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Scatterer Characterization Based on the Condiagonalization
of the Sinclair Backscattering Matrix

Georgios Kouroupis* and Vassilis Anastassopoulos

Abstract—In this paper, we revisit the condiagonalization of the Sinclair backscattering matrix, to
overcome the Huynen decomposition issues, so as to correctly extract scatterer polarimetric properties.
The correct extraction of scatterer polarimetric properties will lead to the correct classification of the
scatterer predominant scattering mechanism. Huynen used the congruence transformation by a special
unitary matrix to diagonalize the Sinclair matrix into a real and nonnegative diagonal matrix. He
also expressed the special unitary matrix in terms of the polarization ellipse parameters and associated
them with the scatterer orientation, asymmetry, and skip angle. Unfortunately, this association was
found misleading. As a result, it makes the scatterer characterization ambiguous, for it is based on
the scatterer skip angle and the diagonal matrix. To overcome these ambiguities, we perform the
diagonalization procedure founded on the consimilarity transformation by a special unitary matrix, as
proposed by Lüneberg. In order to correctly extract the scatterer asymmetry degree and orientation, we
express the special unitary matrix in terms of an asymmetry operation and a pure rotation operation.
Moreover, we integrate the scatterer skip angle in the diagonal matrix of the consimilarity transformation
by having it complex, leading to an unequivocal scatterer characterization.

1. INTRODUCTION

Synthetic Aperture Radar (SAR) polarimetry studies the way in which a radar signal interacts with
a real target, i.e., a scatterer, aiming to deduce its polarimetric properties [1]. Scatterer polarimetric
properties may be broadly divided into intrinsic and extrinsic ones. Intrinsic scatterer properties regard
inherent structural properties, which are associated with the predominant scattering mechanism of the
scatterer, and therefore they must be independent of the relative position of the scatterer with respect
to the radar line of sight (LOS). Extrinsic scatterer properties are regarded as those directly affected
by the position of the scatterer in relation to the local system of reference of the radar, such as the
scatterer rotation around the radar LOS and asymmetry. Generally, when a transmitted polarized
electromagnetic wave is scattered from a target, its polarimetric properties are subject to changes.
These changes are directly linked to the target polarimetric properties, and they are summarized in
the so-called Sinclair backscattering matrix S [2]. The values of S are dependent on the polarization
configuration of the SAR antenna, where in most cases it forms a real orthogonal basis, the so-called
HV basis. The HV basis forms a plane, the HV plane, which is perpendicular to the radar LOS. When
the backscattering matrix is diagonal, it is considered to represent the optimal scattering response of
the scatterer on the HV plane, and based on it the scatterer polarimetric properties may be deduced.
Therefore, the classification of the scatterer into elemental scattering mechanisms becomes feasible.
However, an arbitrary scatterer may not present an optimal scattering response on the HV plane due
to its complex structure. The scatterer polarization optimization problem is thus translated to that of
diagonalizing the backscattering matrix [3].

Received 9 January 2019, Accepted 16 August 2019, Scheduled 12 September 2019
* Corresponding author: Georgios Kouroupis (gkouroupis@upatras.gr).
The authors are with the Electronics Laboratory (ELLAB), Department of Physics, University of Patras, Rio, Greece.



60 Kouroupis and Anastassopoulos

One of the most long-standing approaches in extracting the polarimetric properties of a scatterer
from the diagonalization of the backscattering matrix is the Huynen Coherent Target Decomposition
(CTD) [4]. Huynen to diagonalize the Sinclair backscattering matrix made use of the congruence
transformation of the Graves power scattering matrix by a special unitary matrix [5, 6]. The resulting
diagonal matrix is a real and nonnegative matrix that contains the so-called coneigenvalues of S. The
special unitary matrix, by which the scattering matrix is brought to its optimum form, is a unitary
matrix that belongs to the special unitary group SU(2), and it contains the so-called coneigenvectors
of S. The diagonal matrix is involved with the scatterer inherent properties. The coneigenvalues of
the diagonal scattering matrix though, being real and nonnegative, are not capable of classifying the
dominant scatterer scattering mechanism on their own. Consideration of the scatterer skip angle is
required. However, the skip angle is treated as an extrinsic property of the scatterer, like its initial
orientation angle and asymmetry degree. Huynen, intuitively associated the extrinsic properties of the
scatterer with the parameters of the polarization ellipse, which are derived from the special unitary
matrix [6]. Unfortunately, this association was found misleading [7–9]. Hence, the scatterer extrinsic
properties must not be associated with the polarization ellipse parameters. It follows that since the
scatterer classification is dependent on the skip angle, which as a parameter of the polarization ellipse was
found misleading, it becomes ambiguous. Additionally, the skip angle should be an inherent scatterer
property involved with the coneigenvalues of the diagonal matrix of S and therefore it should not be
part of the special unitary matrix parameterization.

