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An Enhanced Forward-Looking SAR Imaging Algorithm
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Abstract—Having the imaging ability of the area in front of flight direction, forward-looking synthetic
aperture radar (SAR) has become a hot topic in areas of SAR research. Nevertheless, constrained
by limited azimuth aperture length, the imaging of forward-looking SAR suffers from poor azimuth
resolution. Aiming at this problem, an enhanced forward-looking SAR imaging algorithm is proposed
in this paper. This algorithm takes both super-resolving ability and computational burden into account.
Firstly, an imaging framework is proposed to decrease the computational burden. Secondly, an iterative
regularization implementation of compressive sensing (CS) is proposed to improve azimuth resolution.
Finally, imaging experiments based on simulated data and Ku-band complex valued image data from
the MiniSAR system demonstrate the effectiveness of the proposed algorithm.

1. INTRODUCTION

By interrogating a scene with pulses from diverse angles, synthetic aperture radar (SAR) is able to
produce its high-resolution images. Having the ability to operate at night and under all-weather
circumstances, SAR has become one of the most promising research tool for remote sensing applications
such as forestry, agriculture, geology, and military reconnaissance in recent years. However, because of
poor doppler resolution and azimuth ambiguities, conventional SAR is not applicable with respect to
the forward-looking direction, which hinders its application.

In early 1990s, the concept of forward-looking radar was firstly proposed by Witte [1, 2]. By
replacing the virtual antennas in SAR with a set of physically existent antenna elements distributed
in space and switching the elements sequentially [1], the forward-looking radar could eliminate the
visualization gap with respect to the forward direction of the flight path by a coherent processing of the
radar echoes similar to a conventional SAR system [3]. Therefore, in many articles, this kind of forward-
looking radar is also called forward-looking SAR [4–10]. With the ability to provide two-dimensional [4–
7] and three-dimensional images [8–10] of the earth ground in front of the platform, forward-looking SAR
becomes more and more attractive to industrial and academic communities. During the last decades,
some progresses about forward-looking SAR have been made. The most representative one is the system
named sector imaging radar for enhanced vision (SIREV) which was developed by German Aerospace
Center [11].

For the two-dimensional imaging algorithm of forward-looking SAR, the matched filter (MF) based
algorithms are always utilized. For instance, in [12], the extended chirp scaling (ECS) algorithm is
adopted. The ECS algorithm enables effective imaging for forward-looking SAR by combining the
operations of “spectral analysis” (SPECAN) and “azimuth scaling”. However, its computational load
is very high. Next, by taking the untreated phase in the ECS algorithm into account and using the
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azimuth processing technique of ScanSAR as a reference, a revised chirp scaling algorithm for forward-
looking SAR is proposed in [7]. This algorithm is computationally more efficient than ECS. [13] and
[14] propose two algorithms which are suitable for high velocity platform based on the idea of range
Doppler (RD) and Doppler beam sharpening (DBS), respectively. Taking acceleration into account,
[15] proposes a chirp scaling algorithm for forward-looking SAR with constant acceleration. Although
they are easy to implement, these MF based algorithms suffer from poor azimuth resolutions due to
limited azimuth aperture, which hinders the applications of forward-looking SAR.

In order to improve azimuth resolutions of forward-looking radar system, some approaches such
as deconvolution algorithms and bistatic SAR have been proposed. However, for bistatic SAR, it is
difficult to implement in practice due to synchronization problem, large range cell migration (RCM),
and complicated structure [16–18]. For deconvolution, it is essentially a highly ill-posed problem which
is sensitive to noise and hardly ensures a robust solution [19, 20].

