1

λϑd

dμ(0)
dt

[
ε(0)Ṫ (0) +

dε(0)
dt

T (0)
] [

exp
(
− 1

ε(0)
dε(0)
dt

t

)
− exp

(
− 1

μ(0)
dμ(0)

dt
t

)]}

×
(
b3e

√
η2+λz + b4e

−
√

η2+λz
) (

b5e
iηx + b6e

−iηx
)

+ c.c., (40)

while we substitute Eq. (34) in Eq. (7) and obtain the magnetic flux density

Bλ�=0(x, z, t) � μ(0)Hλ�=0(x, z, t) +

t∫
0

dμ(τ)
dτ

Hλ�=0(x, z, t − τ)dτ

= μ(0)Hλ�=0(x, z, t) +

{
b̄1

[
exp
(
− 1

ε(0)
dε(0)
dt

t

)

− exp
(
−1

2

(
ϑu +

1
μ(0)ε(0)

√
ϑ2

d + 4μ(0)ε(0)λ
)

t

)]

+b̄2

[
exp
(
− 1

ε(0)
dε(0)
dt

t

)
− exp

(
−1

2

(
ϑu − 1

μ(0)ε(0)

√
ϑ2

d + 4μ(0)ε(0)λ
)

t

)]

+
1

λϑd

dε(0)
dt

[
μ(0)Ṫ (0) +

dμ(0)
dt

T (0)
] [

exp
(
− 1

ε(0)
dε(0)
dt

t

)
− exp

(
1

μ(0)
dμ(0)

dt
t

)]}

×
(
b̄3e

√
η2+λ z + b̄4e

−
√

η2+λz
) (

b̄5e
iηx + b̄6e

−iηx
)

+ c.c., (41)

where, as before, ϑu = 1
ε(0)

dε(0)
dt + 1

μ(0)
dμ(0)

dt .
In a nondielectric material medium, we can solve Eq. (17) for the current density J using the

method of variation of parameter and obtain

J(r, t) =− exp
(

1
μ(0)

dμ(0)
dt

t

) t∫
0

exp
(

1
μ(0)

dμ(0)
dt

τ

)
∇(∇ ·E)(r, τ)dτ

−σ(0)E(r, 0)
{

1
ϑdμ(0)

dμ(0)
dt

[
exp
(

1
ε(0)

dε(0)
dt

t

)
−exp

(
1

μ(0)
dμ(0)

dt
t

)]
+exp

(
1

μ(0)
dμ(0)

dt
t

)}
. (42)

Once the integral in Eq. (42) is evaluated, the obtained expression has to be equated with the right
hand side of Eq. (8). In that case, the part depending on the space variables x and z can readily be
isolated, and the resulting equation can be solved for dσ

dt by means of Laplace transform.
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4. CONCLUSIONS

We found that the properties of the time-dependent dispersive medium such as the permittivity and
the permeability can take negative and positive values, and can vanish as well. Therefore, the refractive
index can be complex, negative and can vanish as well. This indicates that the electromagnetic wave can
propagate at an infinite speed [1] in a time-dependent medium. Some applications where, for example,
the refractive index vanishes can be found in [1, 10].

Beside, we have discussed the equations describing the electromagnetic field interactions in an
isotropic time-dependent dispersive medium (Section 2), and we carefully worked out their solutions
(Section 3). With the initial-boundary conditions suitable for the experimental setup, the later solutions
can be used to validate experimental results.

APPENDIX A. IMPORTANT FORMULAS

Approximate expressions (without convolution integrals) for ∂E
∂t , ∂2E

∂t2
, ∂B

∂t and ∂2B
∂t2

can be obtained using
the formula

∂

∂t
f(t) ∗ g(t) = f(0)g(t) +

t∫
0

df(τ)
dτ

g(t − τ)dτ = f(t)g(0) +

t∫
0

f(τ)
d

dτ
g(t − τ)dτ,

and taking into consideration that the principle of causality has to be satisfied.
Now, differentiating Eq. (6) with respect to time t gives

∂D
∂t

(r, t) = ε(0)
∂E
∂t

(r, t) +
d

dt

t∫
0

dε(τ)
dτ

E(r, t − τ)dτ

= ε(0)
∂E
∂t

(r, t) +
dε(0)
dt

E(r, t) +

t∫
0

d2ε(τ)
dτ2

E(r, t − τ)dτ. (A1)

Next, differentiating Eq. (A1) with respect to t, we obtain

∂2D
∂t2

(r, t) = ε(0)
∂2E
∂t2

(r, t) +
dε(0)
dt

∂E
∂t

(r, t) +
d

dt

t∫
0

d2ε(τ)
dτ2

E(r, t − τ)dτ

= ε(0)
∂2E
∂t2

(r, t) +
dε(0)
dt

∂E
∂t

(r, t) +
d2ε(t)
dt2

E(r, 0) +

t∫
0

d2ε(τ)
dτ2

∂E
∂τ

(r, t − τ)dτ. (A2)

Using the fact that the principle of causality has to be satisfied, the convolution integral on the right
hand side of Eq. (A2) has to attain some stationary state f(r) for some t > 0. Thus, we obtain the
approximation

∂2D
∂t2

(r, t) � ε(0)
∂2E
∂t2

(r, t) +
dε(0)
dt

∂E
∂t

(r, t) +
d2ε(t)
dt2

E(r, 0) + f(r). (A3)

Integrating Eq. (A3) gives

∂D
∂t

(r, t) � ε(0)
∂E
∂t

(r, t) +
dε(0)
dt

E(r, t) +
dε(t)
dt

E(r, 0) + f(r)t + g(r), (A4)

where g(r) is some vector function.
The integrals in the right hand sides of Eqs. (6) and (A1) have to satisfy the principle of causality

(attain stationary states for some t > 0) as well. Therefore, we have to have f(r) = 0 and g(r) = 0.
Hence,

∂D
∂t

(r, t) � ε(0)
∂E
∂t

(r, t) +
dε(0)
dt

E(r, t) +
dε(t)
dt

E(r, 0) (A5)



198 Nijimbere

and
∂2D
∂t2

(r, t) � ε(0)
∂2E
∂t2

(r, t) +
dε(0)
dt

∂E
∂t

(r, t) +
d2ε(t)
dt2

E(r, 0). (A6)

It is important to point out that Eq. (A6) satisfies Eq. (A2) at t = 0, but however, Eq. (A5) does
not satisfy Eq. (A1) at t = 0. The exact form, for ∂D

∂t (r, t) at t = 0, has to be obtained from Eq. (A1).
It is given by

∂D
∂t

(r, 0) = ε(0)
∂E
∂t

(r, 0) +
dε(0)
dt

E(r, 0),

and shall therefore be used in the derivation of the wave equations to improve the approximations (see
Equation (10)).

Starting with Eq. (7) and following the same procedure, it can be shown that

∂B
∂t

(r, t) � μ(0)
∂H
∂t

(r, t) +
dμ(0)

dt
H(r, t) +

dμ(t)
dt

H(r, 0) (A7)

and
∂2B
∂t2

(r, t) � μ(0)
∂2H
∂t2

(r, t) +
dμ(0)

dt

∂H
∂t

(r, t) +
d2μ(t)

dt2
H(r, 0). (A8)

The exact expression for ∂B
∂t (r, 0) is thus given by

∂B
∂t

(r, 0) = μ(0)
∂H
∂t

(r, 0) +
dμ(0)

dt
H(r, 0),

and shall be used in the derivation of the wave equations to improve the approximations (see
Equation (13)).
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