To overcome the issues of the Huynen decomposition, we perform the diagonalization procedure of
the backscattering matrix founded on the consimilarity transformation by a special unitary matrix [10].
Dallmann and Heberling in [11] have supported this as well. We express the special unitary matrix
only in terms of an asymmetry operation and a pure rotation operation, avoiding the polarization
ellipse parameterization. The asymmetry operation expresses the asymmetry of the scatterer, while
the pure rotation operation expresses the rigid rotation of the scatterer through its orientation angle
around the radar LOS. The orientation angle of the scatterer is the angle by which the symmetry axis
of the scatterer lying on the HV plane is rotated with respect to the horizontal unit vector of the HV
basis. The asymmetry degree of the scatterer is obtained as the degree to which the initial scattering
response of the scatterer deviates from the scattering response of its symmetric component, as proposed
by Cameron et al. [12]. The symmetric component of the scatterer results from the action of the pure
rotation operation on the diagonal matrix. In this way, we unambiguously assess the scatterer true
extrinsic properties, its orientation and asymmetry degree. Furthermore, the diagonal matrix of the
consimilarity transformation, which contains the coneigenvalues of scattering matrix S, is complex. The
magnitudes of the complex coneigenvalues correspond to the real and nonnegative coneigenvalues of the
Huynen decomposition, while the phase difference between the complex coneigenvalues corresponds to
the scatterer skip angle. In this way, the scatterer skip angle is integrated in the diagonal matrix, as it
should be for being an inherent scatterer property. Thus, we assuredly extract the scatterer inherent
properties. Ultimately, the correct extraction of both extrinsic and intrinsic properties of the scatterer
leads to its unambiguous characterization.

2. HUYNEN’S COHERENT TARGET DECOMPOSITION

Huynen approached the polarization optimization problem by assuming the Graves congruence
transformation as follows

S = USDUT (1)
where U is a special unitary matrix, and SD is a real and nonnegative diagonal matrix [5, 6]. Equation (1)
holds considering U = U, where the overbar stands for complex conjugate. This is done for the
sake of the uniformity of treatment of mathematical decompositions, as Bebbington and Carrea did
in [3]. Equation (1) is referred to as the polarimetric equation. The matrix SD describes the optimum
response of the target, and matrix U describes the orthonormal elliptical polarization change of basis.
The superscript T in Equation (1) stands for matrix transpose. Huynen presented the following
parameterization for matrices SD and U of the polarimetric equation

SD = mHe
+iξH

[
1 0
0 tan2 γH

]
(2)
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U = U(ψH)U(τH)U(νH) =
[

cosψH − sinψH

sinψH cosψH

] [
cos τH i sin τH
i sin τH cos τH

] [
e+iνH 0

0 e−iνH

]
(3)

The parameterization given in Eqs. (2) and (3) generates a set of five independent parameters,
where each one is connected to the polarimetric properties of the scatterer. mH stands for the maximum
radar cross section of the target (mH > 0); ψH stands for the orientation angle related to the target
orientation around the LOS(ψH ∈ (π/2, π/2]); τH stands for the helicity angle related to the target
asymmetry (τH ∈ [0, π/4]); νH stands for the skip angle related to single- and multi-bounce scattering
(νH ∈ [−π/4, π/4]); γH stands for the polarizability angle related to the target polarization sensitivity
(γH ∈ [0, π/4]); and ξH is a remainder phase factor connected with the electrical properties of the
scatterer [6]. The subscript H is inserted to signify that these parameters are derived from the Huynen
decomposition. In this factorization, the real angle parameters represented by the polarization ellipse
parameters, ψH, τH, and νH, of the unitary matrix U correspond to target extrinsic properties, while
the remaining parameters, mH and γH, which are associated with diagonal matrix SD, correspond to
target intrinsic properties. The Huynen five independent parameters are presented in Table 1.

Table 1. The five Huynen independent parameters of an arbitrary scatterer.