As a burgeoning technique, compressive sensing (CS) has brought about a breakthrough to the
reconstruction of sparse signal. According to this theory, the exact reconstruction of an unknown
sparse signal can be obtained from limited measurements by solving a sparsity-constrained optimization
problem [21]. Furthermore, the super-resolving ability of CS could contribute to overcome the limitation
induced by synthetic aperture and bandwidth [22]. Now CS has been discussed and explored in different
areas. In [23], a new radar system which can eliminate the need for the matched filter in the radar
receiver and reduce the required analog-to-digital (AD) conversion bandwidth is designed based on the
CS theory. For wide-angle imaging, where the assumption of isotropic point scattering does not hold
up, the CS theory is utilized to enhance the resolution [24, 25]. In [26, 27], the CS theory is applied to
ground penetrating radar (GPR) imaging. As a result, sparser and sharper target images are acquired by
using only a small subset of the measurements. In tomographic SAR (Tomo-SAR) area, the CS theory
provides a reliable solution for the aliasing effect and poor resolution brought by nonuniform inter-track
distance and limited overall baseline. Consequently, the height scattering profile of man-made objects
such as stadiums and buildings are better reconstructed [22, 28]. For SAR imaging, especially when the
imaging of man-made structures is considered, the scattered signal can be well approximated as a sum
of responses from a limited number of strong scattering centers. As a result, the sparsity condition is
well satisfied [29], which provides a foundation for exploring the CS theory in SAR imaging.

In this paper, the CS theory is exploited to improve the azimuth resolution of forward-looking SAR.
The rest of the paper is organized as follows. In Section 2, the signal model of forward-looking SAR
is established. Based on this signal model, Section 3 is dedicated to presenting the enhanced imaging
algorithm for forward-looking SAR. In Section 4, imaging experiments based on simulated data and
Ku-band complex valued image data from the MiniSAR system demonstrate the effectiveness of the
proposed method. The images reconstructed by the proposed method are also compared with images
generated by the RD algorithm [13], as it is classical and is often used by the radar imaging community
for comparison and verification of imaging algorithms. Finally, conclusions are presented in Section 5.

2. SIGNAL MODEL OF FORWARD-LOOKING SAR

Figure 1 shows the imaging sectors of SAR, Squint SAR and forward-looking SAR. The differences
between them can be easily distinguished. As shown in Figure 1, forward-looking SAR fills the
visualization gap of SAR and squint SAR with respect to the direction in front of radar movement.
Figure 2 illustrates the imaging geometry of forward-looking SAR. The plane flies along x axis (i.e.,
ground range direction) with velocity v at height h. The direction along the wing of plane is defined as
y axis (i.e., azimuth direction). The direction perpendicular to xoy plane is defined as z axis.

Forward-looking SAR consists of a linear array of antennas which uniformly distribute along y axis.
During the flight, these antennas sequentially transmit LFM signal with high pulse repetition frequency
(PRF) and receive the backscattered signal. The switch frequency is the same as PRF. Assuming that
the distance between adjacent antennas is d, the length of the antenna array is L. Consequently, the
position of the currently working antenna can be derived as (vt,−L/2 + vat, h). For a point scatterer
situated at (x, y, 0), the travel path of radar signal can be expressed as

R (t) = 2
√

(vt − x)2 + ((−L/2 + vat) − y)2 + h2 (1)
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Figure 1. Imaging sector of forward-looking SAR. Figure 2. Imaging geometry of forward-
looking SAR.

where t stands for the slow time; vt is the x position of the currently working antenna; −L/2 + vat is
the y position of the currently working antenna; va = d · PRF is the equivalent velocity in azimuth
direction.

Assume that the LFM signal transmitted by radar is
si (τ, t) = rect (τ) exp

(
j2πf0τ + jπKτ2

)
(2)

where τ denotes the range time; K stands for the chirp rate; f0 is the carrier frequency. The
corresponding range and azimuth “Fourier” resolutions of forward-looking SAR can be expressed as

ρr =
c

2B
(3)