Variable Symbol Range Meaning
Maximum RCS mH mH > 0 Maximum backscattered power
Polarizability γH 0 ≤ γH ≤ π/4 Indicator of scatterer dimensions

Skip angle νH −π/4 ≤ νH ≤ π/4
Linked to even/odd bounce

scattering mechanism
Orientation ψH −π/2 < ψH ≤ π/2 Tilt angle of the polarization ellipse

Asymmetry degree τH 0 ≤ τH ≤ π/4 Aperture of the polarization ellipse

Huynen defined a scatterer as fully symmetric if and only if it is diagonalized by a real orthogonal
rotation matrix. The angle argument of the real orthogonal rotation matrix corresponds to the scatterer
orientation angle. Even more, a scatterer is considered fully symmetric when it presents an axis of
symmetry on the plane perpendicular to the LOS, which is none other than the HV plane. Thus, the
angle, through which the symmetry axis of the fully symmetric scatterer is rotated in relation to the
horizontal unit vector of the HV basis, is the orientation angle of the scatterer. When the scatterer is
plainly symmetric, presenting some degree of asymmetry, based on the Cameron decomposition, we may
obtain its maximum symmetric component that will lie on the HV plane [12]. The maximum symmetric
component is the optimized scattering response of the scatterer from which the asymmetry contribution
has been eliminated. This is the reason that every Cameron maximum symmetric component of a
plainly symmetric scatterer can be brought to its optimal diagonal form by a real rotation operation.
Consequently, the Cameron real rotation operation describes the misalignment of the symmetry axis of
the plainly symmetric scatterer with the horizontal unit vector of the HV basis. Hence, it measures the
real rotation angle of the scatterer around the LOS. The asymmetry of the scatterer is measured as the
degree to which the initial scattering response of the target itself deviates from the scattering response of
the maximum symmetric component of the target. When the asymmetry degree assumes its maximum
value, the scatterer becomes fully asymmetric, and it cannot present an axis of symmetry on the HV
plane. This also makes the orientation angle of the fully asymmetric scatterer meaningless. Hence, a
scatterer may be symmetric, with any degree of asymmetry, when it can present an optimum scattering
response on the HV plane, with an orientation angle equal to the misalignment of the scatterer axis of
symmetry with the horizontal unit vector of the HV basis.

Conversely, Huynen’s asymmetry degree is represented by the ellipticity of the polarization ellipse,
which, despite being rather intuitive, is found incapable of actually describing the asymmetry degree of
a scatterer. More specifically, Titin-Schnaider in [8] has found that the more asymmetric the targets are,
the less the Huynen parameter τH can represent the asymmetry degree of the scatterer. Additionally,
Huynen’s rotation angle ψH measures the tilt angle of the polarization ellipse derived from the elliptical
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basis U, which does not always correspond to the real orientation angle of the scatterer [13]. In [8], it was
also found that the Huynen orientation angle was dependent on the ellipticity angle of the polarization
ellipse. This makes the Huynen orientation angle dependent on the asymmetry degree of the scatterer,
which is rather irrational. A study of comparison between the Cameron and Huynen orientation angles
is provided by Schneider et al. in [14] as well. Consequently, the parameters of the polarization ellipse
cannot be associated with the extrinsic properties of the scatterer. Also, Cameron and Rais in [13]
observed that irrational results may occur when trying to represent the Huynen elemental scatterers
on the Poincaré sphere whose axes are the polarization ellipse parameters. It seems that, given the
visualization of the Poincaré sphere, the dihedral becomes unaffected by changes in asymmetry as the
trihedral is unaffected by changes in rotations. This is fundamentally erroneous because dihedral is a
fully symmetric scatterer.

Moreover, in the Huynen factorization, the scatterer skip angle is part of the scatterer complex
rotation, and thus it is treated as an extrinsic property, which also seems rather irrational. To overcome
this, one may integrate the matrix U(νH) inside the diagonal matrix SD, making it complex provided
that it is permitted since they are both diagonal, to let it be treated as an inherent scatterer property,
as in Equation (2) of [9]. Still, it will also lead to conflicting results. The ambiguity is derived because
the polarizability angle and skip angle of the scatterer would still be independent variables. This makes
them meaningless if they are both taken on their own, while their coupling in a product form will result
in ambiguities in special cases when either one becomes zero [13]. In addition to the latter, Huynen’s
factorization produces misleading results when |λ1| = |λ2|, with |λ1| and |λ2| being the magnitudes of
the real and nonnegative coneigenvalues, because the unitary congruence is always satisfied for every real
vector [15]. Consequently, since the matrix SD is real and nonnegative and both of its coneigenvalues
have the same magnitude, it becomes impossible to classify the predominant scattering mechanism of
the scatterer. From the above it is inferred that the optimum diagonal matrix SD should be complex
but with a different factorization from the one presented in [9]. In the proposed approach, we present
such a diagonal matrix SD in which not only do we integrate the skip angle in the diagonal matrix SD,
thus making it complex, but we also make the scatterer polarizability dependent on it. In this way,
we accommodate for the aforementioned ambiguities. Moreover, we extract the real orientation angle
and asymmetry degree of the scatterer in accordance to the Cameron approach, which is considered
undisputed [8].