ρa =
λL

2R0
(4)

where c denotes the speed of light, and B denotes signal bandwidth.
When signal shown in Eq. (2) is transmitted, the baseband signal backscattered by the target

situated at (x, y) can be written as

s0 (τ, t;x, y) = g (x, y) rect
(

τ − R (t;x, y)
c

)
· exp

(
jπK

(
τ − R (t;x, y)

c

)2
)

exp
(
−j2π

R (t;x, y)
λ

)
(5)

where g(x, y) stands for the complex reflectivity of the target situated at (x, y). Nevertheless, for a
scene composed of many targets, the received signal should be expressed as the superposition of the
scattering components from all targets which are illuminated by the radar’s beam. Consequently, the
received signal has the form

s0 (τ, t) =
∫∫
G

s0 (τ, t;x, y) dxdy (6)

By far, the model of the baseband signal received by forward-looking SAR has been derived. Then the
task of image formation is to decode g(x, y) from the received signal s0(τ, t).

3. IMAGING ALGORITHM IMPLEMENTATION

From the above analysis, it can be observed that the main bottleneck of forward-looking SAR imaging
is the poor azimuth resolution which is limited by the azimuth aperture length. For example, if the
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Table 1. Simulation parameters.

Parameters Values
Wavelength 0.0315 m

Chirp bandwidth 60 MHz
Pulse Width 1 µs

PRF 14793 Hz
Platform velocity 300 m/s

Antenna array length 2.85 m
Numbers of receive antenna 56

Platform Height 1056 m
Looking angle 40◦

Beamwidth in range 6◦

Beamwidth in azimuth 6◦

parameters listed in Table 1 are adopted, the azimuth resolution (7.62 m) is much worse than the
range resolution (2.5 m). Furthermore, while the range resolution can be improved by increasing
signal bandwidth, the azimuth resolution is severely constrained by the size of the platform itself.
Therefore, an enhanced forward-looking SAR imaging algorithm based on CS is proposed in this section.
This algorithm takes both the super-resolving ability and the computational burden into account and
produces satisfying results. The derivation of this algorithm is summarized as follows.

3.1. Imaging Framework

When the enhanced forward-looking SAR imaging algorithm based on CS is used, the received baseband
signal shown in Eq. (6) should be firstly Fourier transformed in range. According to the principle of
stationary phase (POSP), the range frequency spectrum of the received signal can be expressed as [30]

S0 (fτ , t) =
∫∫

g (x, y)√
K

rect

(
fτ

KTp

)
· exp

(
−j2π (f0 + fτ )

R (t;x, y)
c

)
exp

(
−jπ

f2
τ

K

)
dxdy (7)

where 1/
√

K denotes amplitude of the range frequency spectrum of the LFM signal. Then the range
compression is done in range frequency domain by multiplying Eq. (7) with exp(jπf2

τ /K). After that,
the range compressed signal is transformed to range time domain to get

src (τ, t) =
∫∫

g (x, y)
B√
K

sin c

(
πB

(
τ − R (t;x, y)

c

))
· exp

(
−j2πf0

R (t;x, y)
c

)
dxdy (8)

Then range cell migration correction (RCMC) is applied to Eq. (8). The corrected signal can be
expressed as

s (τ, t) =
∫∫

g (x, y)
B√
K

sin c

(
πB

(
τ − R(0;x, y)

c

))
· exp

(
−j2πf0

R (t;x, y)
c

)
dxdy (9)

The second order Taylor’s series expansion of R (t;x, y) at t = 0 which is used in Eq. (9) can be expressed
as

R (t;x, y) ≈ R (0;x, y) + R′ (0;x, y) t +
R′′ (0;x, y)

2
t2 (10)

Take s(τ0, t) as the signal s(τ, t) sampled at range time τ0. As wide band LFM signal is exploited in
forward-looking SAR, the 3 dB main-lobe width of sin c(·) is so narrow that s(τ0, t) can be viewed as
being composed of only backscattering contributions by scatterers situated at r0 = cτ0. As a result,
Eq. (9) can be rewritten as

s (τ0, t) =
∫

B√
K

g (r0, y) sin c
(
πB

(
τ0 − r0

c

))
· exp

(
−j2π

R (t; r0, y)
λ

)
dy (11)
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Because all the targets situated at r0 in the range cell migration corrected image satisfy r0 =
R(0;x, y) = 2

√
x2 + (L/2 + y)2 + h2, we can obtain x =

√
(r0/2)2 − (L/2 + y)2 − h2. Under this

condition, R(t; r0, y) in Eq. (11) has the expression

R (t; r0, y) = 2

√(
vt −

√
(r0/2)2 − (L/2 + y)2 − h2

)2

+ (−L/2 + vat − y)2 + h2 (12)

In order to apply enhanced forward-looking SAR imaging algorithm based on CS, s(τ0, t) and g(r0, y)
in Eq. (11) should be sampled in azimuth time and azimuth, respectively. After that, Eq. (11) can be
rewritten as

s (τ0) = Ag (r0) (13)
where

s (τ0) = [s (τ0, t1) , s (τ0, t2) , . . . , s (τ0, tM )]T (14)

g (r0) = [g (r0, y1) , g (r0, y2) , . . . , g (r0, yN )]T (15)
The elements of dictionary matrix A has the form

Amn =
B√
K

sin c

(
πB

(
τ0 − 2r0

c

))
exp

(
−j2π

R (tm; r0, yn)
λ

)
(16)

In the presence of noise, the signal model of Eq. (13) becomes
s (τ0) = Ag (r0) + w (17)

where w stands for the additive measurement noise.
Next, Equation (17) will be solved to obtain super-resolving azimuth profile by utilizing the CS

theory.

3.2. Iterative Regularization Implementation of CS

The super-resolving ability of CS has been demonstrated in [31–33]. However, the resolving abilities
vary with different implementations of CS. For example, although orthogonal matching pursuit (OMP)
and its variations are efficient implementations for CS, their super-resolving ability is poor [34]. In this
paper, an iterative regularization implementation of CS is proposed. By taking both data fidelity and
features of interest into account, the proposed method is effective in generating images with enhanced
resolution and suppressed artifacts. The derivation of this method can be summarized as follows.

First, the imaging problem shown in Eq. (17) is formulated as following regularization problem

ĝ = arg ming

(
‖s− Ag‖2

2 + μ ‖g‖k
k

)
(18)

where ‖s − Ag‖2
2 is used to preserve the data fidelity of the solution; μ is the scalar parameter to

balance the emphasis between signal energy and data fidelity; ‖ · ‖k denotes the lk-norm. In the
following experiments, k ≤ 1 will be restricted since smaller k implies fewer penalties on large pixel
values and results in better preservation of the scatter magnitudes comparing with larger k [31].

Next, we denote
J (g) = ‖s − Ag‖2

2 + μ ‖g‖k
k (19)

as the objective function. In order to minimize J(g), the differential of J(g) with respect to g should
firstly be calculated. However, in order to eliminate the non-differentiability of the lk-norm around the
origin, J(g) should be modified as

J (g) = ‖s− Ag‖2
2 + μ

N∑
i=1

(
|gi|2 + ξ

)k/2
(20)

where ξ is so small a constant that
N∑

i=1
(|gi|2 + ξ)k/2 is equivalent to ‖g‖k

k. In following experiments,

ξ = 10−5 is chosen. Then the differential of J(g) can be expressed as

∇J (g) = H (g)g − 2AHs (21)
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where

H (g) =
(
2AHA + μkΛ (g)

)
(22)

Λ (g) = diag
{

1
/(

|gi|2 + ξ
)1− k

2

}
(23)

The superscript H denotes the complex conjugate. Our objective is to find a g satisfying ∇J(g) = 0.
However, considering that H(g) is the function of unknown targets’ scattering reflectivity g, it is
impossible to obtain the estimation of g by simply letting g = 2H−1(g)AHs. Instead, an iterative
method will be exploited to solve this problem. By examining the expression of Eq. (21), it is appealing
to notice that H(g) can be seen as a “coefficient” matrix of g. As a result, H(g) is taken as the
“Hessian” matrix [35]. By doing so, the iterative process can be expressed as

gn+1 = gn − H−1 (gn)∇J (gn) (24)

where

H−1 (gn) = (∇ (∇J (gn)))−1

=
(
2AHA + μkΛ (gn)

)−1
(25)

The iteration shown in Eq. (24) will carry on until ‖gn+1 − gn‖2
2/‖gn‖2

2 < δ with δ a small positive
threshold. In following experiments, δ is set as 10−6.