3. EXTRACTION OF THE SCATTERER EXTRINSIC PROPERTIES

In this work, in order to correctly extract the scatterer polarimetric properties, we exploit the Lüneberg
polarimetric equation that is based on the consimilarity transformation by a unitary matrix [10]. We can
have the resulting diagonal matrix of the consimilarity transformation be complex [16]. The Lüneberg
polarimetric equation, again for U = U, is given next

S = USDU−1 (4)
where the matrix SD is a complex diagonal matrix equivalent to the initial scattering matrix S, and U
is again a unitary matrix that that belongs to the SU(2), which corresponds to the complex rotation
that brings the scattering matrix to its optimum diagonal form. The overbar stands for complex
conjugate while superscript −1 stands for matrix inverse. The diagonal matrix SD contains the complex
coneigenvalues of S, while the special unitary matrix U contains the coneigenvectors of S.

The complex unitary matrix U must contain the information of both the scatterer real orientation
and asymmetry. In the following, we may express U in terms of an asymmetry operation T and a pure
rotation operation R as in

U = TR (5)
with

R =
[

cosψ − sinψ
sinψ cosψ

]
. (6)

The angle ψ corresponds to the orientation angle of the scatterer. The asymmetry operator T can be
obtained as trivially as

T = UR−1 (7)
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Provided that U belongs to the SU(2) and that R is a real orthogonal matrix, it follows that the
asymmetry operator T is a unitary matrix, which also belongs to SU(2). For the matrices T and R, it
holds that

TR =
(
R−1T−1

)∗ (8)

where the superscript ∗ stands for complex conjugate transpose. Substituting Eqs. (5) and (8) into
Eq. (4), we get

S = TRSD

[
(R−1T−1)∗

]−1
(9)

which leads to
S = TRSDR−1T−1 (10)

Given Equation (7), Equation (10) is satisfied by an infinite number of combinations of matrices T
and R. However, there exists only one combination that corresponds to the actual asymmetry degree
and orientation angle of the scatterer. Based on the Cameron decomposition, a scatterer that is not fully
asymmetric always presents an axis of symmetry on the HV plane. The misalignment angle between the
scatterer symmetry axis and the horizontal unit vector of the HV basis corresponds to the orientation
angle of the scatterer. On the other hand, the orientation angle of the scatterer regards the angle by
which the physical scatterer is rotated around the radar LOS, and thus it must not be affected by the
asymmetry of the scatterer. In view of the latter, the symmetry axis of a scatterer, with any degree
of asymmetry, would be placed on the HV plane at the same angle, in relation to the horizontal unit
vector of the HV basis, as if the scatterer were fully symmetric. Hence, the orientation angle of a plain
symmetric scatterer would be the same as if the scatterer were fully symmetric. Therefore, given that the
orientation angle of a fully symmetric scatterer is extracted by means of a similarity transformation, we
can extract the orientation angle of a plain symmetric scatterer by means of a similarity transformation
as well. This is expressed as follows

S = PDP−1 (11)

where D is a complex diagonal matrix that contains the eigenvalues of the scattering matrix S, and
P is a unitary matrix that contains the eigenvectors of S, which also belongs to the SU(2). Clearly,
in the framework of SAR polarimetry, the matrix D cannot represent the optimal response of the
scatterer, neither does the matrix P represent the elliptical polarization change of basis. However, since
Equation (11) is a similarity transformation and the matrix P a unitary matrix that belongs to the
SU(2) group, then the matrix P represents a 3D rotation, none other than that of the scatterer. More
specifically, the matrix P represents the 3D rotation of the scatterer, from which we can extract the
three Euler angles, ϕP, ψP, and θP, which describe the orientation of the scatterer, with respect to a
fixed x, y, z coordinate system. Additionally, since the z axis always corresponds to the radar LOS, the
rotation of the xy plane around the z axis corresponds to the misalignment angle between the scatterer
symmetry axis and the horizontal unit vector of the HV basis, and is represented by the angle ψP.
Hence, the orientation angle of the scatterer is the angle ψP, and we are interested in estimating it.
Besides that, in the framework of SAR polarimetry angles ϕP and θP are meaningless.