By solving Equation (17) according to the aforementioned iterative regularization method, the
super-resolved azimuth profile corresponding to range sample at r0 can be obtained. After azimuth
profiles at all the range samples are processed, the image reconstruction is completed.

There are two parameters k and μ that should be selected in the proposed super-resolving imaging
algorithm. However, they are not selected by trial-and-error procedure. In the following experiments,
the parameter selection method that we proposed in [36] is adopted. As shown in [36], while ensuring
performance, the parameter selection method that we proposed has higher efficiency than that proposed
in [37] and [38].

3.3. Computational Burden Analysis

Another contribution of this paper is the development of a computationally efficient implementation.
For conventional SAR imaging algorithms based on the CS theory, an inherent requirement of two
dimensional sampling for both the signal and the scene is required [39, 40]. Although super-resolving
ability can be achieved in both range and azimuth directions in this way, extensive computational effort
is also involved, which hinders its practical usefulness. For example, for an M × N dimensional signal
and a P ×Q dimensional scene, the corresponding size of dictionary matrix A is MN ×PQ. Generally,
in order to achieve high resolution, the scene should be finely sampled. The sampling interval is usually
1/10 of the “Fourier” resolution cell or even finer, thus making P and Q large numbers. Consequently,
the algorithm will become computationally intractable for large scenes imaging. Considering that the
range resolution can be improved by increasing signal bandwidth, the algorithm proposed in this paper
puts emphasis on the improvement of azimuth resolution. Namely the CS theory is applied to enhance
azimuth resolution but not range resolution. In this way, the size of dictionary matrix A is reduced to
N ×Q, and the computational burden is greatly reduced, making the proposed algorithm applicable to
larger scenes.

4. EXPERIMENT RESULTS

Lacking forward-looking SAR system, the field experiment data are not available at this moment.
Therefore, in this section, in order to validate the effectiveness of the proposed algorithm, forward-
looking SAR imaging simulation experiments are carried out. The simulation parameters are listed
in Table 1. They are the same as the parameters of SIREV system except that the velocity is much
higher, as we want to test the performance of the proposed algorithm for platform with higher velocity.
According to Table 1, the corresponding “Fourier” resolution cells of this system are 2.5 m/3.89 m in
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range/ground range and 7.62 m in azimuth, respectively. One can image how bad imaging performance
will be if the MF based imaging algorithms are used.

Firstly, imaging of some point scatterers is simulated. Figure 3(a) illustrates the real positions of
9 point scatterers which form a trapezia. The distances between adjacent scatterers are one resolution
cell in ground range direction and 2/5, 3/10, 1/5 resolution cell in azimuth direction, respectively.
Figure 3(b) shows the imaging results generated by the proposed algorithm. It can be seen that 9
point scatterers are all well focused at right positions. As a result, an exact trapezia is formed in
the imaging result, which demonstrates that the proposed algorithm has no less than 5 times super-
resolving ability in azimuth direction. Figure 3(c) shows the superposition of the ground truth and the
reconstructed results. The good agreement further validates the imaging and super-resolving capability
of the proposed algorithm.

(a) (b)

(c)

Figure 3. Forward-looking SAR imaging simulation of 9 point scatterers which form a trapezia. (a)
Real positions of 9 point scatterers. (b) Image generated by the proposed algorithm. (c) Comparison
between imaging result and ground truth.