There is a one to one correspondence between a special unitary matrix, e.g., the matrix P, with a real
orthogonal matrix Q that belongs to the group of 3-dimensional special orthogonal rotation matrices,
SO(3) [1]. In short, the SO(3) group represents a 3D rotation and is generated by all elementary
rotations

Qx (a) =

⎡
⎣ 1 0 0

0 cos a − sin a
0 sin a cos a

⎤
⎦ (12)

Qy (β) =

⎡
⎣ cos β 0 sinβ

0 1 0
− sin β 0 cosβ

⎤
⎦ (13)

Qz (ω) =

⎡
⎣ cosω − sinω 0

sinω cosω 0
0 0 1

⎤
⎦ . (14)
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The matrix Qx represents the rotation around the x-axis with a rotation angle a. Similarly, the matrix
Qy represents the rotation around the y-axis with a rotation angle β, while the matrix Qz represents
the rotation around the z-axis with a rotation angle ω. The aforementioned correspondence is that an
SU(2) matrix is homomorphic to an SO(3) matrix and is expressed via Equation (15).

SU(2) ∼= SO(3)/Z2. (15)

From the above we get [1]

Qx (a) = Q (P (cosα/2,−i sin α/2)) (16)
Qy (β) = Q (P (cos β/2,− sin β/2)) (17)

Qz (ω) = Q
(
P

(
e−iω/2, 0

))
(18)

Observing Equations (16) through Equation (18) it is seen that a special unitary matrix of the SU(2)
group, e.g., matrix P, represents a pure 3D rotation. The angles of rotation, of the matrix P, around
each of the 3 axes are exactly half the angles of rotation that are presented in the unitary matrix Q
of the SO(3) group. Hence, we can easily obtain the angles of rotation of matrix P from matrix Q.
Considering Equation (17), it follows that the scatterer orientation angle ψP can be derived as half of
the angle β of Qy(β), i.e., ψP = β/2. We shall signify the real orientation angle of the scatterer with
ψKA, i.e., ψKA = ψP = β/2. The orientation angle ψKA ranges in (−π/2,+π/2], and it must also obey
the rules of the conservative scatterers as presented in [7]. In this way, the angle ψKA matches the
Cameron orientation angle, ψC, of the scatterer.

Given that ψKA is well defined, it makes the asymmetry operator T a unique characteristic of the
scatterer that corresponds to its true asymmetry contribution. Furthermore, from Equation (10) we
can take

SDR = RSDR−1 (19)

where R = R(ψKA) making SDR the symmetric component of the plain symmetric scatterer. The
asymmetry degree of the plain symmetric scatterer is the degree to which the initial scattering response
deviates from the scattering response of its symmetric component, as proposed by Cameron. To measure
this deviation degree, we make use of the vectorial form of the above scattering responses. The vectorial
form of a matrix is obtained by means of the V transformation, which is provided next

A = V (A) where A =

⎡
⎢⎢⎣
A11

A12

A21

A22

⎤
⎥⎥⎦ , when A =

[
A11 A12

A21 A22

]
. (20)

It follows that the asymmetry degree can be measured as

τKA = cos−1 ‖(S, SDR)‖
‖S‖ ‖SDR‖ (21)

where S is the vectorial form of the initial scattering response of the scatterer, and SDR is the vectorial
form of the symmetric component of the scatterer taken from Eq. (19). Notation ‖...‖ stands for the
norm of a complex vector, and (,) stands for the inner product between two complex vectors.

The angle τKA of Eq. (21) ranges in [0, +π/4). When τKA = 0, it corresponds to a fully symmetric
scatterer, while when 0 < τKA < π/4, it corresponds to a plain symmetric scatterer. In the case
when the scatterer is fully symmetric it holds that S = SDR. This makes Equation (10) a similarity
transformation, identical to Equation (11). This overcomes the Shlivinski problem. In the case where
the scatterer is fully asymmetric, it is expected that τKA would be equal to +π/4. However, when
the scatterer is fully asymmetric, its symmetric component does not exist, which makes Eq. (21)
meaningless. Nevertheless, in this case we can assign τKA = +π/4. Additionally, when the scatterer is
fully asymmetric, the determinant of the unitary matrix U that condiagonalizes S in Eq. (4) is equal to
±i, where i2 = −1. The unitary matrix U in this case does not belong to the SU(2). Hence, a scatterer
is considered to be plain symmetric only when it is condiagonalizable by a unitary matrix that belongs
to the SU(2) group, having an orientation angle equal to ψKA and an asymmetry degree equal to τKA.
This makes the fully symmetric scatterers, which are diagonalized by a real rotation transformation, a
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special case of the latter. It should be clear by now that ψKA and τKA do not correspond to the tilt and
ellipticity angles of the polarization ellipse, as the Huynen parameters do. For this reason, the subscript
KA has been inserted; so as to differentiate between the parameters of the proposed parameterization
and the Huynen parameters, which are signified by the subscript H.

4. SCATTERER INTRINSIC PROPERTIES AND CHARACTERIZATION

In light of Eqs. (5), (6), and (7), we may see Eq. (10) as the transformation to obtain the optimal
scatterer scattering response from which the orientation and asymmetry contributions of the scatterer
are eliminated. Considering Equation (10), the diagonal matrix SD can be parameterized as follows

SD = mKAe
+iξKA

[
1 0
0 γKA

]
(22)

with

mKA = |λ1| with mKA > 0 (23)

ξKA = 2θ1 with θ1 ∈ [0, π) (24)

γKA =
∣∣∣∣λ2

λ1

∣∣∣∣ eiνKA with |γKA| ∈ [0, 1] (25)

νKA = 2(θ2 − θ1) = 2Δθ with θ1,2 ∈ [0, π) and νKA ∈ [0, 2π) (26)

The matrix SD is a complex diagonal matrix equivalent to the initial scattering matrix S [17].
λ1 and λ2 are the complex coneigenvalues, and θ1 and θ2 are their respective phases, while Δθ is the
phase difference between the two coneigenvalues. mKA is the maximum response of the target provided
that the first coneigenvalue λ1 is always the largest. Notation |...| signifies again the magnitude of a
complex number. γKA is the complex polarizability, νKA the skip angle, and ξKA the nuisance remainder
phase associated with the inherent electrical properties of the scatterer having nothing to do with its
geometry. The subscript KA has again been inserted to differentiate between the parameters of the
proposed approach and those of the Huynen decomposition, which are signified by the subscript H.

The elemental scattering mechanism of a scatterer can be extracted solely by using Eq. (22).
In Eq. (25) by making γKA dependent on νKA, it overcomes the ambiguities that are derived in the
Huynen decomposition, in which νH is part of the complex rotation of the congruence transformation.
The ambiguities of the scatterer intrinsic properties discussed in Section 2 can only be overcome by
incorporating the skip angle in the polarizability parameter of the scatterer and not by merely making the
diagonal scattering matrix complex. Observing Equation (22), the scatterer is considered horizontally
oriented. Moreover, |γKA| can range in [0, 1], and in the case where |γKA| = 0 the scatterer would be
the dipole. In this case, Eq. (26) becomes meaningless. When |γKA| = 1 and νKA = 0, the geometric
structure of the scatterer corresponds to that of the trihedral. When |γKA| = 1/2 and νKA = 0, the
geometric structure of the scatterer corresponds to that of the cylinder. When |γKA| = 1 and νKA = π,
the geometric structure of the scatterer corresponds to that of the dihedral. When |γKA| = 1/2 and
νKA = π, the geometric structure of the scatterer corresponds to that of the narrow dihedral. When
|γKA| = 1 and νKA = ±π/2, the geometric structure of the scatterer corresponds to that of the quarter
wave device. When |γKA| = 1/2 and νKA = ±π/2, the geometric structure of the scatterer corresponds
to that of the narrow quarter wave device. Therefore, the geometric structure of any scatterer may be
constructed unambiguously given any combination of |γKA| and νKA. Different combinations of |γKA|
and νKA that produce each elemental scattering mechanism are shown in Table 2.

The helices are presented when |γKA| = 0, which is the same as in the dipole case. However, since
the helices are fully asymmetric scatterers, they are presented only when the determinant of the unitary
matrix U is equal to ±i. The − sign of the determinant of the unitary matrix U corresponds to the
right helix while the + sign corresponds to the left helix. In this way, the dipole and helices can be
differentiated. This is the reason that in the case of the proposed parameterization of the polarimetric
equation the unitary matrix U was not demanded to belong to the SU(2) group, as it often happens in
the SAR community.
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Table 2. Inherent properties of elemental scattering mechanisms.