In the following part, in order to demonstrate the effectiveness of the proposed algorithm for
the real scene, forward-looking SAR imaging simulation experiments are carried out based on Ku-
band complex valued image data from the MiniSAR system of Sandia National Laboratory. The
MiniSAR system is an unmanned aerial vehicle (UAV)-borne SAR system which operates at spotlight
mode. During its fight experiments, some complex valued image data are acquired and then provided
online publicly. Figure 4(a), Figure 5(a) and Figure 6(a) show three complex valued images of the
MiniSAR system. According to the references provided by Sandia National Laboratory, they are a
building, a C130 plane and an Osprey plane, respectively. In each complex valued image, 309 × 158
(ground range×azimuth) scattering points uniformly distribute in the scene. Assuming that the size of
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(a)

(b) (c)

Figure 4. Forward-looking SAR imaging simulation of a building. (a) Ku-band complex valued image
of MiniSAR which is used as complex reflective template in forward-looking SAR echo generation. (b)
Image generated by the RD algorithm. (c) Image generated by the proposed algorithm.

each scene is 120m × 120m (ground range × azimuth), then the distances between adjacent scattering
points are about 1/10 resolution cell of the forward-looking SAR in both ground range and azimuth
directions. In order to make our validation more reliable, we place every scattering point in the complex
valued images from the MiniSAR system using a coordinate in ground range-azimuth plane (i.e., xoy
plane in Figure 2). In this way, the complex valued images of the MiniSAR system are taken as the
complex reflective templates of the scenes (namely g(x, y) in Equation (5)). During simulation, the
forward-looking SAR system transmits signal to the scene in front of it, and complex scattering points
in the scene backscatter signal to it. By receiving backscattered signal, the echo data of forward-looking
SAR are generated, and then the effectiveness of the proposed CS-based algorithm is demonstrated.
The simulation parameters are also the parameters listed in Table 1. The corresponding imaging results
are shown in Figure 4∼Figure 6.

Figure 4(a) shows a complex valued image of the MiniSAR system. In this image, there is a building
surrounded by the lawn, and the vertical and horizontal axes correspond to x and y axes in Figure 2,
namely the ground range and the azimuth, respectively. Figure 4(b) shows the image generated by
the RD algorithm. Due to the poor azimuth resolution constrained by limited azimuth aperture length
and the mutual interference of adjacent scattering points whose separation distances are about 1/10
resolution cell in both ground range and azimuth, the outline and detail of the building are not well
preserved. Meanwhile, the image suffers from contaminations with ground clutter and noise, which make
it harder for us to recognize the building. In contrast, the image reconstructed by the proposed algorithm
is preferable. Firstly, the geometry features of the building are well preserved. Consequently, the “T”-
shape structure of the building can be easily observed, and shape-based target recognition algorithm
can be effectively utilized to recognize it. Secondly, although quantitative super-resolving evaluation is
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(a)

(b) (c)

Figure 5. Forward-looking SAR imaging simulation of a C130 plane. (a) Ku-band complex valued
image of MiniSAR which is used as complex reflective template in forward-looking SAR echo generation.
(b) Image generated by the RD algorithm. (c) Image generated by the proposed algorithm.

not so easy for this complex target, it seems that more details about the building are reconstructed by
the proposed algorithm. Thirdly, the sparse image reconstructed by the CS-based algorithm enable the
effective use of the automatic target recognition system for detection and recognition [41]. Fourthly,
the dense and clean “look” of Figure 4(c) demonstrates the robustness of the proposed algorithm in
the presence of noise and clutter, especially when only strong scattering points over a noisy background
are of interest. Fifthly, because 5 times oversampling is adopted in range compressing, and azimuth
super-resolving processing is carried out along each range sample, the characteristic of the target is
also better depicted in range direction by the proposed algorithm, although no designed super-resolving
processing is included in range direction.

Comparing Figure 4(a) and Figure 4(c), one may doubt that except for cleaner background, it is
hard to conclude that the imaging quality is greatly improved by the proposed algorithm. However,
it should be noticed that Figure 4(a) is generated by the MiniSAR system which operates at Ku-band
spotlight mode and is utilized as complex reflective template in imaging simulation. However, Figure 4(c)
corresponds to an image generated by a forward-looking SAR which operates at forward-looking mode
and X-band. For spotlight-mode, the antenna is steered to map a scene at multiple viewing angles
during a single pass, so it can provide higher resolution than strip-map and scan mode SAR. However,
for forward-looking SAR, as its azimuth resolution is severely limited by azimuth aperture length,
how to achieve high resolution image is a problem that should be dealt with. Therefore, it is more
reasonable to compare imaging quality at same imaging mode and frequency band, such as Figure 4(b)
and Figure 4(c), which correspond to images reconstructed by RD and the proposed algorithm at the
same imaging mode and frequency band, respectively.

Another aspect worth to mention is the computational burden reduction and the computational
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(a)

(b) (c)

Figure 6. Forward-looking SAR imaging simulation of an Osprey plane. (a) Ku-band complex valued
image of MiniSAR which is used as complex reflective template in forward-looking SAR echo generation.
(b) Image generated by the RD algorithm. (c) Image generated by the proposed algorithm.

capability enhancement introduced by the proposed algorithm. In this experiment, the size of the
two-dimensional radar echo is 466 × 56, and the size of the scene is 309 × 158. If the conventional CS-
based imaging algorithm is used [39, 40], namely CS is used to improve range and azimuth resolutions
simultaneously, the corresponding size of dictionary matrix A will be 26096 × 48822. It means that
48822 variables should be solved from 26096 equations, which is obviously an extensive computation
burden. However, when the proposed algorithm is used, the size of A will reduce to 56 × 158, which
means that 158 variables should be solved from 56 equations. Consequently, the computation efficiency
is greatly enhanced.

Figure 5(a) shows the complex valued image of the MiniSAR system. In this image, a C130 plane
is parked on the runway. Figure 5(b) shows the image generated by the RD algorithm. Similarly, due
to poor resolution, mutual interference of adjacent scattering points lies in the same resolution cell and
contamination by noise and clutter, only some strong scattering points can be observed. Consequently,
it is difficult for us to find any relationship between them and a plane. In contrast, Figure 5(c) which
is reconstructed by the proposed algorithm gives us a much better impression. Firstly, the shape
of the C130 plane is well reconstructed, especially the array of scattering points corresponding to
the wing and tail of the plane. Secondly, contamination of noise and clutter is eliminated by using
the proposed algorithm. Thirdly, in the image reconstructed by the proposed algorithm, the strong
scattering point which is highlighted by the red circle in Figure 5(a) is imaged at the right position with
strong appearance. Considering that it is an isolated scattering point, this could be deemed as another
demonstration for the effectiveness of the proposed algorithm.

Figure 6(a) shows the complex valued image of the MiniSAR system. In this image, an Osprey
plane is parked on the runway. Figure 6(b) and Figure 6(c) show the images reconstructed by RD and
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the proposed algorithm, respectively. From the image reconstructed by the proposed algorithm, it can
be seen that the Osprey plane is well reconstructed that we can recognize it as a plane from its shape.
Besides that, the thread-like objects in the lower part of the image are also accurately reconstructed.
At the same time, the less spurious background is preferable. The experimental results demonstrate the
superiority of the proposed algorithm.

5. CONCLUSION

In this paper, an enhanced forward-looking SAR imaging algorithm based on the CS theory is proposed.
Firstly, by separating the imaging process into range compression based on matched filter and azimuth
super-resolving reconstruction based on CS, the computational burden is greatly decreased. Secondly,
by proposing an iterative regularization implementation of CS, the super-resolving ability is greatly
improved. The desirable characteristics of the proposed algorithm are verified using simulated data
and Ku-band complex valued image data from the MiniSAR system. In the images reconstructed by
the proposed algorithm, the contours and details of the point scatterers, plane and building are well
preserved.

In this paper, uniform sampling is used in the proposed forward-looking SAR imaging algorithm
based on CS. However, it has been declared in some literatures that sparse sampling configuration has
better performance and less computational burden [42, 43]. How to choose sparse samples and its impact
on forward-looking imaging performance is our ongoing area of research.
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