Elemental Scattering Mechanism
Inherent Scatterer Properties
γKA |γKA| νKA

Dipole 0 0 ∼
Cylinder 0.5 0.5 0

Narrow 1/4 Wave Device ±0.5i 0.5 ±π/2
Narrow Dihedral −0.5 0.5 π

Trihedral 1 1 0
1/4 Wave Device ±i 1 ±π/2

Dihedral −1 1 π

5. EXPERIMENTAL RESULTS

Here, in Table 3 through Table 11 examples of scatterer polarimetric characterization are provided using
the proposed method. The scatterers are drawn from a real fully polarimetric scene. Additionally, for
comparison reasons we provide the polarimetric characterization of the scatterers based on the Cameron
and Huynen CTDs. More specifically, we provide a comparison of the scatterer common polarimetric
properties that are ambiguous, i.e., the skip-, orientation-, and symmetry angle, that are derived from
all three CTDs. All results are in degrees. In this way, it becomes easy to see the differences that occur
among the three CTDs. Moreover, we consider the results of the Cameron decomposition undisputed,
and we base our comparison on their results.

From Table 3, Table 4, and Table 5, it is observed that when the scatterer asymmetry is low, lower
than 1◦, the Huynen CTD produces correct results. This is expected considering that in these cases the
scatterers are considered as highly symmetric.

From Table 6, Table 7, and Table 8, it is observed that when the scatterer asymmetry is slightly
high, between 1◦ and 5◦, the Huynen CTD produces misleading results. In this case, while the Huynen
CTD correctly extracts the asymmetry degree of the scatterer, it completely misestimates the scatterer
orientation angle and consequently misestimates the scatterer skip angle as well.

From Table 9, Table 10, and Table 11, it is observed that when the scatterer asymmetry is high,
greater than 5◦, the Huynen CTD produces erroneous results. This is also expected considering that the
more asymmetric a scatterer is, the less the Huynen asymmetry parameter represents its true asymmetry
degree. Obviously, since the scatterer asymmetry degree cannot be estimated correctly, it follows that

Table 3. Polarimetric properties of scatterer #1.

S1 Cameron CTD Proposed CTD Huynen CTD
Skip angle 0.8740 0.5971 0.2149

Orientation angle −39.3429 −38.2751 −39.1185
Symmetry degree 0.8874 0.7477 0.6478

Table 4. Polarimetric properties of scatterer #2.

S2 Cameron CTD Proposed CTD Huynen CTD
Skip angle 4.5228 4.5026 5.1304

Orientation angle −4.4798 −4.4793 −4.3519
Symmetry degree 0.1194 0.1198 0.1228
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Table 5. Polarimetric properties of scatterer #3.

S3 Cameron CTD Proposed CTD Huynen CTD
Skip angle 16.4204 16.1883 14.0965

Orientation angle −8.2886 −8.2812 −7.5687
Symmetry degree 0.6167 0.6256 0.7720

Table 6. Polarimetric properties of scatterer #4.

S4 Cameron CTD Proposed CTD Huynen CTD
Skip angle −14.6484 −14.5059 0.1402

Orientation angle 0.1285 0.1198 −43.6081
Symmetry degree 2.6456 3.6614 3.6595

Table 7. Polarimetric properties of scatterer #5.

S5 Cameron CTD Proposed CTD Huynen CTD
Skip angle −45.5198 −46.3792 −10.2017

Orientation angle −4.1245 −4.0519 25.0211
Symmetry degree 4.3616 4.4630 5.1935

Table 8. Polarimetric properties of scatterer #6.

S6 Cameron CTD Proposed CTD Huynen CTD
Skip angle −19.3982 −20.4028 3.7164

Orientation angle 7.7894 7.3436 23.1720
Symmetry degree 3.5886 3.7400 3.2314

Table 9. Polarimetric properties of scatterer #7.

S7 Cameron CTD Proposed CTD Huynen CTD
Skip angle 71.0427 69.5693 14.0624

Orientation angle −0.5077 −0.4971 17.8003
Symmetry degree 6.7917 7.2231 11.3249

Table 10. Polarimetric properties of scatterer #8.

S8 Cameron CTD Proposed CTD Huynen CTD
Skip angle −71.1678 −66.2567 8.9524

Orientation angle −3.1742 −3.1268 25.1589
Symmetry degree 5.7156 7.0964 15.6391

neither the scatterer orientation nor the scatterer skip angle can be estimated correctly. In this way,
the complex way is also seen, in which the Huynen extrinsic scatterer properties are entangled. The
results of the Huynen CTD presented in Table 3 through Table 11 agree with those of the literature. On
the other hand, it is noticeable that, in any case scenario, the results of the proposed procedure agree
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Table 11. Polarimetric properties of scatterer #9.

S9 Cameron CTD Proposed CTD Huynen CTD
Skip angle 39.0975 38.3176 0.3835

Orientation angle 8.8853 8.8441 37.2704
Symmetry degree 6.8151 6.9870 19.7671

with the results of the Cameron procedure, making it evident that our approach produces the correct
polarimetric characterization of any arbitrary scatterer. The advantage of the proposed approach is
that not only does it estimate the polarimetric properties of a scatterer but it also provides the true
asymmetry contribution of the scatterer represented by the operator T.

6. CONCLUSIONS

It has been discussed that a scatterer is fully symmetric when it presents an optimum scattering response
on the plane perpendicular to the LOS. This is translated to the feasibility to bring any arbitrary
scatterer to its optimal diagonal scattering response by means of a real rotation operation. On the
other hand though, based on the consimilarity transformation, the target scattering response, with any
degree of asymmetry, can always be brought to its optimum diagonal form by means of a special unitary
matrix. The latter contains both the orientation and asymmetry contributions of the scatterer. The
orientation angle of the scatterer regards the angle by which the physical scatterer is rotated in relation
to the radar LOS. Moreover, the orientation angle of the scatterer regards the rotation of the scatterer
symmetry axis in relation to the horizontal unit vector of the HV basis. However, the orientation of the
scatterer must be independent of the asymmetry of the scatterer. It follows that the symmetry axis of a
non-fully asymmetric scatterer would be the same as if the scatterer was fully symmetric. Thus, the real
orientation angle of a scatterer can only be derived from a similarity transformation as in Equation (11).
Having correctly extracted the orientation angle of the scatterer, it becomes straightforward to define
the scatterer symmetric component and asymmetry degree, as in Eqs. (19) and (21) in accordance to
the Cameron decomposition. This also makes the operator T a unique characteristic of the scatterer,
representing its true asymmetry contribution.

The scatterer optimum diagonal form is then regarded as the scatterer scattering response from
which the asymmetry and orientation contributions have been eliminated. Additionally, the scatterer
optimum diagonal form is now complex, in which the information of the scatterer skip angle is integrated.
Moreover, by making the scatterer complex polarizability dependent on the scatterer skip angle, it
overcomes the ambiguities regarding the connection of the scatterer polarizability angle and the skip
angle imposed in the Huynen decomposition. One may observe that the proposed complex polarizability
γKA takes the same values as the Cameron complex parameter for any fully symmetric elemental
scattering mechanism. Moreover, the proposed scatterer orientation angle and asymmetry degree are
in full agreement with their Cameron counterparts. This is not only expected but it is also desired
because the polarimetric properties of a scatterer must be independent of the procedure that optimizes
the scatterer scattering response. Ultimately, we have proposed a parameterization of the polarimetric
equation from which all scatterer polarimetric properties are unequivocally extracted. In this way, the
predominant scattering mechanism of a scatterer, with any degree of asymmetry, can be unambiguously
classified.
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10. Lüneberg, E., “Radar polarimetry: A revision of basic concepts,” Direct and Indirect Methods in
Scattering Theory, Gebze, Turkey, 1996.

11. Dallmann, T. and D. Heberling, “On the connection between Jones matrix and Sinclair matrix,”
PIERS Proceedings, 258–262, Prague, Czech Republic, July 6–9, 2015.

12. Cameron, W. L., N. N. Youssef, and L. K. Leung, “Simulated polarimetric signatures of primitive
geometrical shapes,” IEEE Transaction on Geoscience Remote Sensing, Vol. 34, No. 3, 793–803,
1996.

13. Cameron, W. L. and H. Rais, “Derivation of a signed Cameron decomposition asymmetry
parameter and relationship of Cameron to Huynen decomposition parameters,” IEEE Transactions
on Geoscience and Remote Sensing, Vol. 49, No. 5, 1677–1688, 2011.

14. Schneider, R., I. Hajnsek, H. Kimura and J. S. Lee, “Comparison of orientation angle estimation
methodes over coherent scatterers,” EUSAR 2006 — 6th European Conference on Synthetic
Aperture Radar, Dresden, Germany, 2006.

15. Shlivinski, Y. and E. Heyman, “Physical models for polarimetric SAR analysis,” IEEE Transactions
on Antennas and Propagation, Vol. 56, No. 8, 2664–2672, 2008.

16. Horn, R. A. and C. R. Johnson, Matrix Analysis, 2nd Edition, Cambridge University Press, USA,
2013.
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